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 In this paper, the design of a quadrotor vehicle having a person-tracking and observation 
system, which uses human gesture recognition, is described.  The system has three operating 
functions,	namely,	object	 tracking,	human	gesture	 recognition,	and	 fixed-point	cruising.	 	The	
tracking–learning–detection (TLD) algorithm was used to enable the autonomous tracking of 
the	object	from	images.		An	extended	Kalman	filter	(EKF)	provides	an	estimate	of	the	current	
position of the quadrotor vehicle, and a fuzzy-proportional integral derivative (PID) controller 
provides position error compensation.  The principle of the human gesture recognition system is 
as	follows.		A	background	model	is	first	built	from	images	using	a	Gaussian	mixture	model	(GMM)
to detect the foreground image.  A nonlinear support vector machine (SVM) is then employed to 
recognize changes of gesture and establish interactivity between the vehicle and the user.  The 
coordinates	of	the	vehicle	are	marked	using	a	GPS	for	fixed-point	cruising.		The	coordinates	and	
parameters of the points are set so that the quadrotor vehicle can follow them during cruising.  
Lastly, all of the functions are incorporated into the person-tracking and gesture-recognition 
system	in	the	quadrotor.		The	experimental	results	show	the	feasibility	of	the	above-mentioned	
methods, which can help us easily recognize the various gestures in this study.

1. Introduction

 A UN World Population Ageing report(1) points out that the percentage of the population 
aged over 60 increased from 9.2% in 1990 to 11.7% in 2013, and is projected to surge to 21.1% 
by 2050.  This means that there is an escalating need for elderly care.  Many smart home care 
concepts(2) have been proposed; some use wheeled or even humanoid robots.(3–5)  Of these, 
remote care needs more attention.  A remote care system involves people who receive care, 
those who give care, and family members.  The care receiver (elderly) side includes a certain 
interactive platform and related devices such as cameras.  The platform provides care receivers 
with easy access to basic services that they need such as an app for interactive entertainment, 
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and teleconversations.  Cameras facilitate the remote care provided by family members and 
caregivers.  Live streaming videos ensure safety and the availablity of help in an emergency.
 In this study a quadrotor aerial drone was introduced into the domain of smart care.  Object 
tracking and mid-air navigation were achieved by image tracking using machine vision 
technology.  The interaction between humans and the drone, by employing gestures, was also 
found to be feasible.  An aerial drone is highly maneuverable, allows many viewing angles 
of	an	area,	and	can	cover	blinds	spots,	which	fixed	cameras	cannot.	 	Drones,	unlike	wheeled	
robots, do not suffer from a lack of mobility on rough terrain.  The integration of these highly 
maneuverable aerial vehicles into a smart care system introduces many innovative applications 
to the field of smart care.  Most of the commercially available drones allow manual operation 
that gives them good response capabilities.  However, to use a drone in health care, the people 
involved	should	be	familiar	with	the	operation	interface	that	can	be	complex.		Since	the	elderly	
are involved, the drone must be easy to operate and be capable of autonomous operation and  
tracking the person being cared for.

2. System Architecture

 A care system capable of tracking an object, human gesture recognition, and waypoint 
navigation using a quadrotor aerial drone is proposed here.  The system architectural diagram is 
shown	in	Fig.	1.
 The process starts with the tracking of the current camera image using the tracking–
learning–detection (TLD) algorithm.  Subsequent learning and detection allow the bounding 
boxes	to	be	updated	and	the	displacement	of	objects	is	calculated	to	pinpoint	the	position	of	the	

Fig.	1.	 (Color	online)	System	architecture.
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object	 in	 the	 image.	 	A	Gaussian	mixture	model	 (GMM)	 is	established	using	 the	background	
of the image to allow the hovering drone to recognize human gestures using the support vector 
machine (SVM).  In the waypoint navigation mode, the cruising points of the planned flight and 
related parameters must be set before navigation starts.

