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	 The importance of a rapid, sensitive, and selective colorimetric sensor array (CSA) for 
the discrimination of a wide range of food quality attributes has been recognized in the food 
industry.  Here, the density functional theory (DFT) method at the B3LYP/LANL2DZ level 
was used to analyze the molecular reactions between a CSA and volatile organic compounds 
(VOCs).  The energy gaps for iron phthalocyanine (FePc) binding to VOCs show that FePc-O2 
and FePc-N2 have relatively smaller energy gaps; this causes the process of FePc binding to O2 
and N2 through more than one pathway.  Because of the binding energy, FePc is sensitive to N2, 
followed by trimethylamine, propane, and acetone, whereas H2S, ethanol, and ethyl acetate may 
not be sensitive to FePc.  We suggest that the DFT-based method is useful for the theoretical 
design of CSAs and perhaps other sensors containing metal phthalocyanine.

1.	 Introduction

	 Freshness is one of the main indicators that reflect food quality attributes during storage, 
processing, marketing, and consumption.  Spoilage is a complex process that makes food 
unacceptable or undesirable for consumers owing to the changes in sensory characteristics.  In 
addition to its effect on sensory characteristics, the spoilage of food products probably causes 
serious illness and even death for consumers.  Therefore, a rapid method of monitoring the 
changes in the quality of food products should be developed for the food industry.  Volatile 
organic compounds (VOCs) are one of the most important indicators for detecting and 
evaluating food freshness.  Each food product has a characteristic profile of VOCs during each 
stage of the entire food chain.
	 Over the previous decades, a series of traditional methods, such as gas chromatography-mass 
spectrometry (GC-MS),(1) and electronic nose (EN),(2) have been developed for the detection 
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and evaluation of food quality.  However, almost all of these methods are based on physical 
adsorption and van der Waals interactions, which are the least selective and weakest molecular 
interactions between sensors and analytes.  Here, a novel sensor-based method [i.e., colorimetric 
sensor array (CSA)] is developed to detect VOCs from food or other sources.  According to 
previous studies, this helpful method is proved to have both high sensitivity and high selectivity 
to VOCs.  It shows enormous discriminatory power for similar molecules, such as 2-picoline 
and 3-picoline.  Moreover, it is also 20000-fold more sensitive than the methods based on 
physical adsorption and van der Waals interactions in theoretical and experimental studies.(3)  
In addition to its high sensitivity and high selectivity, this method is essentially unresponsive 
to water from 2000 to 20000 ppm in an environment where GC-MS and EN are difficult to 
perform.  Therefore, this method is regarded as helpful in detecting and evaluating the food 
quality for the food industry.  In this paper, we therefore intend to provide a design strategy for 
a CSA at the molecular level for the rapid detection of VOCs in food.

2.	 Materials and Methods

2.1	 CSA

	 The schematic diagrams of the reactions between the CSA and an analyte are shown in Fig. 
1.  A typical CSA composed of a series of metalloporphyrins and other dyes show sensitivity 
to VOCs.(4)  The reactive sites of metalloporphyrin are the metal atom in the center of the 
porphyrin plane, which is in agreement with previous studies.(5,6)  Figure 1(a) shows an image 
of the CSA before reacting with an analyte.  After exposure to the analyte, the image landscape 
shows a small change compared with the original image, which is difficult to be discriminated 
with the naked eye, as shown in Fig. 1(b).  Therefore, the difference image between the 
images obtained before and after exposure to the analyte is always required to obtain a unique 
fingerprint for each analyte.  A typical difference image is produced by subtracting the before-
reaction image from the after-reaction image, as shown in Fig. 1(c).

