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	 To improve the accuracy of temperature measurement using a commercial thermal imager, 
the proposed correction methodology for the regression coefficients R, B, F, and O is applied, 
and the accuracy reaches <±1 °C in the temperature measurement range between 15 and 
100 °C.  The use of digital images with a Giga-Ethernet output interface for the development 
of temperature measurement and analysis software is the strategy of real-time temperature 
measurement and fast monitoring of the temperature of the target area.  It will become a cost- 
effective room-temperature thermal imager with high accuracy of temperature measurement 
suitable for microzone application.  The use of a thermal camera for the temperature observation 
of a microzone on a high-power striped laser diode (LD) is advantageous in the evaluation of 
the heat dissipation of a submount stage to improve the output efficiency of the laser.

1.	 Introduction

	 Over the last two decades, an uncooled thermal camera has been widely used in the 
industrial, medical, and defense fields.(1)  Generally, it is mainly applied to long-range target 
tracking, surveillance, and temperature measurement.  Previously, the adoption of a high-
end uncooled thermal camera was limited owing to its expensive micro-infrared optics, the 
requirement of high spatial pixel resolution, and issues concerning optic depth resulting in 
the need for precise Z-axis positioning.  In particular, for the measurement of temperature 
on a microzone of 50 µm scale or smaller, a thermal camera must be used with phase-locked 
microscopy and synchronized thermography.  Therefore, this system has been very costly.
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	 In this study, we used a commercial room-temperature-operated long-wavelength infrared 
imaging module incorporating a lens with a focal length of 19 mm and a lens sleeve designed 
to reduce thermal stray radiation, to shorten the distance between the lens and the object 
measured (from 50 to 2.85 cm).  Hence, the spatial resolution approaches 8.5 μm, providing 
a zoom-in function to observe the temperature of a microzone containing the interfaces 
of a submount solder for a laser diode (LD).  With the monitoring of the temperature of its 
housing and the operating temperature of the internal focal plane array (FPA) in the thermal 
imaging module under a controllable ambient temperature, the imaging module can be used 
with the linear regression approach for thermal radiation correction at different steady-state 
ambient temperatures.  For example, in the microzone temperature measurement, the high-
power semiconductor LD is regarded as the exciting laser trigger source.  Also, the LD is the 
critical chip.  Because of heat dissipation due to defects of the high-power LD, excess heat 
at the interface of the attached region cannot be removed efficiently, i.e., laser output would 
be decreased.  In this study, a microzone temperature-monitoring platform with a real-time 
temperature calibration algorithm was proposed and applied to the package on the submount 
stage of a high-power semiconductor laser diode (HPSLD) to evaluate its power efficiency.(2,3)  
Because the size of the temperature monitoring scale is only 100 µm–2 mm, it is suitable for the 
above needs, that is, it is not necessary to use an expensive lock-in thermographic camera.  

2.	 Experimental Setup and Temperature Monitoring Methodology

	 Using a commercial long-wavelength infrared thermal camera with an IR optic lens having 
an object distance from 50 cm to ∞, we design an optically stray-radiation-suppressing sleeve 
to shorten the distance from the FPA to the optic lens, for microzone imaging and accurate 
temperature measurement.  The temperature accuracy approaches a value less than ±1 ℃.  The 
thermal camera with the optically stray-radiation-suppressing sleeve is shown in Fig. 1.
	 According to Planck’s Radiation Law, the radiant exitance or emissivity of an object is 
related to the surface of the material itself.  Using Planck’s spectral distribution, a thermal signal 
is converted to an electrical signal by a thermal detector to generate a thermal distribution 

Fig. 1.	 (Color online) Thermal camera with optically stray-radiation-suppressing sleeve.
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pattern visible to humans.  For the proposed temperature detection technology, the FPA 
based on a microbolometer is used to measure the thermal absorption that causes a change in 
resistance, and then a voltage or current (numerical intensity) signal is obtained.  The voltage or 
current signal from the microbolometer is subsequently converted using the numerical fitting 
equation of Planck’s distributed curve.  The reverse substitution is conducted to obtain the 
actual temperature (T0) as(4)
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where R, B, F, and O are the main thermal radiation regression coefficients.  The actual 
temperature is obtained as
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where O indicates the offset value of numerical intensity, which leads to the parallel translation 
along the y-axis of the numerical fitting equation of Planck’s distributed curve; R is the response 
of the thermal camera, which is related to the system sensitivity Rs; B is related to the effective 
wavelength sensitivity of the thermal camera; F is the nonlinear calibration factor, which is 
generally set to 1.

