
2931Sensors and Materials, Vol. 31, No. 9 (2019) 2931–2946
MYU Tokyo

S & M 1983

*Corresponding author: e-mail: fy9903@hfut.edu.cn
https://doi.org/10.18494/SAM.2019.2444

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Method of Finger Motion Recognition 
Based on Polyvinylidene Fluoride Sensor Array

Yaohui Hu,1,2 Lingrui Xie,1,2,3 Yadong Chen,1,2,3 Ke He,4 
Yong Fang,1,2* Wuwei Kang,1,2,5 Zixian Yao,1,2,6 and Guoqing Fang1,2,6

1National Engineering Lab of Special Display Technology, Hefei University of Technology,
Hefei 230009, China 

2Academy of Photoelectric Technology, Hefei University of Technology,
Hefei 230009, China 

3School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology,
Hefei 230009, China 

4Faculty of International Studies, Prince of Songkla University (Phuket Campus),
Phuket 83120, Thailand 

5School of Computer Science and Information Engineering, Hefei University of Technology,
Hefei 230009, China 

6School of Electronic Science & Applied Physics, Hefei University of Technology,
Hefei 230009, China 

(Received May 25, 2019; accepted August 26, 2019)

Keywords:	 finger	motion	recognition,	PVDF	sensor	array,	wearable	wrist	device,	eigenvectors

 Finger motion recognition is one of the key technologies of human–computer interaction 
based on gestures.  In this paper, we propose a method of recognizing finger motions by using a 
wearable wrist device (WWD).  This method not only avoids the problem that the user’s hands 
are limited by wearing motion detection sensors, but also avoids the problem that vision-sensor-
based gesture recognition technology is difficult to use in a mobile environment.  Moreover, 
this	 method,	 which	 uses	 polyvinylidene	 fluoride	 (PVDF)	 sensors	 as	 the	 detection	 units	 of	
WWD, has the advantages of being noninvasive, comfortable, and convenient.  In this work, we 
first	studied	the	distribution	and	optimization	of	the	PVDF	sensor	array,	and	used	this	array	to	
complete the acquisition of wrist motion signals.  Then, we used short-term energy to solve the 
problems of the real-time detection of motion signals’ endpoints and the extraction of motion 
signal fragments.  Then, we encoded these fragments into 64-digit eigenvectors for finger 
motion recognition.  In the experiment, we transmitted the eigenvectors as input values into a 
four-layer back propagation (BP) network to recognize three essential finger motions for mouse 
control.  The experimental results show that the recognition effect of this method is satisfactory 
and the recognition accuracy is up to 96.7%.

