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	 In this study, an acoustic emission (AE) sensor is used to monitor the hard polishing process 
of a sapphire wafer.  Since the AE sensor is very sensitive, a specially designed polishing 
head is used such that the AE sensor can be placed as close to the polishing area as possible.  
Then, hard polishing experiments are conducted to investigate the effects of hard polishing 
processing factors including pressure and rotational speed on the material removal rate (MRR) 
and root mean square (RMS) value of AE signals.  According to the results, it is shown that 
the RMS value of AE signals strongly correlates with the MRR of the processes under various 
polishing conditions.  On the basis of the experimental results, a mathematical model of MRR 
is developed.  The coefficient of determination (R2) of the model is about 99%, the corrected 
coefficient of determination ( 2

 corR ) is about 95%, and the prediction error is less than 12% in 
all cases studied.  The results indicate that the AE sensor is a potential tool for monitoring the 
polishing process.  

1.	 Introduction

	 Sapphire wafers are hard, brittle, and chemically stable; hence, polishing them is quite 
difficult.  A series of processing steps are frequently adopted to process them such that the 
processing time can be reduced and the wafer quality can also be improved.  Hard polishing is 
a process usually performed between lapping and chemical mechanical polishing (CMP).  The 
processing time of the following CMP process can be markedly reduced by achieving an atomic 
level roughness of ~10 nm and a high material removal rate (MRR).  
	 As a nondestructive testing technology,(1,2) acoustic emission (AE) was widely used in the 
monitoring of mechanical processing.(3–5)  Chang et al.(6) used an AE sensor to monitor the 
MRR during the polishing process.  Tang et al.(7) classified the polishing process into several 
stages by analyzing AE signals in order to avoid microscratching.  Hase et al.(8) studied the 
characteristics of AE signals and correlated them with wear mechanisms.  Aguiar et al.(9) 
used neural networks to predict the surface roughness of ground workpieces on the basis of 
the analysis of output variables such as AE signals and cutting power.  Li et al.(10) established 
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a simplified fracture propagation model of low-carbon nitrogen-enhanced (316LN) stainless 
steel.  Besides, they also analyzed the inner connection between the energy release rate of the 
AE source and the morphological aspect of crack formation.  Lee et al.(11) used a microphone to 
collect AE signals in wet milling.  The stability variation of milling dynamics could be observed 
using the peak frequency variation of the microphone signals.  
	 In this work, we study the feasibility of using AE signals to monitor the hard polishing 
process of a sapphire wafer.  Since the AE sensor is very sensitive, a polishing head is specially 
designed such that the AE sensor can be placed as close to the polishing area as possible.  
The design and other experimental setup are detailed in the following section.  A series of 
experiments are then conducted to study the effects of processing factors on the MRR of the 
sapphire wafer during hard polishing.  Furthermore, the correlations between the MRR of the 
process and AE signal values under different polishing conditions are studied.  Then, an MRR 
model for the hard polishing of sapphire wafers is established.  On the basis of these results, 
conclusions are made at the end.

2.	 Experimental Setup

	 Figure 1 shows the experimental setup used to monitor the hard polishing process.  As 
shown in the figure, a carrier is designed such that the AE sensor is placed very close to the 
workpiece; a slip ring is used to prevent the winding of a signal wire; a sponge is used to reduce 
the vibration transmitted from the drive to the carrier and sensor.  Three workpieces of 4 inch 
sapphire wafers are mounted on the polishing plate, which is composed of copper and resin.  
The slurry consists of ethylene glycol and diamond abrasives with a mean grain diameter of 3 
µm.
	 Preliminary tests were conducted to ensure that the devices were properly set.  Figure 2 
shows some of the test results; it demonstrates the effects of different polishing conditions on 
the AE signals.  In one of these tests, the edge crack phenomenon in the sapphire wafer was 
found as shown in Fig. 3.  The edge crack appeared when the upper holder failed to tap the 
polishing plate.  Simultaneously, AE signals also reached a peak value, which indicated the 
correlation between the crack failure and the peak value of AE signals during the hard polishing 
and in situ processes.