3. Tracking the Image of the Target Being Followed

 The backgrounds of images from a stationery camera used for object tracking are usually 
still and stable, and a background subtraction method can be used to build the background 
model and obtain the foreground.  However, the substantial changes in the background of a 
tracked	object	caused	by	 the	variations	 in	 the	 illumination,	 scale,	and	partial	exclusion	of	 the	
images from a drone-mounted camera must be considered.  Therefore, the TLD algorithm(6) is 
used for object tracking.  The TLD tracker algorithm uses the pyramid Lucas–Kanade (L–K) 
optical flow method(7) for tracking purposes.  This method has the following advantages: 
there	 is	 no	 need	 for	 preliminary	 background	 modeling,	 it	 is	 more	 flexible	 than	 background	
subtraction methods, its use is not limited to a single scenario, and so forth.  The flow chart of 
object	tracking	for	this	study	is	shown	in	Fig.	2.

3.1 TLD algorithm

 The image of a tracked object may become distorted after tracking for a long time.  This can 
be caused by the need for retracking after the object has been lost, which may cause tracking 
failure.  The TLD algorithm delivers an outstanding performance in handling illumination 
changes, scale variations, and partial occlusion, and retracking of a lost target.
	 As	shown	in	Fig.	3,	TLD	image	tracking	has	three	main	components,	i.e.,	tracking,	learning,	
and detection, which all operate together.  The pyramid L–K optical flow method(7) is used for 
tracking, while the detector is responsible for calculating the position of the tracked object in 
the image.  The learning component carries out real-time error learning from the results of the 
tracker and detector to minimize the chance of tracking failure.  The integrator combines and 
updates	the	bounding	boxes	of	the	tracker	and	detector.

Fig.	2.	 (Color	online)	Target	tracking	flow	chart. Fig.	3.	 (Color	online)	TLD	flow	chart.
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3.1.1 Tracking

 The TLD tracker algorithm employs the pyramid L–K optical flow method(7) for object 
tracking and also feeds back the result of object tracking using the forward–backward error,(8) 
as	 shown	 in	 Fig.	 4.	 	 A	 comparison	 is	 then	 made	 between	 the	 forward–backward	 error	 and	
the Euclidean distance at the initial position, and tracking results with greater distances are 
discarded.
	 As	 shown	 in	 Fig.	 4,	 the	 distance	 D between the forward and backward trajectories is 
the difference between the initial and end positions.  The distance calculation is Euclidean.  

( )1 ,  ,  ,  FB t t t nS H H H+ += …  represents the sequence of consecutive frames. Ht is the frame 
at time t and Ct is the position of C at time t.	 	 Forward	 tracking	 is	 conducted	n times.  The 
forward trajectory ( )1 , ,  ,  n

F t t t nT C C C+ += …  is obtained.  n is the length of time and F 
is forward tracking.  On the other hand, the backward trajectory ( )1

ˆ̂̂ , , ...,t t t n
n

BT C C C+ +=  1
ˆ
tC + , ..., ( )ˆ n

B t nT C +=  
is obtained by backward tracking to the initial frame.  B is backward tracking.  Lastly, 

( ) ( )FBE |  ,n n n
F FB F BT S D T T=  is obtained, where  ( ), ˆn n

F B t tD T T C C= − .
 The basic working principle of the pyramid L–K optical flow method is the detection of 
the	changes	of	each	pixel	between	two	neighboring	frames	(using	differentiation)	to	obtain	the	
direction	and	speed	of	optical	flow.		It	is	assumed	that	a	pixel	K has displacement between two 
neighboring	frames	and	so	do	the	pixels	qn	surrounding	a	pixel	K with the same displacement.  
The	 optical	 flow	 equation	 is	 assumed	 to	 hold	 as	well.	 	 The	 intensities	 of	 the	 pixel	 value	 on	
three dimensions, i.e., x, y, and time t are denoted as Ix, Iy, and It, respectively.  The optical flow 
speeds	between	pixel	K	and	the	surrounding	pixels	qn are Vx, Vy.  The basic optical method is 
shown in the equation

 ( ) ( ) ( ).x n x y n y t nI q V I q V I q+ = −  (1)

The	matrix	representation	AV = B is shown as

Fig.	4.	 (Color	online)	Forward–backward	error.(9)
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The	L–K	optical	flow	method	uses	least	squares	to	obtain	approximate	solutions,	that	is,

 ( ) 1T T−
=V A A A B  (3)

or

 T T=A AV A B . (4)

Substitute Eq. (3) into Eq. (4) to obtain Eq. (5):
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where = 1, 2, 3, ..., n.  The optical flow direction is then obtained.  The results obtained from 
optical flow estimation are passed to the integrator and tracker for evaluation.  Then, the tracker 
is updated by the learning component.