1. Introduction

 In recent years, research on wearable devices has rapidly developed,(1–4) and products 
such as Google Glass and Apple Watch have been designed.  Wearable devices create a new 
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experience, while putting a higher demand on human–computer interaction technology.  Finger 
motion recognition is a widely used technique for human–computer interaction.
 Today, there are two main types of method of finger motion recognition, namely, finger 
motion recognition based on computer vision and finger motion recognition based on sensors.  
Concerning the first type of method of finger motion recognition based on computer vision,(5–7)  
Zhang et al. proposed a multiple extraction and multiple prediction (MEMP) network for 
gesture recognition, which achieved a high recognition rate of 97.01%.(7)  However, the methods 
for finger motion recognition based on computer vision are highly dependent on the external 
environment such as the ambient light and background.  Additionally, the user is limited to the 
extent that there is no obstruction between the user and the imaging device.  The second type 
includes methods of finger motion recognition based on sensors.  Among such methods, devices 
based on the sensors are often designed as a data glove, such as a data glove with piezoresistive 
sensors or inertial sensors.(8–11)  Hartmann and Link proposed an approach for online gesture 
recognition with inertial sensors.(10)  The approach utilizes a distance measure based on a 
dynamic time warping (DTW) online algorithm, which can deal with gestures varying in 
length and amplitude.  Costa et al. showed that a hand glove with piezoresistive sensors can 
measure the movement of the fingers.(11)  Although the use of a data glove makes it easy to 
collect finger movement data, these devices are inconvenient to carry and will restrain the 
user’s hand.  The other type of sensor used at present is the surface electromyography (SEMG) 
sensor.(12–15)  Mehran and Mahdi proposed using two different sets of EMG features to achieve 
a high accuracy in recognizing six distinct hand movements.(14)  Luo et al. showed that muscle 
synergies can be well applied to gesture recognition.(15)  However, the finger motion recognition 
based on SEMG sensors has many requirements for wearing, and the experience while using 
it is poor.  In summary, although the existing methods for finger motion recognition can meet 
the user’s requirements, there are some limitations such as the many requirements for wearing, 
restrictions to the application occasion, and so on.  
 As finger movement would drive wrist muscles to move accordingly, we proposed a method 
to indirectly recognize finger motions by detecting motion signals of wrist muscles with 
pressure sensors.  For the above purpose, the pressure sensors should have the characteristics 
of small size, high sensitivity, and good stability, and need to realize multipoint and dynamic 
measurement.  In principle, the main pressure sensors can be divided into piezoelectric sensor, 
piezoresistive sensor, capacitive sensor, electromagnetic sensor, and triboelectric sensor.  
Among them, the electrical viscosity of piezoresistive sensors causes phenomena such as 
stress relaxation, creep, and hysteresis.  This compromises sensor calibration and leads to 
inaccurate results.(16)  The cavity between the two electrodes of the capacitive pressure sensor 
and the electrical feedthrough out of the cavity complicate the fabrication process, resulting in 
increased processing difficulties and cost of the devices.(17)  Pressure sensing approaches based 
on electromagnetic transduction principle are often used for remote estimation of the pressure 
variation.(18,19)  As a new sensing technology, triboelectric nanogenerator (TENG) based on 
triboelectric principle has become a research focus since its first demonstration in 2012, and 
the self-powered pressure sensor was the straightforward application for TENG-based active 
sensors.  However, there are still some problems.  The performance of TENG depends to a large 
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extent on the contact area between friction materials, which will requires more complicated 
manufacturing process.(20)  One characteristic of TENG is its high open-circuit voltage, which 
will easily lead to breakdown damage of the pre-circuit.(21) 
	 As	 a	 flexible	 piezoelectric	 material,	 the	 polyvinylidene	 fluoride	 (PVDF)	 film	 can	 fit	
properly with the human body.  Moreover, it has the advantages of having a high piezoelectric 
constant, wide frequency response, low acoustic impedance, high dielectric strength, and 
excellent mechanical properties.(22)	 	Moreover,	the	sensors	based	on	PVDF	are	widely	used	in	
many fields.(23–26)  Hu et al.	used	the	PVDF	piezoelectric	film	to	prepare	a	type	of	wrist	sensor	
that has small size, good flexibility, and high sensitivity.  Furthermore, the sensor was easy to 
wear and could detect the motion of the wrist when a finger was moving.(27)  The focus of this 
study is to identify the feasibility of finger motion recognition based on wrist motion detection, 
so	we	choose	the	sensor	made	of	PVDF	piezoelectric	film,	which	is	relatively	mature	in	current	
technology development, as the detection device for wrist motion detection.
	 On	 the	 basis	 of	 the	 above	 PVDF	 sensor,	 in	 this	 paper,	 we	 propose	 a	 method	 of	 finger	
motion	 recognition	 based	 on	 wrist	 motions.	 	 First,	 this	 method	 uses	 PVDF	 sensors	 as	 the	
motion detection units, which not only solves the problem that the user’s hands are restricted 
by wearing the detection devices on the hand, but also solves the problem that vision-based 
gesture recognition technology is difficult to use in a mobile environment.  At the same time, 
this method also realizes the noninvasive detection of wrist motion signals.  Compared with 
other existing finger motion recognition technologies, this method is convenient, comfortable, 
and easy to use.  Second, we propose a finger motion recognition algorithm based on short-term 
energy and prove that short-term energy can efficiently characterize the wrist motion signals.  
In this algorithm, the endpoint detection of wrist motion signals and motion signal fragments 
extraction are realized on the basis of short-term energy, and the eigenvectors of finger motion 
recognition are constructed by using the short-term energy.  The experimental results show that 
the algorithm is effective and its accuracy is up to 96.7%.

2. Materials and Methods

 In this section, we describe a method of finger motion recognition by using a half-cylinder 
PVDF	 sensor	 to	 detect	 wrist	 motion	 signals.	 	 In	 the	 first	 part,	 we	 introduce	 the	 principle,	
structure	 and	 fabrication	 technology	 of	 the	 PVDF	 sensor.	 	 In	 the	 second	 part,	 we	 study	 the	
distribution	and	optimization	of	the	PVDF	sensor	array,	and	build	a	wearable	wrist	device	(WWD)	
to acquire wrist motion signals.  In the third part, we describe the finger motion recognition 
algorithm based on wrist motions.

2.1 PVDF sensor

2.1.1 Operating principle

	 To	 increase	 the	sensitivity	of	 the	PVDF	sensor,	we	fabricated	a	half-cylinder	backing	with	
flexible silica gel.(27–29)		We	fixed	the	PVDF	film	on	the	backing	to	make	it	form	an	arch	shape.		
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The	PVDF	film	used	in	this	paper	is	shown	in	Fig.	1(a),	which	is	made	of	a	layer	of	PVDF	and	
aluminum electrodes.  The aluminum electrodes are plated on two surfaces perpendicular to the 
Z-axis.  The Z-axis	is	the	polarization	direction,	so	the	PVDF	film	only	generates	charges	in	the	
Z direction.  The piezoelectric equation is

 S = sT, 
(1)