Fig. 1.	 Experimental setup for using AE devices to monitor the hard polishing process.
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3.	 Experimental Design and Results

	 A series of experiments were conducted to investigate the effects of hard polishing 
processing factors on the MRR and root mean square (RMS) value of AE signals.  The 
parameters studied are pressure (P) and rotational speed (V) at levels listed in Table 1.
	 For the estimation of MRR, the wafer thickness at three different locations on each sapphire 
wafer is measured before and after the polishing process.  The average difference in the 
thickness before and after the polishing process at these locations is denoted as Ave. MRR.  The 
maximum difference in the thickness before and after the polishing process among these three 
locations is denoted as Max. MRR.  
	 The results of the analysis of variance (ANOVA) for the Ave. MRR, Max. MRR, and AE 
signals of the process are summarized in Tables 2, 3, and 4, respectively, which show that the 
P values of pressure and rotational speed are less than 0.02 in all cases studied, which will 
contribute to significant effects.  Usually, whether the effects were significant or not depended 

Fig. 2.	 (Color online) AE signals collected during hard polishing process under various conditions.

Fig. 3.	 (Color online) Edge crack phenomenon in sapphire wafer.
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on the comparison with the experimental error.  Besides, interaction effects were larger or 
equivalent to the experimental error theoretically.  Therefore, if P values showed a significant 
effect in the comparison with interaction effects, it would also show a significant effect in the 
comparison with the experimental error.  In this paper, the pressure and rotational speed both 
show that their effects on the MRR and AE signal of the process are significant.  These analysis 
results indicate that both the pressure and the rotational speed are critical factors that affect the 
MRR.
	 The interaction effects of pressure and speed on Ave. MRR, Max. MRR, and AE signals are 
shown in Figs. 4, 5, and 6, respectively.  By comparing these figures, we found a similar trend, 
that is; the MRR and AE signal value increased with the pressure and rotational speed.  This 
indicated that the correlation between the AE signal and the MRR could be strong.  If so, the 
AE signals may be used as a possible tool to monitor the MRR of the process.

Table 1
Experimental parameters and levels.
Parameters Levels
P (g/cm2) 85, 115, 145, 180
V (rpm) 40, 50, 60

Table 2
ANOVA for Ave. MRR.
Source of variation SS DOF MS F P Fcritical
V 18.430067 2 9.215033 38.93859 0.000366 5.143253
P 12.505767 3 4.168589 17.61458 0.002228 4.757063
Interaction 1.4199333 6 0.236656 — — —
Total 32.355767 11 — — — —

Table 3
ANOVA for Max. MRR.
Source of variation SS DOF MS F P Fcritical
V 9.2096167 2 4.604808 8.63514 0.017142 5.143253
P 15.195267 3 5.065089 9.498278 0.010733 4.757063
Interaction 3.1995833 6 0.533264 — — —
Total 27.604467 11 — — — —

Table 4
ANOVA for AE signals.
Source of variation SS DOF MS F P Fcritical
V 40.81155 2 20.40578 21.19769 0.001906 5.143253
P 65.6886 3 21.8962 22.74595 0.001119 4.757063
Interaction 5.77585 6 0.962642 — — —
Total 112.276 11 — — — —
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4.	 Models for MRR

	 The Preston equation(12) is a frequently adopted MRR model for the polishing process.  The 
Preston equation is given as

	 MRR K P V= × × ,	 (1)

where K is the Preston coefficient reflecting the effects of all other factors such as work 
material, slurry, and abrasives; P is the pressure per unit area; and V is the relative linear 
velocity between the polishing plate and the workpiece.  
	 In this study, instead of the relative linear velocity, the rotational speed was used to form the 
MRR model.  On the basis of the collected data, the Preston equation for the MRR is derived as

	 4Ave. MRR 9.74 10 P V−= × × × ,	
(2)

	 R2 = 97.4%, 2
 corR = 87.1%,

Fig. 4.	 (Color online) Ave. MRRs under different 
pressures and rotational speeds.

Fig. 5.	 (Color online) Max. MRRs under different 
pressures and rotational speeds.

Fig. 6.	 (Color online) Values of AE signals under different pressures and rotational speeds.