3.1.2 Detection

 The detector scans the input image frame through a scanning window and determines the 
presence	 or	 absence	 of	 the	 object	 for	 each	patch.	 	The	detector	 shown	 in	Fig.	 5	 is	 a	 cascade	
classifier.(6)  Owing to the large number of frames to be processed, the classifier has three 
stages, namely, the patch variance, ensemble, and nearest-neighbor classifiers.  The patches are 

Fig.	5.	 (Color	online)	Schematic	diagram	of	the	detector.
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first filtered by the patch variance and ensemble classifiers.  The patches not rejected are kept 
and passed to the nearest-neighbor classifiers.
A. Patch variance classifier
 During this stage, the patches with a gray-value variance below 50% are rejected.  The 
gray-value variance equation for patch P is E(P2) − E2(P)	 and	 the	 expected	 value	E(P) can 
be measured in real time using integral images.  Typically, most of the nonobject patches 
are rejected during this stage.  The variance threshold is preset to 50%, but can be manually 
adjusted if necessary.
B. Ensemble classifier
 The ensemble classifier consists of m base classifiers.  The patch is first applied with a 
Gaussian	blur	effect	to	increase	the	robustness	to	noise.		Next,	the	pixels	in	each	base	classifier	
are compared and each comparison returns either 0 or 1.  Take the comparison of arbitrary 
points	A	and	B	for	example.		The	return	value	is	1	if	the	brightness	of	point	A	is	greater	than	
that of point B.  Otherwise, 0 is returned.  The results of the comparisons are entered as a binary 
code,	which	indexes	to	an	array	of	posterior	probabilities	Pj(y|x).  The probability is estimated 

as #( | )
# #i

pP y x
p n

=
+

, where #p and #n correspond to the numbers of positive and negative 

patches that were assigned the same binary code.  The posterior probabilities of individual 
base classifiers are averaged.  The ensemble classifier endures and only patches with posterior 
probabilities	greater	than	50%	are	passed	to	the	next	stage.
C. Nearest-neighbor classifier
 The object model T is a collection of positive patches   nP+ and negative patches  mP−.  It is a 
data structure that represents the object and its surrounding thus far observed, where P+ and P− 
represent the object and background patches, respectively.  The object model is shown as

 { }1 2 1 2, , , , , , ,n mT P P P P P P+ + + − − −= … … . (6)

In	 this	method,	 the	 spatial	 similarity	 of	 two	 bounding	 boxes	 is	measured	 using	 the	 overlap,	
which is defined as the ratio of the intersection to the union.  The shape of an object is 
represented by patch P.  The similarity between the two patches Pj and Pk is defined as

 ( ) ( )( ), 0.5 , 1j k j kS P P NCC P P= + , (7)

where NCC is a normalized correlation coefficient.  Given an arbitrary patch P and the object 
model T, several similarity measures are defined for P–N learning(6)

(1) Similarity with the positive nearest neighbor:

 ( ) ( ), max ,
j

j
P T

S P T S P P
+

+ +

∈
=  (8)
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(2) Similarity with the negative nearest neighbor:

 ( ) ( ), max ,
j

j
P T

S P T S P P
−

− −

∈
=  (9)

(3) Similarity with the positive nearest neighbor considering the 50% earliest positive patches:

 ( ) ( )50%
/2

, max ,
j

j
P T j n

S P T S P P
+

+ +

∈ ∧ <
=  (10)

(4) Relative similarity:

 
  

r SS
S S

+

+ −=
+

 (11)

The relative similarity ranges from 0 to 1, where higher values mean a greater confidence that 
the patch depicts the object, i.e., the foreground.
(5) Conservative similarity: The conservative similarity ranges from 0 to 1.