 3 31 1 32 2 33 3    D d T d T d T= + + , 

where S is the strain, s is the elastic compliance under constant electric field, T is the stress, D3 
is the electric displacement, and d31, d32, and d33 are the piezoelectric strain constants.  
	 The	31-	and	33-modes	are	generally	the	two	common	modes	in	PVDF,	as	shown	in	Fig.	1(b).		
In the 31-mode, a force is applied along the X-axis (1-axis), then charges accumulate on the 
Z-axis (3-axis) electrodes.  In the 33-mode, the applied force direction is parallel to the Z-axis, 
then charges are generated on the Z-axis electrodes.(30,31)  When the backing is flexible, the 
PVDF	piezoelectric	film	works	in	the	31-mode.		When	the	piezoelectric	film	is	subjected	to	a	
vertical force, the strain will be in the X-direction, as shown in Fig. 1(c).  Ignoring the effect of 
D3 on the thickness direction, Eq. (1) can be simplified as 

 3 31 1 32 2D d T d T= + . (2)

The	PVDF	sensor	proposed	in	this	paper	is	worn	on	the	wrist.		When	the	wearer’s	fingers	create	
movements,	the	movements	of	the	finger	joints	drive	the	muscles	of	the	wrist	to	exert	pressure	(F) 
on the sensor.  Because the backing is a flexible half-cylinder structure, the stress perpendicular 
to	 the	 surface	of	 the	PVDF	 film	will	 be	 transformed	 into	 tangential	 (X-direction) strain, and 

(a) (b)

(c) (d)

Fig.	1.	 (Color	online)	(a)	PVDF	film,	(b)	two	modes	in	PVDF	operate:	31-	and	33-mode,	(c)	strain	of	PVDF	film	
with	planar	flexible	substrate,	and	(d)	strain	of	PVDF	film	with	half-cylinder	flexible	substrate.
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PVDF	still	works	in	the	31-mode,(32,33) as shown in Fig. 1(d).  Because 31 32d d , Eq. (2) can be 
simplified as

 3 31 1D d T= . (3)

The	 free	 charges	 collected	 on	 the	 surface	 electrodes	 of	 the	PVDF	 film	 (equal	 to	 the	 charges	
flowing to the external circuit) are 

 3 3 3Q D A D lw⋅= = , (4)

where A3 is the area of the surface electrode, l and w	are	the	length	and	width	of	the	PVDF	film,	
respectively.

2.1.2 Sensor structure and fabrication technology 

	 As	shown	in	Fig.	2(a),	the	PVDF	sensor	consists	of	six	layers.		The	first	layer	is	a	protective	
layer composed of a polyethylene terephthalate (PET) film with an adhesive on one side, which 
can	prevent	corrosion	or	wear.		The	second	layer	is	the	PVDF	film	(area,	20	×	6	mm2; thickness, 
50 µm), which is provided by Jinzhou Kexin Electronic Material Co., Ltd. (Jinzhou, China).  
The	PVDF	 film	has	 been	 polarized	 and	 aluminum	 electrodes	were	 plated	 on	 both	 sides.	 	 Its	
parameters are shown in Table 1.  The third layer is a pressure-sensitive adhesive (PSA) layer.  It 

Fig.	2.	 (Color	online)	PVDF	sensor.	(a)	Concept	map.	(b)	Physical	map.

(a) (b)

Table 1
PVDF	film	parameters.
Parameter Value
D (m) 5e−5
E (Pa) 2.5e9
G (Pa) 0.97e9
d31 (CN−1) 17e−12
d32 (CN−1) 3e−12
d33 (CN−1) 21e−12
ε/ε0 9.5 ± 1.0
D	is	the	film	thickness;	E is the elastic modulus; G is the shear modulus; d31, d32, and d33 are the piezoelectric strain 
constants; ε/ε0 is the relative permittivity.
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is	used	to	anchor	the	PVDF	film	and	backing	to	reduce	the	relative	displacement	between	them.		
The fourth layer is the backing, which is a half-cylinder pad (diameter, 7 mm; height, 4.5 mm) 
made	of	silicone	rubber.		It	is	behind	the	PVDF	film	and	allows	the	PVDF	film	to	be	fabricated	
into	a	desired	shape.		The	fifth	layer	is	a	circuit	board	(area,	17	×	10	mm2; thickness, 0.4 mm), 
which integrates a differential charge amplifier consisting of an amplifier and a second-order 
Butterworth	 low-pass	 filter.	 	There	are	 two	rectangular	 through-holes	 (area,	6	×	0.8	mm2) on 
the	circuit	board,	which	are	used	to	pull	the	PVDF	film	from	the	front	to	the	back	of	the	circuit	
board.		The	PVDF	film	was	connected	to	the	electrodes	on	the	circuit	board	through	silver	glue,	
so	that	the	charges	collected	on	the	surface	electrodes	of	the	PVDF	film	can	be	conducted	into	
the	circuit.	 	The	sixth	 layer	 is	a	substrate	plate	made	of	plastic	 (area,	10	×	5	mm2; thickness, 
0.4	mm),	which	is	used	to	anchor	the	PVDF	film	on	the	back	of	the	circuit	board.		The	PVDF	
sensor	is	shown	in	Fig.	2(b),	and	its	size	is	17	×	10	×	5.4	mm3. 

