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	 Conducting polymers are explored as sensing materials owing to their broad interaction 
with gases and vapours.  The sensitivity of a chemiresistive gas sensor can be improved 
by the incorporation of multifunctional materials such as carbon nanotubes (CNTs).  Here, 
multiwalled carbon nanotube (MWCNT)-incorporated poly(3-hexylthiophene-2,5-diyl) (P3HT) 
nanocomposite films have been fabricated by solution processing followed by drop casting 
and spin coating using tetrahydrofuran (THF) as an intermediate solvent.  The modification of 
the absorption peaks observed in UV–Vis spectra was consistent with the observation of the 
polymer coating onto the MWCNT surface.  Fourier transform infrared (FTIR) and Raman 
vibrational mode spectra of the polymer were obtained after MWCNT incorporation.  Coating 
a polymer onto the nanotube surface was shown to increase the current in the P3HT/MWCNT-
OH nanocomposite.

1.	 Introduction

	  An enormous number of functional materials have been explored for gas sensing 
applications owing to the fact that when a particular gas interacts with these surfaces, some 
alteration in their properties (e.g., optical and electrical properties) can be observed.  These 
functional materials can therefore be considered as sensing films.  Because of their flexibility 
and easy processing, organic and polymer semiconductors have attracted tremendous research 
attention for use in next-generation electronics and optoelectronics.(1–3)  Poly(3-hexylthiophene-
2,5-diyl) (P3HT) has been efficiently used as a light absorbing material and employed as a 
hole-transporting layer owing to its high degree of molecular order via the π–π stacking of 
adjacent molecules.(3–5)  In P3HT-based organic photovoltaic devices, carbon nanotube (CNT) 
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incorporation was found to increase the dissociation rate of excitons as well as the charge 
carrier collection efficiency.(1,6)  CNTs belong to a class of organic materials discovered by 
Iijima et al. in the 1990s that consists of a percolating network of highly conductive CNTs in a 
polymer matrix.(7,8)  Thus, the use of composite nanomaterials such as P3HT/CNT may result in 
a higher gas-sensing sensitivity.(9)  The film processing of conjugated polymers and CNTs has 
a higher miscibility owing to strong van der Waals interactions between conjugated π-bonds.(10)  
From self-assembled hierarchical P3HT/CNT supramolecular structures processed by solution 
crystallisation, P3HT chains grow into nanowires with a stacking direction perpendicular to the 
CNT axis, increasing the film conductivity.(11)

	 Previously, many research groups explored P3HT- and CNT-based gas sensors for volatile 
gas compounds and nerve agent simulants using various sensor architectures.(12,13)  In most 
works, a change in thin film resistivity is used as the main sensing mechanism as |ΔR/R0|.(12,13)  
The P3HT/single-walled carbon nanotube (SWCNT) sensor developed by Wang et al. has a 
higher chemiresistive response to dimethyl methylphosphonate (DMMP) than pristine CNT 
sensors.(9)  Several other groups investigated the performance of P3HT chemical sensors 
that show a fivefold higher sensitivity toward ethanol than acetone.(4,13)  P3HT doped with 
chloroauric acid has been used for selective detection of volatile amines and thiols via 
colorimetric and chemiresistive methods.(2)  The charge carrier density of the doped P3HT thin 
film is estimated to be ~5 × 1021 cm−3.(2)  Selective gas measurement is demonstrated using 
30 channel sensor arrays consisting of 15 different polymer/CNT composites to differentiate 
between several chemical warfare agents and organic solvents.(14)  In this paper, we discuss 
the effect of the regioregularity of different types of multiwalled carbon nanotube (MWCNT) 
chains on the molecular ordering of P3HT using solution-processed P3HT/MWCNT blend 
films.  The noncovalent functionalization of the CNT and the polymer as the sensing film does 
not compromise the nanotube backbone; thus, it does not affect the conductivity of the film.(6)