 50%

50%  
c SS

S S

+

+ −=
+

 (12)

A high value indicates a greater confidence that the patch resembles the appearance observed in 
the first 50% of positive patches.  The preset threshold is 0.6NNθ = .  A patch P is classified as a 
positive object if ( ), .r

NNS P T θ>

3.1.3 Learning component

 The learning component uses a semisupervised learning method.(6)  The classification is 
analyzed	by	P-	and	N-experts,	which	estimate	examples	 that	have	been	classified	 incorrectly.		
Figure	 5	 shows	 the	 flow	 chart	 of	 P–N	 learning.	 	 The	 main	 task	 of	 P–N	 semisupervised	
learning	 is	 to	 give	 incorrectly	 classified	 positive	 and	 negative	 examples	 to	 the	 respective	 P-	
and	N-experts	 for	analysis.	 	The	P-expert	analyzes	samples	 incorrectly	classified	as	negative,	
estimates	false	negatives,	and	adds	them	to	the	training	set	with	a	positive	label.		The	N-expert	
analyzes	examples	classified	as	positive,	estimates	false	positives,	and	adds	them	to	the	training	
set with a negative label.
	 Equations	 (13)	and	(14)	show	the	numbers	of	examples	corrected	by	 the	P-	and	N-experts,	
respectively.

 ( ) ( ) ( )C Fn i n i n i+ + += +  (13)
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 ( ) ( ) ( )C Fn i n i n i− − −= +  (14)

Here, at the ith iteration of training,   n+	 is	 the	 number	 of	 examples	 relabeled	 positive	 by	 the	
P-expert.	 	   Cn+  and  Fn+ 	 are	 respectively	 the	 numbers	 of	 examples	 correctly	 and	 incorrectly	
relabeled as positive.    n−	is	the	number	of	examples	relabeled	as	negative	by	the	N-expert.		  Cn−  
and   Fn−	are	respectively	the	numbers	of	examples	correctly	and	incorrectly	relabeled	as	negative.		
α(i) and β(i) are the numbers of positive and false negative errors, respectively.  Their equations 
are shown below.

 ( ) ( ) ( ) ( )1 C Fi i n i n iα α − ++ = − +  (15)

 ( ) ( ) ( ) ( )1 C Fi i n i n iβ β + −+ = − +  (16)

If ( ) ( ) C Fn i n i− +> ,	i.e.,	the	number	of	examples	correctly	relabeled	as	negative,	is	higher	than	the	
number	of	examples	incorrectly	relabeled	as	positive,	then	false	positives	α(i) will decrease, as 
shown in Eq. (15).  Similarly, if ( ) ( ) C Fn i n i+ −> , the false negatives β(i) will decrease,  as shown 
in Eq. (16).

3.1.4 Integrator

	 The	 integrator	 combines	 the	 bounding	 boxes	 of	 the	 tracker	 and	 detector	 into	 a	 single	
bounding	 box	 output.	 	 The	 object	 information	 is	 passed	 to	 the	 learning	 component	 for	
classification	 purposes.	 	 If	 neither	 the	 tracker	 nor	 the	 detector	 outputs	 a	 bounding	 box,	 the	
object	 is	 declared	 invisible.	 	 The	 integrator	 outputs	 the	 maximally	 confident	 bounding	 box.		
Object tracking resumes as soon as the object is detected in the image again.

4. Human Gesture Recognition

 To recognize human gestures, a background model is first built using the GMM method.  
The foreground (i.e., human gestures) is detected.  Human gestures are divided into upper- 
and lower-body gestures.  Lower-body gestures include left leg up, right leg up, standing on 
both legs, and kneeling.  Upper-body gestures include right hand up, left hand up, both hands 
down, both hands flat, both hands holding head, and so forth.  The recognition techniques in 
this study will focus on the human’s full-body gestures when falling and upper-body gestures 
when standing.  The SVM(9–13) algorithm is used in this study to recognize human gestures.  It 
is used to train and build the model with sample data.  The trained model is used later in data 
classification and regression.