2.2 Experimental setup

	 We	analyzed	the	motions	of	wrist	muscles	and	configured	the	PVDF	sensor	array.		Moreover,	
we built a WWD based on the sensor array.

2.2.1 PVDF sensor array

 In general, finger motions are very complicated.  There are twenty muscles between the 
elbow and the wrist, which are roughly divided into the front and back sides.  The muscles on 
the front side control the bending of the wrist and fingers, and the muscles on the back side 
dominate the stretching of the wrist and fingers.  When a person moves different fingers, the 
active parts of the muscles are different and the intensities of the motions are different.  To more 
comprehensively	detect	the	wrist	motion	signals,	we	configured	a	sensor	array	based	on	PVDF	
sensors.
 The sensor array consisted of 3–8 sensors, and the sensors should be placed in the active 
areas of the wrist muscles.  We conducted the experiment to determine the position of each 
sensor.  First, as shown in Fig. 3(a), the circle around the wrist was evenly divided into 16 areas.  
Then, we fixed identical sensors in these 16 areas, and detected the signals of three finger 
motions (thumb click, index finger click, and middle finger click).  The three finger motions are 
shown	in	Fig.	3(b).		Figure	4	shows	the	test	results	of	subject	No.	1.
	 The	test	results	were	the	basis	for	determining	the	wrist	PVDF	sensor	array.		In	this	paper,	
by taking an array of eight sensors as an example, we determined the areas where the sensors 
are arranged, namely, areas 2, 4, 5, 6, 8, 10, 13, and 16, and sensors located in these areas were 
numbered Nos. 1–8, respectively, as shown in Fig. 5.

2.2.2 WWD 

	 On	the	basis	of	the	above	PVDF	sensor	array,	we	made	a	WWD.		Its	structure	is	shown	in	
Fig. 6(a), and a photograph of the device is shown in Fig. 6(b).  The process of making the wrist 
wearable	device	is	as	follows:
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Fig.	3.	 (Color	online)	(a)	16	areas	of	the	wrist	and	(b)	three	finger	motions	(thumb	click,	index	finger	click,	and	
middle	finger	click).

(a) (b)

Fig.	4.	 (Color	online)	Test	results	of	subject	No.	1.

Fig. 5. (Color online) Sensor array of eight sensors.
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(1) Make and select sensors with a similar performance to form an array, and then make the 
circuit connection of the sensor array.

(2) Use the silica gel to make a wristband that holds the sensor array.  
(3) Use the microcontroller unit (MCU) to acquire the wrist motion signals and perform the 

A/D conversion of the signals.  Data from each channel was sampled at 1000 Hz.
(4) Transmit wrist motion signals to the computer using an USB-USART adapter board (USB2UIS).

2.3 Signal processing algorithm

	 The	 above	 PVDF	 sensor	 array	 can	 effectively	 collect	 wrist	 motion	 signals.	 	 Before	
classifying finger motions, it is necessary to acquire the eigenvectors of finger motions using a 
signal processing algorithm.  The process of the signal processing algorithm is shown in Fig. 7.

2.3.1 Signal preprocessing

 Although the signals have been filtered by the hardware circuit in the circuit board layer 
of the sensor, there are still some noise signals in the wrist motion signals, such as power 
frequency noise and white noise.  It is necessary to preprocess the signals so that they can 
describe the wrist movements more accurately.  By comparing the spectra of wrist motion 
signals	acquired	from	different	subjects	at	different	click	speeds	of	fingers,	we	confirmed	that	
low-frequency signals within 100 Hz are needed.  Figure 8(a) shows the waveform and spectrum 
of the original signals (motion, thumb click; speed, 0.3 s per time; sensor, No. 2), and it can be 
seen that there are 50 Hz interference noise and high-frequency noise.

Fig.	6.	 (Color	online)	WWD:	(a)	concept	map	and	(b)	physical	map.

(a)

(b)
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Fig. 7. Diagram of signal processing algorithm.

Fig. 8. (Color online) (a) Original wrist motion signals and its spectrum and (b) preprocessed wrist motion signals 
and its spectrum.

(a) (b)

 According to the characteristics of wrist motion signals, the preprocessing method is as 
follows.  First, center wrist motion signals to remove any dc offset in the signals.  Second, filter 
signals using a low-pass filter to eliminate the high-frequency noise from the signals.  Finally, 
filter signals using a 50 Hz notch filter to remove power-frequency noise.  Figure 8(b) is the 
preprocessed wrist motion signals and its spectrum.  It can be seen that the signals waveform 
has fewer burrs, which can better represent the morphological characteristics of wrist motion 
signals.

