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	 In this paper, we present an effective navigation control method for mobile robots in 
an unknown environment.  The proposed behavior manager (BM) switches between two 
behavioral control patterns, wall-following behavior (WFB) and toward-goal behavior (TGB), 
on the basis of the relationship between the mobile robot and the unknown environment.  A 
type-2 neural fuzzy controller (T2NFC) with an improved whale optimization algorithm (IWOA) 
is proposed to provide WFB control and obstacle avoidance for mobile robots.  In the WFB 
learning process, the input signal of a controller is the distance between the wall and the sonar 
sensors, and its output signal is the speed of two wheels of a mobile robot.  A fitness function, 
which operates on the total distance traveled by the mobile robot, distance from the side wall, 
angle to the side wall, and moving speed, evaluates the WFB performance of the mobile robot.  
Experimental results reveal that the proposed IWOA is superior to other methods of WFB and 
navigation control.

1.	 Introduction

	 In recent years, the control of mobile robots has been widely used in several applications for 
solving many problems, such as exploration of unknown environments, object handling, and 
navigation.(1–3)  Navigation control is crucial in mobile robot-based technologies, and its design 
has become an indispensable research topic.
	 It is essential to implement mobile robot obstacle avoidance for navigation control.  During 
the navigation process, the mobile robot receives signals from sonar sensors to avoid obstacles 
and reach the goal point.  Recently, smart robots have been widely used for performing several 
real applications.  The two most common mobile robot controllers used are the fuzzy logic  
and the neural network controllers.  Some researchers have combined the concepts of fuzzy 
logic and neural network into mobile robot controllers.  Juang and Chang(4) and Wai and Lin(5) 
controlled a mobile robot by conveying the information received from sonar sensors to a fuzzy 
neural network (FNN) controller.  Although the wall-following behavior (WFB) control of the 
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mobile robot can be implemented successfully, the performance of WFB is not satisfactory in 
a real environment.  To solve the aforementioned problems, several researchers have adopted 
a type-2 FNN (T2FNN) to design the controller.  Jhang and coworkers(6,7) adopted T2FNN 
to implement a mobile robot controller in real environment.  The designed controller can not 
only escape the dead cycle in WFB control but also successfully complete the navigation 
task.  Lin et al. compared the performance of T1FNN and T2FNN controllers.  The results 
demonstrate that the T2FNN controller has better robustness than the T1FNN controller.(8)

	 T2FNN is an extension of T1FNN that was developed to address the shortcomings of 
T1FNN.  Unlike T1FNN, which uses crisp sets as membership values, T2FNN uses fuzzy 
sets as membership values.  The membership values of these fuzzy sets provide a footprint of 
uncertainty (FOU), which makes it possible to deal with uncertainties.  T2FNN is more efficient 
than T1FNN in normal environments; however, the number of computations is much higher 
for T2FNN than for T1FNN.  Therefore, interval T2FNN reduces computational complexity 
and uses the centers of sets (COS) to simplify operations.(9)  The related parameters of interval 
T2FNN are usually adjusted by the backpropagation (BP) algorithm.  The BP algorithm is 
based on a fast gradient descent, which is used to adjust the parameters of interval T2FNN by 
the error function.  The BP algorithm has a high convergence speed.  Thus, it is usually used 
to solve several engineering problems.  However, the BP algorithm still has the drawback of 
being easily trapped into a local minimum.  Therefore, many researchers adopted evolutionary 
computation methods to obtain a global optimum.
	 Evolutionary algorithms based on the collective behavior of social animals converge rapidly 
and are easy to implement, but they sometimes perform poorly by demonstrating low accuracy 
or trapped into local optima.  Some evolutionary algorithms are widely used for adjusting the 
parameters of a neural network or FNN; these evolutionary algorithms include the artificial 
bee colony (ABC),(10) difference evolution (DE),(11) particle swarm optimization (PSO),(12) and 
whale optimization algorithm (WOA).(13)  Recently, some scholars have applied evolutionary 
algorithms to develop a controller.  Chou and Juang (14) and Lin et al.(15) realized mobile robot 
controllers by using evolutionary algorithms.  These controllers(14,15) adopted reinforcement 
learning and do not need to collect training data in advance.  In this study, we focus on WOA, 
which is based on the hunting strategies of humpback whales, namely, searching for prey, 
encircling strategy, and the mass net searching strategy.  Its advantages are its fast convergence 
and simple implementation, but it has some shortcomings.  For example, it easily falls into a 
local minimum solution in complex applications.  Therefore, an improved whale optimization 
algorithm (IWOA) is proposed in this study to improve the traditional WOA.
	 In this paper, we propose a control method for the effective navigation of a mobile robot in 
unknown environments.  To improve the robot s̓ exploration process, the behavior manager (BM) 
automatically switches between the toward-goal behavior (TGB) and WFB on the basis of the 
relative positions of the mobile robot and the goal point.  In contrast to other methods, we used 
IWOA, which improved the search capability and enhanced the convergence speed of traditional 
WOA to adjust a type-2 neural fuzzy controller (T2NFC), and the COS to simplify operations.
	 The remainder of the paper is organized as follows.  In Sect. 2, we introduce the T2NFC 
based on IWOA.  In Sect. 3, we describe the WFB of a mobile robot.  Experimental results of 
navigation control are shown in Sect. 4.  In Sect. 5, we present the conclusions.
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2.	 T2NFC Based on Evolutionary Algorithm