2.	 Materials and Methods

	 Regioregular P3HT (molecular weight, Mw ~50000–100000; purity, >99%; Sigma-
Aldrich) was used in this work.  MWCNTs were purchased from Sigma–Aldrich (purity, 
>98% carbon basis).  Hydroxyl-functionalised MWCNTs (purity, >95%) were purchased from 
GetNanoMaterials.  Tetrahydrofuran (THF) (Sigma-Aldrich) was used as a suspension agent.  
All materials and reagents were used as received.  Nanocomposite films were prepared by the 
following procedure.  MWCNTs were dispersed in THF solution and magnetically stirred at 
a constant temperature of 50 °C for 96 h.  The mixture was then ultrasonicated ( f = 50/60 Hz) 
for 2 h to form a well-dispersed MWCNT suspension.  The supernatant of this mixture 
was collected after centrifuging for 1 h at 4500 rpm.  The films were then drop-casted and 
subsequently spin-coated on α-quartz and indium–tin–oxide (ITO) substrates at 500 rpm for 3 
s and allowed to dry at room temperature to volatilise the solvent.  Pristine P3HT and P3HT/
MWCNT and P3HT/MWCNT-OH nanocomposite films were also prepared with polylactic acid 
(PLA) as a binding matrix and coated onto thin films for Fourier transform infrared (FTIR) 
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characterisation.  A short spinning duration is used to obtain a uniform thickness and a higher 
molecular order in the polymer films.(15)  A schematic of the procedure for the preparation of 
the P3HT/MWCNT nanocomposite files is shown in Fig. 1.  MWCNTs with different weight 
ratios of 1:1, 1:2, 1:5, and 1:10 were introduced into the P3HT blend.
	 Optical characterisation was then performed using a UV–Vis spectrophotometer, an FTIR 
spectrophotometer, a photoluminescence (PL) spectrophotometer, and a Raman microscope.  
UV–Vis spectra were recorded using a Genesys TM6 (Thermo Scientific) spectrophotometer at 
wavelengths of 200−1000 nm.  FTIR spectra were recorded on a Perkin Elmer Frontier FTIR 
spectrophotometer with a resolution of 4 cm−1 in the scanning range of 450 to 4000 cm−1.  
Raman spectra were obtained using a Renishaw Raman microscope with a 50× objective and an 
excitation beam of 632.8 nm wavelength.  PL measurement was performed using a Perkin Elmer 
LS 55 instrument at room temperature and with an excitation wavelength of 562 nm to obtain 
information on radiative emissions from photoexcited states of the P3HT/MWCNT composite 
materials.  The microstructure and nanostructure of the samples were studied by optical 
microscopy, high-resolution transmission electron microscopy (HR-TEM), and field emission 
scanning electron microscopy (FESEM).

3.	 Results and Discussion

3.1	 Optical studies

	 The UV–Vis adsorption characterisation provides fundamental information on the material 
composition, content, and conformation of polymers and the polymer blend when other 

Fig. 1.	 Schematic procedure for the preparation of P3HT/CNT composite films.
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components have been added to a composite.(16)  Figure 2 shows the UV–Vis spectra of P3HT/
MWCNT dissolved in THF solution at different weight ratios.  It was seen that the UV–Vis 
adsorption spectrum of the P3HT solution is similar to that of P3HT blended with MWCNTs at a 
ratio of 1:1.  This ratio corresponds to the smallest weight of MWCNTs used in our experiment.  
However, when the weight ratio of the MWCNTs is increased to 1:2, an adsorption peak at a 
wavelength of 282 nm begins to appear.  The adsorption peak at 282 nm related to the CNTs 
becomes more pronounced as the number of MWCNTs in the blended solution is increased.(17)  
The calculated optical band gap energies for all blended solutions are  shown in Fig. 3.  It can be 
seen that the optical band gap shifts to a higher energy with increasing MWCNT concentration 
in the polymer solution.  The increase in the optical band gap from 2.19 to 2.32 eV is in 
accordance with Beer–Lambert theory.  Beer’s law states that the amount of radiation absorbed 
or transmitted by a solution or medium is an exponential function of the concentration of the 
absorbing substance present and of the length of the path of the radiation through the sample.  
A low band gap with good dispersion is desirable for semiconductor materials developed as 
sensing materials.(18)  Therefore, P3HT/MWCNT and P3HT/MWCNT-OH blended films with  a 
weight ratio of 1:1 were selected for further experimental work.  
	 Figure 4(a) shows the UV–Vis spectra of pristine P3HT and P3HT/MWCNT nanocomposite 
films with a weight ratio of 1:1.  In thin-film formations, molecules are stacked against each 
other and the resulting overlapping π–π bonds give absorption peaks in the visible region.  
Commercial P3HT strongly absorbs in the region between 450 and 650 nm with two distinct 
peaks at 562 and 615 nm.  These two peaks are attributed to the ordered lamellar phase of 
P3HT and correlate with the electronic π–π* transition of the aromatic chromophore of the 
P3HT backbone.(3)  The peak at 562 nm can be attributed to the extended conjugated systems, 
while that at 615 nm is attributed to interchain interactions.  It was observed that 562 and 615 
nm peaks for pristine P3HT (black) have similar intensities.  However, the peak at 615 nm 
is less prominent for P3HT/MWCNT (grey) and nearly disappears for P3HT/MWCNT-OH 

Fig. 2.	 UV–Vis spectra of (a) pristine P3HT and 
blended P3HT/MWCNT in THF with weight ratios of 
(b) 1:1, (c) 1:2, (d) 1:5, and (e) 1:10.