2.3.2 Extraction of motion signal fragments

 To recognize finger motions using the above wrist motion signals, it is necessary to segment 
the signal fragments of each finger motion.  We used the endpoint detection algorithm to 
segment the signal fragments.  To improve the efficiency of the algorithm, we used one sensor 
as a reference to segment the signal fragments of the sensor array.  In this work, the difference 
between the amplitudes of the wrist signals (corresponding to three types of finger motions) 
acquired by sensor No. 2 is smallest [as shown in Fig. 4], which can ensure that the endpoint 
detection algorithm can segment the signal fragments accurately.  For the above reason, we 
selected	sensor	No.	2	as	the	reference.		The	method	includes	the	following	four	steps:
 Take a higher short-term energy as the threshold MH and use it to roughly segment the 
active portion of the signals [as shown in Fig. 9(a), the A1–A2 signal segment].
 Take a lower short-term energy as the threshold ML and use it to search for signals from A1 
and A2 to both sides.  The active parts of the lower energy are also added to the finger motion 
fragment, expanding the range of the motion signal fragment [as shown in Fig. 9(a), the B1–B2 
signal segment].
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 The position of the maximum amplitude of the motion signal fragment is detected, N1 data 
are searched forward, and N2 data are searched backwards.  The data in this range are used 
as the finger motion signal fragment [as shown in Fig. 9(b)].  The values of N1 and N2 are 
determined by actual conditions.  The positions of the start and end points of the finger motion 
signal fragment are taken as the standard and used to segment the signals collected by the 
remaining sensors in the sensor array.  

2.3.3 Construction of eigenvectors

 Before using the neural network to recognize the finger motions, we encoded these 
fragments into 64-digit eigenvectors to characterize the motion signal fragments.  The process 
is as follows.
 First, the short-term energy of all the motion signal fragments is calculated to obtain 
the 64-digit short-term energy fragments.  Second, the maximum amplitude of the short-
term energy fragments is searched and used it as the benchmark to quantify the value of the 
short-term energy fragments into 64-order.  That is, the amplitudes of the short-term energy 
fragments are scaled to the range of [0,63].  The values in the range [0,1) are quantified as 0, 
and the values in the range [1,2) are quantified as 1, and so on.  Finally, the quantized values are 
taken as the eigenvectors of the finger motion signal fragment.

2.4 Finger motion recognition

 Because the active parts and intensity of wrist muscles are different when a person moves 
different	 fingers,	 the	 signals	 collected	 by	 the	 PVDF	 sensor	 array	 vary	 accordingly.	 	 The	
eigenvectors of wrist motion signal fragments corresponding to different finger motions also 
vary accordingly.  On the basis of the appearance, we built a four-layer back propagation (BP)  
neural network for finger motion recognition.  First, we determined the dimensions of the input 

Fig.	9.	 (Color	online)	(a)	Preliminary	finger	motion	segmentation	and	(b)	precise	finger	motion	segmentation.

(a) (b)
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layer of the BP neural network.  Each finger motion was represented by eight motion segments 
collected by the sensor array.  The formula of the dimensions is n	=	8	×	64	=	512.
 Second, we determined the dimensions of the output layer.  We specified three types of 
finger motion, so the number of output layer nodes, m, was three.  The corresponding output 
matrices of the three finger motions are [0 0 1], [0 1 0], and [1 0 0].  
 Third, the dimensions of the hidden layer, l, was determined according to

 ( )l m n a< + + , (5)

where a is a constant between 0 and 10.
 Finally, the activation function selected is

 ( ) 1
1 xf x

e α−=
+

. (6)

The activation function is responsible for mapping the input of a neuron to the output.
 In the experiment, the input and output values were applied to train the BP network.  Then, 
the trained network was used to classify the finger motions of several sets of input data that are 
different from those utilized in the training stage.

3. Results and Discussion

	 In	 the	 experiment,	 a	 subject	 wore	 the	WWD	 on	 the	 right	 wrist	 to	 acquire	 wrist	 motion	
signals.	 	 The	 position	 of	 the	 wearable	 device	 is	 shown	 in	 Fig.	 5.	 	 A	 total	 of	 four	 subjects	
participated	in	the	experiments,	and	each	subject	performed	four	sets	of	experiments	at	different	
speeds (1 s per time, 0.75 s per time, 0.5 s per time, and 0.3 s per time).  Each set of experiments 
contains three types of finger motion (thumb, index, and middle finger clicks), and each finger 
motion was collected 50 times.  In these 50 times, 40 were used as the training set, while the 
other 10 were used as the test set.  By processing the wrist motion signals with the algorithm 
proposed in Sect. 2.3, we extract the motion signal fragments and perform an experiment of 
finger motion recognition.  