	 In this section, the proposed T2NFC is introduced.  An IWOA is also proposed to adjust the 
parameters of T2NFC.  Whereas traditional WOA methods tend to fall into local optima, the 
proposed IWOA overcomes that tendency.

2.1	 T2NFC

	 Here, the structure of the T2NFC is introduced.  Figure 1 shows the five-layer structure of a 
T2NFC.  It consists of an input layer, a fuzzification layer, a firing layer, an output processing 
layer, and an output layer.  The IF-THEN rule can be expressed as

	 Rj: IF x1 is 1
jA�  and x2 is 2

jA …�  and xn is j
nA�

	 THEN y is 0
1

 is  
n

j j
i i

i
y w w x

=

+∑ , 

Fig. 1.	 Structure of a T2NFC.
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where j = 1, 2, ..., M is the rule number; i = 1, 2, ..., n is the input number; x1, x2, ..., xn, 

represents the inputs; 1 2, , ,j j j
nA A A…� � �  represents the type-2 fuzzy sets; and 0

1

n
j j

i i
i

w w x
=

+∑  represents 

a Takagi–Sugeno–Kang (TSK)-type linear function in the subsequent layer.
	 Layer 1 only imports the input data into the next layer.  Layer 2 performs the fuzzification 
operation.  Each node defines a type-2 fuzzy set.  The Gaussian primary membership 
function has the uncertainty mean [m1, m2] and deviation σ.  Therefore, the Gaussian primary 
membership function Au � is defined as
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The membership degree of the Gaussian primary membership function Au � is the FOU and is 
expressed as the upper bound Au � and the lower bound Au �.
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	 The output of each node is represented as an interval [  ,j j
i iA Au u 

  � � ].  In layer 3, each node is a 
rule node, which uses an algebraic product operation to achieve a fuzzy AND operation.  The 
rule node is defined as

	  ,j j jF f f =   ,	 (4)

	 and  j j
i i

n n
j j

A A
i i

f u f u= =∏ ∏� � .	 (5)

	 In layer 3, type-2 fuzzy sets are reduced to type-1 fuzzy sets through a type-reduction 
operation.  The crisp output value [yl, yr] is obtained using a center-of-gravity defuzzification 
method.  In this study, we adopted the COS to implement the reduction process; the method is 
described as
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	 Nodes in Layer 5 defuzzify the output by computing the average of yl and yr, and the crisp 
value of y is obtained.

	
2

l ry yy +
= 	 (8)

2.2	 Proposed IWOA

	 In this section, we describe the proposed IWOA.  The WOA is based on the hunting behavior 
of humpback whales, which includes three strategies of encircling prey, bubble-net attacking, 
and search for prey.  The traditional WOA has the advantages of fast convergence and simple 
implementation, but it easily falls into a local optimal solution in complex applications.  
Therefore, in this study, the IWOA with Lévy flight strategy is proposed to overcome the 
shortcomings of the traditional WOA algorithm.  The detailed steps of IWOA are as follows:
(1) Coding
	 All parameters will be encoded into a search agent, which means that each search agent (X)
represents a T2NFC, and use IWOA to adjust the parameters.  The parameter content contains 
the uncertainty mean [ 1 2 ,j j

i im m 
 ], the deviation j

iσ , and the consequence weights 0
jw  and j

iw .
(2) Dynamic grouping
Step 1: Calculate the similarity threshold
	 The fitness values of all search agents X are sorted from high to low, and the group number 
of all search agents is initialized to 0.  The highest fitness value as the leader of the new group 
and its group number is updated to g where the initial value of g is equal to 1.  Then calculate 
the similarity threshold of this group, which contains the fitness value threshold (ψ) and 
distance threshold (φ).  The value is the average distance difference between the search agents 
that are not currently grouped (group number 0) and the group leader (τ) and the average fitness 
value difference.  The definition is as follows:

	 ( )2
1 1

 , if is ungrouped
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where φg and ψg represent the distance threshold and fitness value threshold of the gth group, 
respectively, and g

jτ  is the jth dimension representing the leader of group g; Fit(τg) represents 
the fitness value of the leader of group g; Fit(Pi) represents the fitness value of the ith search 
agent, NC denotes the total number of search agents with group number 0 in the current swarm, 
D represents the dimension of the code, and n is the total number of search agents.
Step 2: Grouping
	 The ungrouped search agents are sequentially calculated using the following formula to 
calculate the distance difference (Disi) and the fitness value difference (Fiti) between the self-
search agent and the leading search agent.

	 ( )2
1

D
gi i
j j

j
Di Xs τ

=

= −∑ 	 (13)

	 ( ) ( )i g iFit Fit Fit Pτ= − 	 (14)

	 When Disi < φg and Fiti < ψg, indicating that this search agent is similar to the group leader, 
group them in the same group and update their group number as g; otherwise, the search agent 
does not belong to the group.  If some search agents have not been grouped, repeat steps 1 through 2; 
conversely, if all agents have their group number, the grouping step is terminated.
(3) Encircling prey
	 Humpback whales encircle the prey while observing the position of the prey.  The best search 
agent is the current best candidate solution, the other search agents will hence attempt to update 
their positions towards the best search agent.  In addition, the agents will refer to their leader 
agent τg in the group in which they are located.  The location update formula is as follows:

	 ( ) ( )*.
g

D C X X t X X tτ= − + −
�� � � � �

,	 (15)

	 ( ) ( )*1X t X t A D+ = − ⋅
�� � �

,	 (16)

where t is the current iteration, A
�
 and C

�
 are the coefficient vectors, *X

�
 is the agent position of 

the best solution, X
�

 is the agent position,   is the absolute value, and ∙ indicates multiplication.  
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A
�
 and C

�
 are defined as

	 2A a r a= ⋅ −
� � � � ,	  (17)

	 2C r= ⋅
� � ,	 (18)

where a� is linearly decreased from 2 to 0 during the iterations and r� is a random vector in [0, 1].
(4) Bubble-net attacking method (exploitation phase)
	 The bubble-net attacking behavior of humpback whales can be divided into the following 
two strategies:
a: Shrinking encircling operation
	 The behavior is implemented by decreasing linearly the value of a� from 2 to 0 in Eq. (17).  
The value of A

�
 will be affected by a�, and A

�
 is a random number in the range [−a, a].  In this 

study, A
�
 is randomly in [−1, 1].  The new position of a search agent can be evaluated anywhere 

between the original position of the agent and the position of the present best agent.
b: Spiral updating position
	 First, calculate the distance between the whale and the prey when the humpback whale 
searches for prey.  Then, the humpback whale preys on fish herds and update its position 
through a helix-shaped movement.  The definition is as follows:

	 ( ) ( ) ( )*1 cos 2blX t D e l X tπ′+ = ⋅ ⋅ +
� � �

,	 (19)

	 ( ) ( )*D X t X t′ = −
� � �

,	 (20)

where D′
�

 represents the distance from the ith whale to the prey, b is a constant for defining the 
logarithmic spiral shapes, and l is a random number in [−1, 1].
	 In fact, the humpback whale swims around the prey in a circle and moves to the prey in a 
spiral motion at the same time.  We assume that humpback whales follow Eqs. (16) and (19) to 
update the position with a 50% probability, and the definition is as follows:

	 ( ) ( )
( ) ( )

*

*

,   0.5
1       

 0.5cos 2 ,bl

X t A D if p
X t

if pD e l X tπ

 − ⋅ <+ =  >′ ⋅ ⋅ +

�� �
�

� � 	 (21)

where p is a random number in the range [0, 1].
(5) Search for prey (exploration phase)
	 Except for the bubble-net attacking method, humpback whales will randomly search for prey 
according to the position of each other.  Therefore, the A

�
 vector is used to force a search agent 

to move far away from a reference whale, and its value is greater than 1 or less than −1.  When 
1A >

�
, enforce exploration in the WOA algorithm to perform a global search.  Furthermore, 

to enhance the exploration and avoid the local optimal in WOA, in this study we use the Lévy 
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flight strategy to improve the shortcomings of traditional WOA.  The Lévy flight diversifies 
search agents and obtains a better trade-off between exploration and exploitation in the WOA.  
The definition is as follows:

	 vyé. LrandD C X X= − ⊕
�� � �

,	 (22)

	 ( )1 randX t X A D+ = − ⋅
�� � �

,	 (23)

where randX
�

 is a random position vector, and the product ⊕ represents entrywise multiplication.  
The Lévy flight provides a random walk from the given probability distribution and ensures 
that the search agent could explore the search place efficiently.(16)  The definition is as follows.