4.1 GMM

 The GMM of the background image is constructed using multiple Gaussian models with 
similar background color distribution densities and its mathematical equation is shown below:
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where ωi,t represents the weight of the ith Gaussian distribution η.  Xt is a random variable.  The 
average of Gaussian distributions is μi,t.  The standard deviation is σi,t.  Equation (18) is the 
update equation for the Gaussian background where γ represents the learning speed.  Mk,t is the 
matched	Gaussian	 distribution.	 	 If	 the	 current	 pixel	 value	matches	 the	Gaussian	 distribution,	
Mk,t is 1 and the average and standard deviation are updated.  Otherwise, Mk,t is 0 and no update 
is performed.

4.2 SVM

 The SVM algorithm is composed of two parts.  The first part is the analysis of linear 
systems.  Nonlinear system analysis is performed through the nonlinear mapping of the 
nonseparable	 low-dimensional	 examples	 into	 high-dimensional	 feature	 spaces.	 	 Nonlinearly	
inseparable	examples	are	thus	changed	to	linearly	separable	ones.		The	above	method	allows	the	
linear and nonlinear systems to use the same method for analysis and processing.  The second 
part of the SVM algorithm is the structural risk minimization (SRM) in feature spaces to build 
an	optimal	support	hyperplane	separation	so	that	the	expected	risk	of	the	sample	space	satisfies	
the upper limit with optimal probability and the overall system is optimized.  The goals of the 
SVM algorithm are to build an object function by SRM and to separate the two types of model  
optimally.

4.2.1 Nonlinear SVM algorithm

 If the optimal hyperplane is constructed from training data using a linear approach, the final 
classification error is huge and data points are difficult to separate.  In this situation, a nonlinear 
method must be used to separate the data points.  Boser et al.(12) proposed the use of a nonlinear 
function	to	separate	data	points.		Function	φ(xi) is used to map input data to a feature space of a 
higher	dimension	as	shown	in	Fig.	6.
 The equation is rewritten as Eq. (19) on the basis of φ(xi).
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Equation (19) is then rewritten as Eq. (20) by the Lagrange multiplier method.(12)
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Here, ai	˃	0	and	vi	˃	0	are	both	Lagrange	multipliers.		To	find	the	smallest	L, Eq. (21) is obtained 
by considering the partial derivative of Eq. (20).
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Substitute Eq. (21) into Eq. (19) to obtain the following equation.
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Fig.	6.	 (Color	online)	Schematic	diagram	of	space	transformation.
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Here, ( ) ( )T  i lx xϕ ϕ  is defined as the kernel function,(13) which is shown as

 ( ) ( ) ( )T, .i l i lK x x x xϕ ϕ= ⋅  (23)

According to the literature,(13) the kernel function satisfies Mercer’s condition, as shown in the 
equation

 ( ) ( ) ( ), 0,i l i l i lK x x g x g x dx dx ≥∫  (24)

where g(x) is an integrable function and can be chosen as a kernel function if it satisfies 
Mercer’s condition.  Common kernel functions include the polynomial kernel, multilayer 
perception, and radial basis function, which are shown in Eqs. (25), (26), and (27), respectively.
(1) Polynomial kernel

 ( ) ( )( )T, 1
d

i l i lK x x x xγ= ⋅ +  (25)

(2) Sigmoid kernel

 ( ) ( )T, tanhi l i lK x x x x dγ= ⋅ +  (26)

(3) Radial basis function

 ( )
2

, i lx x
i lK x x e γ− −=  (27)

The choice of a kernel function depends on the classification problem to be solved.  Different 
results are obtained depending on the parameters used.  The radial basis function, the most 
often used kernel function for the SVM algorithm, is used in this paper.  