3.1 Motion signal fragments

 We processed the wrist motion signals with the preprocessing algorithm, and obtained 
signals with good waveform and obvious features.  Then, the finger motion fragments were 
extracted by using the endpoint detection algorithm.  Figure 10 shows the signal fragments of 
three	types	of	finger	motion	(subject,	subject	No.	1;	speed,	1	s	per	time).		
 In Fig. 10, it is clear that the amplitudes and trends of the wrist signal fragments are similar 
in the same finger motion, while they are quite different in different finger motions.  The results 
of extracting motion signal fragments show that the endpoint detection algorithm is feasible.  
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3.2	 Results	and	analysis	of	finger	motion	recognition

 A total of 16 sets experiments were performed.  The training set of each experiment contains 
120 motion signal fragments, and the testing set contains 30 motion signal fragments.  We 
used the training set to train the BP neural network, and used the trained BP neural network 
to recognize the finger motions of the testing set.  Figure 11 shows the results of finger motion 
recognition	for	four	subjects	(at	the	speed	of	1	s	per	time).		Figure	12	shows	the	results	of	finger	
motion	recognition	for	subject	No.	1	at	the	four	speeds.
 The x-axis	indicates	the	real	category	of	the	three	finger	motions	for	each	subject,	where	the	
test set of each category contained 10 trials, and the y-axis indicates the identification results 
corresponding	to	each	type	of	test	set.		As	shown	in	Fig.	11(a),	the	recognition	results	of	subject	
No.	1	were	 as	 follows:	 the	10	 thumb	clicks	were	 identified	as	 ten	 thumb	clicks,	 the	10	 index	
finger clicks were identified as nine index finger clicks and one middle finger clicks, and the 10 
middle finger clicks were identified as ten middle finger clicks.
 The experimental results show that the method successfully recognized three finger motions 
with an accuracy of up to 96.7%, which indicates that the method can effectively detect finger 
motion and recognize their semantics.  The results show that the eigenvectors based on the 
short-term energy are feasible and efficient.  

(c)

(a)

(b)

Fig.	10.	 (Color	online)	Three	wrist	signal	fragments	of	(a)	thumb,	(b)	index	finger,	and	(c)	middle	finger	clicks.	
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Fig.	11.	 (Color	online)	Results	of	finger	motion	recognition	tests	for	subjects	(a)	No.	1,	(b)	No.	2,	(c)	No.	3,	and	(d)	No.	4.

(c) (d)

(a) (b)

(c) (d)

(a) (b)

Fig.	12.	 (Color	online)	Results	of	finger	motion	recognition	tests	at	four	speeds:	(a)	1,	(b)	0.75,	(c)	0.5,	and	(d)	0.3	s	
per time.
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4. Conclusions

 Aiming at overcoming the problem of finger motion detection and its semantic recognition, 
in this paper, we proposed a method of recognizing finger motions based on wrist motions.  
By	 this	method,	we	 studied	 the	 distribution	 and	optimization	 of	 the	PVDF	 sensor	 array,	 and	
fabricated a WWD.  Moreover, an algorithm of finger motion recognition based on short-term 
energy is proposed.  The algorithm realizes the endpoint detection of the wrist motion signals 
and the extraction of the wrist motion signal fragments, which are then encoded as eigenvectors 
to recognize the finger motions.  The experimental results showed that the three finger motions 
were successfully recognized with an accuracy of up to 96.7%, which meets the requirement of 
recognition.
	 In	this	method,	we	chose	PVDF	sensors	as	the	wrist	motion	detection	units.		Compared	with	
other sensors applied to finger motion recognition (for instance, piezoresistive sensors, inertial 
sensors,	 etc.),	 the	 PVDF	 sensor	 has	 a	 simple	 structure	 and	 a	 simple	manufacturing	 process,	
and it can realize the noninvasive detection of wrist motion signals.  This method does not 
restrain the user’s hand like a data glove, and it can be used in multiple environments.  In the 
future, we will improve the current algorithm for better accuracy and enrich the types of finger 
motion	such	as	double	clicks.		Furthermore,	we	need	to	recruit	more	test	subjects	and	optimize	
the sensor array (number of sensors, arrangement, wearing position, and so forth) after fully 
considering individual differences.

References

	 1	 S.	Shaji,	M.	V.	Ramesh,	and	V.	N.	Menon:	Pro.	Second	In.	Conf.	Computer	and	Communication	Technologies.	
(Springer,	2016).	https://doi.org/10.1007/978-81-322-2523-2_3

	 2	 A.	Bajpai,	V.	Jilla,	V.	N.	Tiwari,	Shankar	M.	Venkatesan,	and	R.	Narayanan:	Conf.	Proc.	IEEE	Eng	Med	Biol	
Soc.	(2015).	https://doi.org/10.1109/EMBC.2015.7318688

	 3	 K.	E.	Seong,	K.	C.	Lee,	 and	S.	 J.	Kang:	 Int.	Conf.	Big	Data	&	Smart	Computing	 (IEEE,	2014).	https://doi.
org/10.1109/BIGCOMP.2014.6741454