	 Lévy 3,~ 1  u t λ λ−= < ≤ 	 (24)

The generated random step size s of Mantegna’s algorithm is used to simulate a λ stable 
distribution of the Lévy flight(17) as follows:

	 1/s β
µ

υ
= ,	 (25)
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,	 (26)

where s is the step length of the Lévy flight, which is Lévy(β), β = 1.5 is the Lévy flight 
exponent, and ( )20,  N µµ σ=  and ( )0, N υυ σ 2=  are the normal stochastic distributions with zero 
means and associated variances, respectively.

3.	 The Wall-following Control of Mobile Robot

	 In this section, the proposed T2NFC based on IWOA is demonstrated to control the WFB 
of a mobile robot.  In the proposed method, only the appropriate fitness function is defined to 
evaluate the performance of mobile robots during the learning process.  Designing the control 
rules by experts and collecting the training data are not necessary.

3.1	 Mobile robot description

	 Figure 2 shows the Pioneer 3-DX mobile robot, which is manufactured by Mobile Robots 
from the United States.  The Pioneer 3-DX is a small lightweight two-wheel two-motor 
differential drive robot.  It is delivered fully assembled with an embedded controller, motors 
with 500-tick encoders, 19 cm wheels, a tough aluminum body, 8 forward-facing ultrasonic 
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(sonar) sensors, 8 optional rear-facing sonars, 1, 2, or 3 hot-swappable batteries, and a complete 
software development kit.  Users can apply it in a variety of areas and integrate it with all the 
peripherals to achieve research and development goals.

3.2	 Behavior learning of wall-following control

	 Figure 3 presents a training environment measuring 11 × 8 m2.  To allow mobile robots to 
encounter different environments, the training environment includes straight lines, corners, and 
right-angled corners.
	 The block diagram of WFB control is presented in Fig. 4.  Four input signals of the T2NFC, 
the distances S1, S2, S3, and S4, are measured by the referred sonar sensors 3, 2, 1, and 0, 
respectively.  Because the arrangement of eight sonar sensors is symmetric, only four sonar 
sensors on the right side of the robot need to be considered as inputs of the T2NFC during the 
training process, and the remaining four sonar sensors on the left side of the robot referred to 
sonar sensors 4, 5, 6, and 7.  The detection range of the sonar sensors is limited to 0.1–1 m.  
The outputs of the T2NFC are the rotational speeds VL and VR of the two wheels.  The output 
ranges from approximately −5.24 to 5.24 rad/s.  The execution cycle of a 3-DX mobile robot is 
500 ms and is called a time step.
	 To avoid obstacles during the WFB learning process, three terminal conditions of the mobile 
robot are defined as follows:
1.	 The mobile robot is defined to collide with the wall when the measured distance from any 

sonar sensor is less than 0.1 m.
2.	 The mobile robot is defined to deviate from the wall when the measured distance of the 

sensor 0 is greater than 0.7 m.
3.	 The total moving distance of the mobile robot is larger than the maximum permitted distance 

of the training environment, namely, 45 m.
	 In this study, the proposed IWOA was used to train the T2NFC.  Whenever any terminal 
condition of the mobile robot was satisfied, the fitness function was used to evaluate the 
performance of the mobile robot.  The proposed fitness function consists of four subfitness 
functions, F1, F2, F3, and F4, which are defined as follows.

Fig. 2.	 (Color online) Pioneer3-DX Mobile Robot.