5. Modeling and Control of a Quadrotor Drone

 In this section, the mathematical model and control method of a quadrotor drone are 
presented.		The	flow	chart	of	drone	attitude	control	is	shown	in	Fig.	7.		The	inertial	sensors	used	

Fig.	7.	 (Color	online)	Flow	chart	of	drone	attitude	control.
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in this study include both gyroscopes and accelerometers.  The Euler angles are first obtained by 
taking the integral of the angular velocities measured using the gyroscope and converting them 
into body coordinates.  The drone position is obtained by double-integrating the accelerometer 
output.	 	 The	 extended	 Kalman	 filter	 (EKF)	 is	 used	 to	 filter	 the	 noise	 from	 the	 three-axis	
accelerometer data, after which the current attitude of the drone is estimated.  The position 
error of the tracked object is calculated and used by fuzzy-proportional integral derivative (PID) 
control to compensate for the drone data, which is then input to the mathematical model.  The 
magnitude of compensation is calculated to adjust the attitude of the drone.

5.1 EKF

 To estimate the drone attitude, the angular velocities of the pitch ϕ, roll θ, and yaw ψ	axes	on	
the	body	coordinate	system	are	measured	using	the	gyroscope.		That	is,	the	angle	on	each	axis	
is obtained by integrating the derivative of the angle over time.  However, this method is subject 
to error that grows over time.  This problem can be solved using the Kalman filter.
 In the prediction state, the evolution function of the state estimate , 1ˆ  k k−x  is shown in Eq. 
(28), where Φk−1	is	the	state	transition	matrix.		Qk−1	is	the	state	noise	covariance	matrix.		The	
covariance	matrix	equation	Pk,k−1 is shown in Eq. (29).

 , 1 1 1, 1ˆ̂k k k k k− − − −=x xΦ  (28)

 T
, 1 1 1, 1 1 1k k k k k k k− − − − − −= +P P QΦ Φ  (29)

 In the update state, the measured value is zk.  The state estimate at k is shown in Eq. (30).  
The Kalman gain Kk can be obtained as in Eq. (31).  Hk	 is	 the	measurement	module	matrix	
as shown in Eq. (32).  R	 is	 the	measurement	noise	covariance	matrix.	 	The	covariance	matrix	
function from time k−1	to	k Pk,k−1 is shown in Eq. (33).

 ( ), , 1ˆ̂ ˆk k k k k k ks −= + −x x K z z  (30)

 ( ) 1T T
, 1 , 1k k k k k k k k k

−
− −= +K P H H P H R  (31)

 
( )

ˆk

k
h

=

∂
=

∂ x x

x
H

x  (32)

 ( ), , 1k k k k k k−= −P I K H P  (33)
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5.2 Fuzzy-PID controller of the quadrotor drone

The mathematical model of the drone is shown in Eq. (34).
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 The attitude can be calculated using the obtained coordinate systems.  The error calculated 
from the tracked object is used to compensate for and correct the attitude of the drone using the 
fuzzy-PID controller, which is introduced below.
 In this study, each fuzzy-PID controller(14) considers the error e and the change in error, de, 
as input variables.  The output variables are kP, kI, and kD.  The input and output membership 
functions	are	defined	as	shown	in	Fig.	8.		The	adjustment	of	kP can raise the proportional gain 
of the control system, shorten the response time of the system, and reduce the steady-state error.  
However, a proportional gain that is very high may cause system instability.  kI is then used to 
eliminate the steady-state error of the system.  A large kI means that the steady-state error of 
the system will be eliminated faster.  kD improves the system error in dynamic responses and 
suppresses the change in error in the response process.
 The fuzzy-PID controller deals mainly with three cases.  In case 1, when |e| is large, a larger 
kP and a smaller kD are preferred, and kI must be as close to zero as possible so that the error 
can be rapidly eliminated and the system response can also be shortened.  In case 2,  0e de⋅ > .  
When |e| is large, a larger kP, an appropriate kD, and a smaller kI are preferred.  Otherwise, an 
appropriate kP, a smaller kD, and a larger kI are preferred to prevent oscillation and increase 
system stability.  In the last case, 0e de⋅ < .  If |e| is large, appropriate kP and kD, and a smaller kI 
are preferred.  If |e| is small, smaller kP and kD, and a larger kI are preferred to increase system 
stability.