	 4	 J.	Ham,	J.	Hong,	Y.	Jang,	S.	H.	Ko,	and	W.	Woo:	2014	IEEE	Symp.	3D	User	Interfaces	(3DUI)	(IEEE,	2014).	
https://doi.org/10.1109/3DUI.2014.6798863

	 5	 H.	S.	Hasan	and	S.	A.	Kareem:	Artif.	Intelli.	Rev.	43	(2015).	https://doi.org/10.1007/s10462-012-	9356-9
	 6	 D.	H.	Kim,	H.	S.	Yoon,	 J.	Kim,	 J.	Lee,	and	J.	Sohn:	 J.	Supercomput.	65	 (2013)	336.	https://doi.org/10.1007/

s11227-010-0541-9
	 7	 X.	Zhang	and	X.	Li:	Future	Int.	11	(2019)	91.	https://doi.org/10.3390/fi11040091
	 8	 A.	Bulling,	U.	Blanke,	and	B.	Schiele:	ACM	Com.	Surveys	46	(2014)	1.	https://doi.org/10.1145/2499621
	 9	 K.	 Altun,	 B.	 Barshan,	 and	 O.	 Tunçel:	 Pattern	 Recognition	 43	 (2010)	 3605.	 https://doi.org/10.1016/

j.patcog.2010.04.019
	10	 B.	 Hartmann	 and	 N.	 Link:	 IEEE	 Int.	 Conf.	 Systems	 Man	 &	 Cybernetics.	 (2010).	 https://doi.org/10.1109/

ICSMC.2010.5641703
	11	 P.	 Costa,	M.	 Carvalho,	 Fátima,	 V.	 Correia,	 and	 J.	 C.	 Viana:	 ACS	Appl.	 Nano	Mater.	 1	 (2018).	 https://doi.

org/10.1021/acsanm.8b00647
	12	 J.	A.	Birdwell,	L.	J.	Hargrove,	R.	F.	Weir,	and	T.	A.	Kuiken:	IEEE	Tran.	Bio.	Eng.	62	(2015)	218.	https://doi.

org/10.1109/tbme.2014.2344854
	13	 L.	J.	Hargrove,	G.	Li,	K.	B.	Englehart,	and	B.	S.	Hudgins:	IEEE	Tran.	Bio.	Eng.	56	(2009)	1407.	https://doi.

org/10.1109/TBME.2008.2008171
	14	 J.	Mehran	and	K.	Mahdi:	Bio.	Eng.	OnLine	6	(2007)	1.	https://doi.org/10.1186/1475-925X-6-45
	15	 X.	Luo,	X.	Wu,	L.	Chen,	Y.	Zhao,	L.	Zhang,	G.	Li,	and	W.	Hou:	Sensors	19 (2019) 610.



Sensors and Materials,	Vol.	31,	No.	9	(2019)	 2945

	16	 L.	Wang,	 F.	Ma,	 Q.	 Shi,	 H.	 Liu,	 and	X.	Wang:	 Sens.	 Actuators,	 A	 165	 (2011)	 207.	 https://doi.org/10.1016/
j.sna.2010.10.023

	17	 M.	X.	Zhou,	Q.	A.	Huang,	M.	Qin,	and	W.	Zhou:	J.	Microelectromechanical	Systems	14	(2005)	1272.	https://
doi.org/10.1109/jmems.2005.859100

	18	 M.	M.	 Jatlaoui,	 F.	 Chebila,	 P.	 Pons,	 and	H.	Aubert:	 Eur.	 Phys.	 J.	 Appl.	 Phys.	 56	 (2011)	 13702.	 https://doi.
org/10.1051/epjap/2011100220

	19	 M.	M.	 Jatlaoui,	 F.	 Chebila	 F,	 P.	 Pons,	 and	H.	Auber:	 European	Microwave	Conf.	 IEEE	 (2009).	 https://doi.
org/10.1109/EUMC.2009.5296233

	20	 M.	L.	Seol,	S.	H.	Lee,	J.	W.	Han,	D.	Kim,	G.	H.	Cho,	and	Y.K.	Choi:	Nano	Energy	17	(2015)	63.	https://doi.
org/10.1016/j.nanoen.2015.08.005

	21	 L.	Z.	Wang:	Faraday	Discuss.	176	(2014)	447.	https://doi.org/10.1039/c4fd00159a
	22	 S.	Shixin,	X.	Shan,	 J.	Shangkun,	L.	Xue,	S.	Shulin,	 and	L.	Quanming:	Materials	11	 (2018)	347.	https://doi.

org/10.3390/ma11030347
	23	 Y.	 R.	Wang,	 J.	M.	 Zheng,	G.	Y.	 Ren,	 P.	H.	 Zhang,	 and	C.	Xu:	 Smart	Mater.	 Struct.	20	 (2011).	 https://doi.