2744	 Sensors and Materials, Vol. 31, No. 9 (2019)

	 F1 is used for evaluating the moving distance of the mobile robot.  When the moving 
distance Tdis is closer to the predefined value Tstop, it indicates that the robot successfully moves 
around a circular path in the training environment.  The subfitness function is defined as

	 1 1 dis

stop

TF
T

= − .	 (27)

	 F2 is used for evaluating the distance dRW(t) between the side of the robot and the wall.  If the 
robot remains at a fixed distance from the wall, the dRW(t) value is equal to zero and is defined 
as

	 ( ) ( )4  wallRD t S t d= − ,	 (28)

where dwall is a fixed distance (dwall = 0.4 m).  The objective function Fsub2 is defined as the 
average value of dRW(t) during the moving time

	
( )1

2

totalT
t

total

RD t
F

T
==

∑ .	 (29)

F3 is used for evaluating the angle θ between the robot and the wall, and θ(t) is defined as

	 ( ) ( )
( )

2 2 2
4 31

0 

   
cos  

2      
x t S S

t
S x t

θ −
 + −
 =
 × × 

,	 (30)

Fig. 3.	 (Color online) Training environment.

Fig. 4.	 Block diagram of behavior learning of the wall-following control.
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where θ is the angle between the distances S3 and S4, and x(t) can be calculated as

	 ( ) 2 2
4 3 4 3   2 cos 40°x t S S S S= + − .	 (31)

	 During the movement, to keep the robot parallel to the wall, the objective function F3 is 
defined as the average of |θ(t) − 90| during the total moving time.

	
( )1

3
90 1 

90

totalT
t

total

t
F

T
θ

=
−

= ×∑ 	 (32)

	 F4 is used to evaluate the moving speed of the mobile robot.  Therefore, the mobile robot not 
only maintains a fixed distance from the wall but also increases its moving speed.

	 4 1 avg

expt

V
F

V
= − ,	 (33)

where Vavg is the average moving speed of the mobile robot and Vexpt is the expected speed (set as 0.6 
m/s in this study).
	 A fitness function is formed by combining the four subfitness functions F1, ..., F4 and the 
weighting coefficients α1, α2, α3, and α4.  F(∙) is defined as

	 ( ) ( )1 1 2 2 3 3 4 4

1
1

F
F F F Fα α α α

⋅ =
+ + + + .	 (34)

	 The weighting coefficients are set as [α1, α2, α3, α4] = [0.45, 0.45, 0.05, 0.05].  To avoid the 
robot collision with obstacles and to keep a fixed distance between the robot and the wall, the 
two objective functions F1 and F2 are very important.  Therefore, the weighting coefficients α1 
and α2 are set to 0.45, whereas the remaining weighting coefficients α3 and α4 are set to 0.05.

3.3	 Experimental results of wall-following control

	 In this experiment, to verify the effectiveness of the proposed method, the performance 
of WFB controlled by the proposed method was compared with the performance of WFB 
controlled by other methods.  Table 1 presents the initial parameters of the IWOA, which are the 
total population, the Levy(β), the total number of generation, and the number of fuzzy rules.  To 
verify the stability of each algorithm, each method was evaluated 10 times in this experiment.
	 We compared the proposed method with other evolutionary algorithms.(10–12,14)  The 
proposed IWOA yields the largest fitness value among the algorithms.  The comparison results 
are presented in detail in Table 2.  The comparison results comprise the best fitness value, 
the worst fitness value, the average fitness value, the standard deviation (STD), the number of 
successful runs, and the required time for moving around a circle.  Table 2 shows that the fitness 
value, the number of successful runs, and the time around a circle of the proposed IWOA are 
more favorable than those of other algorithms.  Figure 5 depicts the trajectories of paths taken 
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Table 1
Initial parameters of IWOA.

Population Lévy(β) Generation Number of fuzzy rules
30 1.5 3000 6

Table 2
Performance of each algorithm in learning WFB.

Algorithm
Evaluation items

Fitness value Number of 
successful runs Time (s)Best Worst Average STD

ABC(10) 0.901 0.891 0.900 0.0043 7 501
DE(11) 0.904 0.894 0.895 0.0069 8 168
PSO(12) 0.915 0.892 0.900 0.0051 9 277
Chou and Juang(14) 0.909 0.894 0.900 0.0046 9 234
IWOA 0.916 0.911 0.914 0.0018 10 127

(a) (b)

(c) (d)

(e)