Fig. 3.	 Optical band gaps of commercial P3HT 
and P3HT/MWCNT blended solutions with different 
weight ratios: (a) P3HT pristine, (b) 1:1, (c) 1:2, (d) 1:5, 
and (e) 1:10 blends.
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(dashed).  The incorporation of MWCNTs causes the unfolding of the P3HT molecules and 
their alignment along the nanotubes, resulting in the formation of an ordered structure giving a 
higher absorption peak at 562 nm than at 615 nm.(5)  This same trend was previously observed 
for P3HT-coated ZnO nanowires.(19)

	 Figure 4(b) shows the PL spectra of pristine P3HT films and P3HT/MWCNT nanocomposite 
films under excitation at a wavelength of 562 nm.  The PL spectra were obtained to study 
the radiative emission from photoexcited states of P3HT/MWCNT composite materials 
corresponding to the π–π* absorption band indicated in the UV–Vis spectra in Fig. 4(a).  The 
P3HT film shows a PL emission peak at 2.21 eV.  A small shift was observed for P3HT/
MWCNT with a peak at 2.22 eV and the peak of  P3HT/MWCNT-OH underwent a redshift to 2.19 
eV.  The redshift in the PL spectra indicates an increased conjugation length favouring a greater 
delocalisation of electrons in the polymer chains.(20)  In this case, it is shown that MWCNT-OH 
induces a significant change in polymer conformation owing to the presence of the hydroxyl 
group.

3.2	 Vibrational measurement by FTIR and Raman spectroscopies

	 Pristine P3HT and P3HT/MWCNT nanocomposite films were further analysed by FTIR 
spectroscopy, as shown in Fig. 5.  An intense peak that originated from PLA appeared at 
~1750 cm−1 for all films.(21)  The P3HT film shows vibrational peaks in three different regions, 
namely, (i) at 800–1000 cm−1 for the thiophene ring, (ii) at 1300–1600 cm−1 for the polymer 
chain, and (iii) at 2800–3100 cm−1 for the alkyl chain, which can be attributed to the absorption 
of a sulfate atom on the thiophene ring, the C=C asymmetric stretching vibration, and the CH2 
out-of-phase stretching of the alkyl chain, respectively.(22)  No peak shift was observed in all 
of the P3HT/MWCNT composite films indicating no strong interaction between P3HT and 
MWCNTs.(5)

Fig. 4.	 (a) UV–Vis spectra of pristine P3HT film and P3HT/MWCNT nanocomposite films with weight ratio of 1:1. (b) 
Normalised PL spectra of pristine P3HT and P3HT/MWCNT and P3HT/MWCNT-OH composite films under 562 
nm excitation wavelength.

(a) (b)
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	 In another vibrational Raman spectroscopy, only symmetric vibrational mode peaks 
emerged.  Here, peaks that are attributed to the CNTs can be clearly observed.  Figure 6 shows 
Raman spectra of pristine P3HT and the P3HT/MWCNT and P3HT/MWCNT composite films 
in the range of 1000–3000 cm−1.  The peak at 1379 cm−1 corresponds to the C–C symmetric 
bending vibrations of the thiophene ring, whereas that at 1443 cm−1 belonged to the symmetric  
C=C stretching mode of P3HT.(23,24)  Both peaks are sensitive to π-electron delocalisation 
(conjugation length) and thus indicate the degree of molecular order in P3HT films.(23)  On the 
other hand, the intensity ratio of the Raman disorder (D)-band to the graphite (G)-band is often 
used to estimate the density of structural defects found in CNTs.  If both bands are similar in 
intensity, the density of the structural defects is assumed to be high.(25)  A lower band intensity 
ratio ID/IG indicates fewer defects, suggesting a higher structural quality.(5)  The peak located at 
~1340 cm−1 is denoted as the D-band as it is related to scattering from defects and amorphous 
carbon impurities that are present in the MWCNTs.  The second feature with a frequency range 
from 1550 to 1600 cm−1 is referred to as the G-band.(26)  The D-band originates from defects 
and the disordered atomic arrangement of the sp3-hybridised carbon atoms, whereas the G-band 
is the result of the G carbon vibrations of the C=C bond.(27)  The appearance of the secondary 
band, the G′-band at 2877 cm−1, is due to the strong coupling between phonons and electrons.(28)  
It was observed that the intensity of the G-band is higher than that of the D-band for both the 
P3HT/MWCNT and P3HT/MWCNT-OH films, which highlights the low defect density and the 
small amount of CNT species.(8)  The intensity ratios of the D-band to the G-band (ID/IG) for 
P3HT/MWCNT and P3HT/MWCNT-OH were calculated to be 0.35 and 0.54, respectively.  The 
high defect density of MWCNT-OH is expected for the hydroxyl nanotube functionalisation 
giving a higher D-band intensity.(7)

3.3	 Surface analysis

	 The microstructures and nanostructures of the films were observed by HR-TEM, FESEM, 
and optical microscopy.  Figure 7 shows the diameter distribution of the as-grown MWCNTs and 