Fig.	8.	 (Color	online)	Schematic	diagram	of	input	membership	function.
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6. Experimental Results

	 A	tracking	care	system,	based	on	the	experimental	results	presented	above,	was	implemented	
using	 a	 DJI	 quadrotor	 drone.	 	 Figure	 9(a)	 shows	 the	 screen	 of	 a	 tablet	 PC	 displaying	
initialization	information	when	the	drone	and	RF	remote	controller	are	connected.		Figure	9(b)	
shows the drone operating interface on the tablet PC, which is used to switch the flight mode 
and	confirm	 flight	 images	and	Bluetooth	connection.	 	Figures	9(c)	 and	9(d)	 show	 the	control	
interface and related information.
 As soon as the drone arrives at a preset position, the ground end begins to process the images 
received and TLD object tracking is launched.  The drone can then carry out object tracking 
on	 the	basis	of	 the	calculated	 tracking	error.	 	Figure	10(a)	shows	 the	ground	end	marking	 the	
bounding	box.		Figures	10(b),	10(d),	10(f),	10(h),	and	10(j)	show	the	tracked	object	moving	first	
to	the	left	and	then	to	the	right.		Figures	10(c),	10(e),	10(g),	and	10(i)	show	the	view	angle	from	
behind the quadrotor drone.  It can be seen that autonomous tracking was achieved.
 When the tracked object stops, the drone will hover and the human gesture recognition 
system	 will	 begin	 to	 operate.	 	 Foreground	 detection	 is	 achieved	 through	 GMM	 background	
modeling and human gesture recognition is implemented through the SVM.(15)  The main 
function being to help the caregivers on the ground better understand user gestures and needs 
so	that	further	actions	can	be	taken.		Figures	11(a)–11(d)	are	screens	that	show	drone	hovering,	
human gesture recognition system activation, and gesture recognition performance.
 Lastly, the drone was switched to the waypoint navigation mode, performed waypoint 
navigation care, and monitored the area at all times to ensure the safety of the care receiver.  
Figures	12(a)–12(d)	show	the	screens	displaying	waypoint	navigation	care	flight.

(a) (b)

(c) (d)

Fig.	9.	 (Color	online)	Operating	interface	of	the	quadrotor	drone.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig.	10.	 (Color	online)	Autonomous	tracking	system.



2260 Sensors and Materials, Vol. 31, No. 7 (2019)

(a) (b)

(c) (d)

Fig.	11.	 (Color	online)	Human	gesture	recognition	system.

(a) (b)

(c) (d)

Fig.	12.	 (Color	online)	Waypoint	navigation	care	system.
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7. Conclusion

 In this study, a quadrotor drone was used as a platform for the design of an autonomous 
tracking care system.  The system has three functional aspects, namely, object tracking, human 
gesture recognition, and waypoint navigation.  The TLD image tracking algorithm, which is 
good for dealing with background changes, was used for object tracking.  The TLD algorithm 
has	many	 advantages.	 	 For	 example,	 in	 a	 case	where	 the	 tracked	 object	 is	 lost,	 the	 detector	
will recover and resume tracking.  The learning component of the TLD algorithm improves 
tracking accuracy.  A Kalman filter was used to estimate the current attitude of the drone, and 
displacement was calculated using the position of the tracked object received from the drone.  
Error compensation was implemented using a fuzzy-PID controller and autonomous object 
tracking was achieved.
 To implement human gesture recognition, the images and GMM were used to build a 
background model and detect the foreground.  Although the GMM method requires much 
computation, it is better for handling small background changes, such as those created by 
vegetation.  The SVM is used to recognize human gestures by identifying the body motion of 
the tracked person.
 Waypoint navigation is carried out using a smartphone app we developed.  The coordinates 
of the quadrotor drone are set first and the navigation-related coordinates and parameters, which 
are required as waypoint navigation instructions, are then entered and uploaded to the drone.  
Lastly, a quadrotor drone tracking care system was implemented using the methods mentioned 
above.  This system can be used at nursing homes, by home care providers, and in any place 
where there are people requiring remote care.
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