Fig. 5.	 (Color online) Paths taken by a mobile robot using various algorithms in training environment: (a) ABC, (b) 
DE, (c) PSO, (d) Chou and Juang,(14) and (e) IWOA.
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by a mobile robot, which were obtained using various algorithms in the training environment.  
In Fig. 5, there are three regions in the training environment, namely, the rectangular groove, 
right angle bend, and rectangular bump, which are used to evaluate the effectiveness of various 
controllers.  In region 1, the controller using the ABC, PSO, and IWOA methods have a good 
moving trajectory to pass the rectangular groove and be close to 90 degrees.  In region 2, the 
controller using the PSO and IWOA methods keep a fixed distance from the wall while the 
mobile robot passes the right angle bend.  In region 3, only the controller using the IWOA 
method has a smoother moving trajectory than the other methods in the rectangular bump.
	 To verify the WFB control performance of different learning algorithms, unknown test 
environments were created as shown in Fig. 6.  The quantitative evaluation includes the average 
distance between the robot and the wall (Davg), the moving distance of the robot around a 

(a) (b)

(c) (d)

(e)

Fig. 6.	 (Color online) Paths taken by the trained mobile robot in test environments: (a) ABC, (b) DE, (c) PSO, (d) 
Chou and Juang,(14) and (e) IWOA.
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Table 3
Performance of various algorithms in test environments.

Algorithm
Environments

Test environment
Davg (m) Dcircle (m) Tcircle (s)

ABC(10) 0.3842 56.8100 385
DE(11) 0.3859 56.4471 239
PSO(12) 0.4050 57.5852 378
Chou and Juang(14) 0.5323 58.9955 297
IWOA 0.3933 56.2204 188

circle (Dcircle), and the moving time of the robot around a circle (Tcircle).  Table 3 presents the 
performance of various algorithms in unknown testing environments.  The performance of the 
IWOA algorithm is superior to that of other algorithms.  Previously developed methods,(10–12,14) 
took more time to guide the robot along the wall, such as a circular path in a test environment.  
The main reason for the different execution times is that the robot needs to keep a fixed distance 
from the wall when passing the curve.  If the controller is designed to work well and the robot 
is at a fixed distance from the wall, the execution time will be shortened.  Otherwise, the robot 
will swing left and right and will spend more time passing the curve.

4.	 Wall-following Control of Mobile Robot

	 In this section, navigation controlled by the proposed method is described.  The proposed 
BM switches the mobile robot behavior according to the relative position between the mobile 
robot and the goal point.

4.1	 BM

	 The BM has two behavior modes, TGB and WFB.  The orientation of the mobile robot 
toward the goal can be divided into four zones (i.e., R1, R2, R3, and R4) (Fig. 7).  We can 
determine the location zone (Rn) of the goal point according to the relative position between the 
mobile robot and the goal point.  If the goal point is located at R1–3, and an obstacle is detected 
(Si ≤ 1 m), the BM switches to WFB.  Otherwise, the BM switches to TGB.  If the goal point is 
located at R4, the mobile robot will switch to WFB until the robot reaches the goal position.

4.2	 Simulation results of navigation control

	 To verify the performance of the proposed navigation control method, two test environments 
are used as shown in Fig. 8.  Figures 8(a) and 8(b) show four clasp obstacles and a back and 
forth environment, respectively.  Two evaluation factors, the total moving distance (DSG) 
and total time (TSG) from the start to the goal, were used to analyze the performance of the 
navigation control.  The experimental results are summarized in Table 4, which shows that the 
proposed method is superior to other methods in terms of DSG and TSG.  Therefore, the mobile 
robot successfully completes the navigation control in unknown environments.
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Fig. 7.	 (Color online) The four orientations of the mobile robot are represented by red dash lines

(a) (b)
Fig. 8.	 (Color online) Paths taken by a mobile robot obtained using the proposed IWOA algorithm in two test 
environments: (a) four clasp obstacles and (b) back and forth environment.

Table 4
Comparison results of navigation control using various algorithms.

Environments
Algorithms

ABC(10) DE(11) PSO(12) Chou and
Juang(14) IWOA

Fig. 8(a) DSG (m) 94.77 94.21 95.70 92.21 69.50
TSG (s) 1051.5 394 616.5 392 240

Fig. 8(b) DSG (m) 224.32 177.58 178.14 182.49 172.44
TSG (s) 2092 1188 1257 1125 571

5.	 Conclusions

	 In this study, we propose an effective navigation control method in an unknown 
environment.  The proposed BM automatically switches to the WFB or TGB according to the 
relative position between the mobile robot and the goal point.  A T2NFC controller based on the 
IWOA learning algorithm is used for implementing the WFB of the mobile robot.  The proposed 
IWOA uses the dynamic grouping and Lévy flight strategies to improve the search capability 
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and the enhanced convergence speed of the traditional WOA.  Experimental results reveal that 
the performance of the proposed method in terms of wall following and navigation control is 
more efficient than that of other methods in unknown environments.  
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