2686	 Sensors and Materials, Vol. 31, No. 9 (2019)

	 3Max. MRR 1.09 10 P V−= × × × ,	 (3)

	 R2 = 98%, 2
 corR = 88.4%,

where R2 and 2
 corR  are the coefficient of determination and the corrected coefficient of 

determination, respectively, which are adopted as the measures for the fitness  of the model.
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	 Here, SS(model) is the sum of squares of the model, SS(total) is the sum of squares of the 
model and the sum of squares of the residuals, and SS(mean) is the sum of squares of the mean 
value.  In general, the higher the coefficient of determination and the corrected coefficient of 
determination, the better the model for estimation.  
	 Many researchers(13–15) used the modified Preston equation for the MRR.  The Preston 
equation is modified by introducing exponential coefficients as

	 ( ) ( )MRR n mK P V= × × .	 (6)

	 In the case studied, the modified Preston equation for the MRR is

	 ( ) ( )3 0.44 1.45Ave. MRR 2.51 10 P V−= × × × 	
(7)	 R2 = 98.9%, 2

 corR = 91.5%,

	 ( ) ( )2 0.31 0.9Max. MRR 4.62 10 P V−= × × × 	
(8)

	 R2 = 98.8%, 2
 corR = 88.6%.

	 From Figs. 4, 5, and 6, a similar trend can be found, that is, the MRR and AE signal 
increased as the rotational speed increased, aside from that the effects of pressure on the MRR 
and AE signal are also similar.  It was found that with the increase in MRR, the AE signals are 
also increased.  
	 Therefore, linear regression models are adopted for the MRR model:

	 Ave. MRR 0.494 AE 11.916= − 	
(9)	 R2 = 99%, 2

 corR = 84.6%,
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	 Max. MRR 0.472 AE 10.326= − 	
(10)	 R2 = 99.3%, 2

 corR = 90.3%

where AE is the RMS value of AE signals.
	 If both the polishing parameters and the AE signals are used to model the MRR, the 
following results can be derived:

	 ( ) ( ) ( )4 0.15 0.75 1.95Ave. MRR 1.41 10 P V AE−= × × × × 	
(11)	 R2 = 99.2%, 2

 corR = 93%,

	 ( ) ( ) ( )3 0.1 0.12 2.73Max. MRR 1.02 10 P V AE− − −= × × × × 	 (12)

	 R2 = 99.6%, 2
 corR = 95%.

	 The R2 value, 2
 corR  value, average difference between prediction and experimental data, and 

the maximum difference between prediction and experimental data of different average removal 
rate models and those of different maximum removal rate models are summarized in Tables 5 and 6, 
respectively.  The applications of these models can be twofold: one is to predict the performance 
before the process; the other is the online monitoring of the process with sensor signals collected 
online during the process.  For removal rate prediction, the modified Preston equation with AE 
signals is better than the Preston equation for both average and maximum MRR predictions.  
For online MRR monitoring, the modified Preston equation with AE signals is superior to 
others for the estimation of both the average and maximum MRRs in all measures.

Fig. 7.	 (Color online) Relationship between MRR and AE RMS signals.
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5.	 Conclusions

	 A novel approach of introducing AE signal terms into the modified Preston equation to 
estimate MRR is established.  Overall, this study shows that the AE monitoring system is 
important as a guide for optimizing hard polishing process parameters and improving polishing 
efficiency.  In this study, the effects of polishing parameters on the MRR and collected AE 
signals were studied first.  The results show that the pressure and rotational speed have 
significant effects on both the MRR and AE signals.  The larger the pressure and the higher 
the rotational speed, the larger the MRR and AE signals.  Several approaches are then utilized 
to establish the MRR model.  As a consequence, for the average removal rate, the modified 
Preston equation with AE signals has the lowest average and maximum errors.  Likewise, 
for the maximum MRR, the modified Preston equation with AE signals also has the lowest 
average error and maximum error.  The R2 value of the prediction model is about 99%, the 2

 corR  
value of the prediction model is about 95%, and the error between the predictive value and the 
experimental value is almost less than 12% in all cases studied.  
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