Fig. 5.	 FTIR spectra of P3HT nanocomposite films (a) P3HT/MWCNT and (b) P3HT/MWCNT-OH, and (c) 
pristine P3HT.
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MWCNT-OH obtained from FESEM images.  The lengths of the MWCNT and MWCNT-OH 
are 0.5−10 μm and 10−20 μm, respectively.  This result shows a narrow dispersion in the 
diameters found among MWCNT bundles especially for MWCNT-OH.  The initial surface 
analysis of P3HT/MWCNT-OH by laser confocal microscopy shows that the fabricated P3HT 
may form a nanowire structure as shown in Fig. 8.  It is difficult to distinguish the MWCNTs 
and P3HT in the nanocomposite films; however, the enlarged image in Fig. 8 shows smaller 
microstructures in a region apart from the aggregated P3HT.  These microstructures may be 
composed of nanofibrillar network structures of P3HT that are responsible for the efficient 
charge transport pathways in organic devices.(14,29)  A previous finding also shows that P3HT 
can adhere to the CNT surface.(8)  The homogeneous dispersion of the CNTs using a polymer 
as a dispersant will result in the polymer coating on the CNT surface.(30)  This geometry of the 
coating can be confirmed by microscopy techniques.

Fig. 6.	 Raman spectra of (a) pristine P3HT and nanocomposite films (b) P3HT/MWCNT and (c) P3HT/

Fig. 7.	 Population of (a) MWCNTs and (b) MWCNT-OH with different tube diameters determined by FESEM.

(a) (b)
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Fig. 8.	 Photomicrograph of the spin-coated P3HT/MWCNT-OH. nanocomposite film.

Fig. 9.	 HR-TEM images of (a) uncoated MWCNT-OH and (b) P3HT-coated MWCNT-OH.

(a) (b)

	 Figure 9 shows the HR-TEM images of (a) uncoated MWCNT-OH and (b) P3HT-coated 
MWCNT-OH.  Purified MWCNT-OH is seen in an aggregated state [Fig. 9(a)], but after 
dispersion using P3HT, MWCNT-OH existed in smaller bundles or as individual tubes, as 
is shown in Fig. 9(b).  The polymer-coated MWCNT has ~20 G layers on one side of its wall 
and polymer bumps can be found attached to the surface of an individual MWCNT-OH.  
The polymer-coated MWCNT-OH is the reason behind a weaker intermolecular interaction 
between individual MCWNT-OH tubes, which prevents their aggregation into bundles.(6)  This 
is our successful attempt of coating P3HT onto the surface of MWCNT-OH to be used as the 
sensing material in the chemiresistor.  The P3HT coating on the MWCNT wall can result in a 
higher degree of π–π stacking on the wall than in the case of bare MWCNT that reflects the 
modification on the UV–Vis spectra shown in Fig. 4(a).  The noncovalent coating of CNTs using 
various polymers has also been reported by other groups.(6)
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3.4	 Electrical measurement 

	 Figure 10 shows electrical measurements of P3HT and P3HT/MWCNT-OH nanocomposite 
film obtained using carbon electrodes.  Clearly, the effect of MWCNT-OH incorporation 
facilitated the charge transport property of the P3HT nanocomposite.  Mahakul et al. have 
shown a similar marked increase in current up to 8 mA at 20% CNT weightage in the P3HT 
composite.(5)  From the data provided by Sigma-Aldrich, P3HT is a p-type semiconductor with 
the highest occupied molecular orbital (HOMO) energy level of 5 eV and the lowest unoccupied 
molecular orbital (LUMO) energy level of 3 eV.  Thus, electron migration from the nanotube to 
the polymer is unlikely to occur owing to the relative position of the Fermi level.(8)  However, 
a new polymer geometry such as P3HT coating/wrapping on the nanotube may consist of 
the local charge transfer of donor–acceptor interaction that is responsible for the improved 
conductivity of the device.(5,8) 

4.	 Conclusions

	 The optical, vibrational, and surface characteristics of P3HT/MWCNT nanocomposites 
fabricated by a very simple processing method were investigated in our study.  One of the 
key techniques for studying highly sensitive sensing materials is the surface modification 
of the conducting material.  The unfolding of P3HT and decorated/wrapped MWCNTs was 
observed with a wall thickness up to ~20 G layers.  This formation of higher ordered structure 
on the walls of CNTs is the reason to higher 562 nm absorption peak and reshifted PL peak 
corresponding to electronic of π–π stacking.  An increase in current was observed in the P3HT/
MWCNT-OH nanocomposite, indicating the role of decorated MWCNTs in film conductivity.

Fig. 10.	 I–V characteristics of P3HT (black line) and P3HT/MWCNT-OH (dashed line) nanocomposite film at scan 
rate of 100 mV/s.
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