(a) (b) (c)

Fig. 1. (Color online) Schematic diagrams of CSA based on metalloporphyrin.  Color images of the sensor array 
obtained (a) before and (b) after exposure to analyte. (c) Difference image obtained by subtracting the before-
reaction image from the after-reaction image.
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2.2	 Computational method

	 The CSA model used is represented by a simple iron phthalocyanine (FePc) without any 
meso substituent.  The initial unligated FePc and VOCs were obtained from the Cambridge 
Crystallographic Data Centre (CCDC).  Each model consists of a planar phthalocyanin ring and 
the ligand lies along an axis perpendicular to the plane of the phthalocyanin ring.  The FePc-
VOC model was used to represented the CSA binding with an analyte by adding VOC molecules 
above the phthalocyanin ring at distances of 3–4 Å.(7)  The FePc and a similar FePc-O2 model 
are shown in Fig. 1.  All calculations were implemented using Gaussian 09.  Each model was 
calculated by applying the density functional theory (DFT) to B3LYP/LANL2DZ.  The DFT-
based method at this level was shown to be very efficient in the calculation of the geometries, 
energies, and charges of FePc and similar FePc complexes.  To avoid any shortcomings, 
geometry optimization was carried out at three different spin states (low, intermediate, and high).(6)

3.	 Results and Discussion

3.1	 Relative energy

	 According to a previous study,(8) all further calculations were carried out on the basis of the 
most stable geometry structure.  The energy change associated with the geometry structures 
at three possible spin states (i.e., low-spin doublet, intermediate-spin quartet, and high-spin 
sextet) is the relative energy.  The relative energy is the energy gap based on the most stable 
one.  Figure 2 shows the relative energies for the FePc before and after exposure to different 
VOCs.  It is important to note that FePc, FePc-H2S, and FePc-L1,4,5 have the most stable 

Fig. 2.	 (Color online) Relative energy obtained by subtracting the most stable energy from the unstable energy 
for each FePc and its complexes. L1 is trimethylamine, L2 is ethanol, L3 is propane, L4 is acetone, and L5 is ethyl 
acetate. 
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geometry structures at doublet, whereas FePc-N2, FePc-L3,4 and FePc-O2 have the most stable 
geometry structures at quartet and sextet.  In addition to the results of the analysis of the most 
stable geometry structures, the energy gaps between the most stable state and other states 
are observed to affect the binding capability of the FePc sensor.  It is interesting to note that 
FePc-O2, FePc-N2, and FePc-L1,2,3,4 have smaller energy gaps, and FePc-H2S and FePc-L5 have 
larger energy gaps.  The smaller energy gaps probably mean that the binding process between 
the CSA and the VOCs is through more than one pathway, making the CSA react easily and 
more efficiently, as reported previously.(9)  

3.2	 Optimized molecular structure

	 All calculations were initiated from the appropriate geometry structures optimized at fixed 
spin multiplicity.  Besides the effect of the geometry structure, the binding pattern also affects 
the capability of the CSA to bind VOCs.  There are two binding patterns, the end-on(10) and 
side-on.(11)  The end-on bent binding was proved to be well established by X-ray structure 
determination.(12)  Furthermore, the side-on binding in the P450 model with a methyl mercaptide 
axial ligand for the heme iron had higher energy than the end-on bent binding with the O2 
geometry.(13)  Therefore, the end-on pattern was selected to construct the FePc-VOCs.  After 
optimizing the process, the molecular structures of FePc before and after exposure to VOCs 
were obtained and are shown in Fig. 3.  The distances between the Fe atom in the center of the 
metalloporphyrin plane and the VOCs ranged from 1.996 to 4.143 Å, which is in agreement 
with the results of a previous theoretical study.(7)  In Fig. 3, for the unligated metalloporphyrin, 
the distances of Fe-Cl are 2.245 Å for doublet, 2.349 Å for quartet, and 2.320 Å for sextet.  It 
is clearly observed that the molecular structures were changed at the different spin states.  As 
shown in Fig. 3, the Fe atom moved out of the metallophthalocyanine plane toward the VOCs.  
The complexes of FePc-VOCs showed a very interesting spin-structure relationship.  Their 
distances are 0.019–0.156 Å for the doublet, 0.064–0.249 Å for the quartet, and 0.113–0.471 Å 
for the sextet.  FePc-N2 has the largest out-of-planarity because of its negative ion, which is 
consistent with a previous study.(14)  