org/10.1088/0964-1726/20/4/045009
	24	 T.	 Sharma,	 S.	 S.	 Je,	 B.	 Gill,	 and	 J.	 X.	 Zhang:	 Sen.	 Actuators,	 A	 177	 (2012)	 87.	 https://doi.org/10.1016/

j.sna.2011.08.019
	25	 J.	 M.	 Corres,	 Y.	 R.	 Garcia,	 F.	 J.	 Arregui,	 .	 and	 I.	 R.	 Matias:	 IEEE	 Sens.	 J.	 11	 (2011)	 2383.	 https://doi.

org/10.1109/JSEN.2011.2123881
	26	 H.	Gu,	Y.	Zhao,	and	M.	L.	Wang:	Struct.	Control	Health	Monit.	12	(2005)	329.		https://doi.org/10.1002/stc.61
	27	 Y.	H.	Hu,	W.	W.	Kang,	Y.	Fang,	L.	R.	Xie,	L.	Qiu,	and	T.	Jin:	Appl.	Sci.	8	(2018)	836.	https://doi.org/10.3390/

app8050836
	28	 B.	Yang	and	K.	S.	Yun:	S.	Sen,	Actuators	Microsystems	Conf.	(2011).
	29	 M.	 S.	 Kim,	 H.	 R.	 Ahn,	 S.	 Lee,	 C.	 Kim,	 and	 Y.	 J.	 Kim:	 Sens.	 Actuators,	 A	 212 (2014)	 151.	 https://doi.

org/10.1016/j.sna.2014.02.023
	30	 Y.	Xin,	H.	Sun,	H.	Tian,	C.	Guo,	X.	Li,	and	S.	Wang:	Ferroelectrics.	502	(2016)	28.	https://doi.org/10.1080/001

50193.2016.1232582
	31	 Z.	Jingjing	and	Y.	Zheng:	Sci.	World	J.	2014	(2014)	1.	https://doi.org/10.1155/2014/893496
	32	 M.	D.	Han,	W.	Liu,	X.	S.	Zhang,	M.	Bo,	H.	Z,	and	P.	U:	Science	C.	T.	S.	56 (2013) 2636.
	33	 M.	Toda	and	M.	L.	Thompson:	IEEE	Sens.	J.	6	(2006)	1170.	https://doi.org/10.1109/jsen.2006.881407

About the Authors

Yaohui Hu received his B.S. degree from Hefei University of Technology, China, in 1992 and 
his M.S. and Ph.D. degrees from the University of Science and Technology of China, China, 
in 1999 and 2002, respectively.  From 2003 to 2005, he was a lecturer at the University of 
Science and Technology of China.  From 2005 to 2007, he was a lecturer at Hefei University of 
Technology.  Since 2008, he has been an associate professor at Hefei University of Technology.  
His research interests include biomedical engineering and human–computer interaction 
technology.

Lingrui Xie received her B.S. degree from Hefei University of Technology, China, in 2016.  
She is currently pursuing her M.S. degree in the Department of Biomedical Engineering, School 
of Instrument Science and Opto-electronics Engineering, Hefei University of Technology.  Her 
research interests include biomedical engineering, neural networks, and sensors.

Yadong Chen received his B.S. degree from Wuhan University of Technology, China, in 2017.  
He is currently pursuing his M.S. degree in the Department of Biomedical Engineering, School 
of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, 
China.  His research interests include human–machine interaction, biomedical engineering, 
sensors, and control engineering.



2946 Sensors and Materials,	Vol.	31,	No.	9	(2019)

Ke He received his B.S. degree from Anhui University, China, in July 2004 and his M.S. degree 
from Shanghai University, in July 2008.  From 2009 to the present, he has been working as a 
lecturer at the Prince of Songkla University, Phuket, Thailand.  His research interests are in 
biomedicine and intelligent medical treatment.  

Yong Fang received his B.S., M.S., and Ph.D. degrees from Hefei University of Technology, 
China, in 2003, 2007, and 2017, respectively.  He is an assistant professor at Hefei University of 
Technology.  His research interests include photoelectric information technology and sensors.

Wuwei Kang received his B.S. degree from Hefei University of Technology, China, in 2016.  
He is currently pursuing his M.S. degree in the School of Computer Science and Information 
Engineering, Hefei University of Technology.  His research interests include sensors and 
biomedical engineering.

Zixian Yao received his B.S. degree from Jilin Normal University, China, in 2018.  He is 
currently pursuing his M.S. degree in the School of Electronic Science and Applied Physics, 
Hefei University of Technology, China.  His research interests include information display 
technology and devices and stereo display.

Guoqing Fang received his B.S. degree from Anhui Polytechnic University, China, in 2018.  
He is currently pursuing his M.S. degree in the Department of Electronics and Communication 
Engineering, Hefei University of Technology, China.  His research interests include 
biomedicine, neural networks, and control engineering.