3.3	 Mulliken charge analysis

	 The chemical reactions between the CSA and VOCs involve bond formation and bond 
breaking, which are closely related to the charge distribution.  The relationship between the 
charge configurations of the metal and nitrogen atoms may affect the binding of the CSA 
to VOCs.  Figure 4 shows the charge relationship between the Fe and nitrogen atoms.  The 
FePc and FePc-VOCs show larger positive charges on Fe atoms and more negative charges on 
nitrogen atoms, which are reflected by FePc, FePc-L2,5, and FePc-H2S data points at the left top 
of the line.  On the other hand, FePc and FePc-L1,3 have larger negative charges on Fe atoms and 
more positive charges on nitrogen atoms at the lower right corner of the lines.  It is interesting 
to note that the unligated FePc has the largest positive charge on the Fe atom, whereas FePc has 
the lowest positive charge.  The reason for this may be that N2 is a better electron donor than the 
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Fig. 3.	 (Color online) Optimized molecular structures for further calculation of FePc and its complexes.  Δ is the 
distance between the Fe atom and the metalloporphyrin plane.  Data for the singlet is without parentheses, triplet 
data is within the parentheses, and quintet data is within the brackets. 

Fig. 4.	 (Color online) Strong linear relationships of charge distribution between Fe and N atoms in the center of 
the metalloporphyrin plane for different complex models.
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others, which makes the Fe atom exhibit a more negative charge.  When the VOC used is a good 
electron donor, there will be more electrons available in the metalloporphyrin system.  

3.4	 Binding energy

	 T he reac t ion process be t ween t he CSA a nd t he VOCs ca n be w r i t t en a s 
FePc + VOCs → FePc − VOCs.  The energy change associated with the CSA before and after 
exposure to VOCs, which reflects the property for the binding of the CSA to different VOCs, 
was represented by binding energy (BE).  After obtaining the energy of the CSA before 
and after exposure to VOCs, the binding energy can be calculated as BE = EFePc + EVOCs 
− EFePc−VOCs.  Figure 5 shows the binding energy (kcal/mol) for all the FePc-VOCs.  It is 
interesting to note that FePc-N2 exhibits the largest binding energy, followed by FePc-L1,3,4 and 
O2, whereas FePc-L2,5 and H2S have relatively smaller binding energies.  The reason for this 
may be that N2 is a better electron donor than the others, making the Fe atom in the center of the 
metalporphyrin plane take the largest negative charge.  However, L2 is not as good an electron 
donor as the others, which makes the Fe atom exhibit the largest positive charge.  When the 
VOC used is a good electron donor, there may be higher binding energy through the reaction 
process between the CSA and the VOCs.

4.	 Conclusion

	 A DFT-based method for the design of a CSA with different VOCs was developed at the 
molecular level.  This theoretical study was carried out at the B3LYP/LAN2DZ level on the 
basis of an optimized molecule.  The sensitivity of the CSA for different VOCs was represented 
by binding energy.  The binding energies of the CSA before and after exposure to VOCs were 
calculated to measure binding capability profiles as a sensitivity indicator of the CSA.  The 

Fig. 5.	 (Color online) Binding energy of CSA for different VOCs.
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analysis of binding energies indicated that FePc is sensitive to FePc-N2, followed by L1, L3, L4, 
and O2, whereas L2, L5, and H2S may not easily react with FePc.  This result suggests that the 
DFT-based method is feasible for the theoretical design of the CSA.  This method may also be 
helpful for other types of sensor design.  Further study is required to investigate other types of 
CSA containing metalloporphyrin or other molecules.  
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