3.	 Temperature Calibration of Thermal Camera Module

	 Because of the difference in the processes for the microbolometer and FPA, which are 
affected by the operating temperature, the signal output from a readout integrated circuit (ROIC) 
contains some numerical error that results in an inaccurate temperature measurement.  Thus, 
using a proper calibration methodology, the accuracy of temperature measurement must be 
improved.  In other words, ambient, shutter surface, and indoor FPA temperatures are monitored 
to determine the thermal radiation regression coefficients R, B, F, and O.(5,6)  The thermal 
camera module based on the microbolometer is placed in a temperature-controllable box (the 
temperature ranges from 0 and 50 ℃).  The two flat plated blackbodies are put in front of the 
thermal camera module.  The radiant exitances from the two flat plated blackbodies tuned at 
two different temperatures for the derivation of R and O in Eq. (2) of the thermal camera module 
in the temperature-controllable box are determined for the accurate calibration of temperature.(7)  
The following are the calibration steps.
1.	 Two blackbodies of low and high temperature ranges (0–50 and 50–500 ℃) are used for 

high- and low-temperature-point calibrations.
2.	 The temperature-controllable box is set up with temperatures in the range of 15–45 ℃ at 

intervals of 5 ℃.
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3.	 At each testing temperature interval, the overall ambient temperature is in the steady state 
after the target temperature is held for 20 min.  Then, the nonuniformity is processed.  

4.	 At the same time, the temperatures at the surface of the optic shutter and the indoor FPA are 
recorded.

5.	 For the low and high temperature ranges, 30 and 90 ℃ blackbodies are set up and VD is 
recorded automatically over 2 min (120 data sets are obtained).  The obtained data are 
averaged and shown in Fig. 2.  Although the average counts show some deviation, the curves 
are generally monotonic.

	 The average VD values for the 30 and 90 ℃ blackbody temperatures in Fig. 2 are substituted 
into Eq. (1), with constant values B and F (experimentally, numerical values are related to the 
uncooled camera) of 1428 and 1, respectively.  Two identical equations are solved to obtain R 
and O under seven different ambient temperatures.  Numerical approximations of R and O are 
followed by linear regression analysis under the steady-state ambient temperatures of 15–45 ℃, 
as shown in Eqs. (3) and (4).

	 ( )338722.3 1237.4R T= + − × 	 (3)

	 346.303 21.476O T= + × 	 (4)

	 In Figs. 3 and 4, Rs (R-square, coefficient of determination) and standard deviation (SD) are 
respectively 0.99888 and 695.0405 for R and 0.99469 and 26.29014 for O, which means that the 
values are accurately estimated for any steady-state ambient temperature in the range of 15–45 ℃.  
Sequentially, the temperature-controllable box is set up for 17, 22, 27, 32, 37, and 42 ℃ between 
15 and 45 ℃, and held in the steady state for 20 min.  The temperatures of the low-temperature 
blackbody are 20 and 50 ℃, and those of the high-temperature blackbody are 70 and 100 ℃.  As 
described above, the 120 data sets of VD (in counts) are recorded in 2 min for these blackbody 

Fig. 2.	 (Color online) Average VD values for various counts of thermal camera for 30 and 90 ℃ blackbody 
temperatures under different ambient temperatures.
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temperatures.  Using Eqs. (3) and (4), we can calculate the relevant R and O values under six 
different ambient temperatures where B and F have empirical values of 1428 and 1.  From the 
inverse operation of Eq. (1), the actual temperatures including max., min., ave., and blackbody 
temperatures are obtained with the known relevant R and O values shown in Figs. 5–8.  The 
average errors are 0.31, 0.61, 0.11, and 0.11 ℃ when the blackbody temperatures are 20, 50, 70, 
and 100 ℃, and the maximal errors are 0.78, 1.0, 0.36, and 0.44 ℃, respectively.  It is obvious 
that the accuracy of temperature measurement is very high and may be better than ±1 ℃.  It is 
also interesting to note that the maximal errors are larger for lower blackbody temperatures than 
for higher blackbody temperatures.  This result could be explained by the measurement of lower 
target temperatures (in this case, blackbody temperatures of 20 and 50 ℃) being more easily 
disturbed by the ambient temperatures of 15–45 ℃.

4.	 Temperature Monitoring of Microzone between Multimetal Solders on Top of 
Laser-diode Bar and Microchannel Cooling (MCC) Stage

	 Figure 9 shows the experimental setup for monitoring the temperatures of multimetal 
solders of the LD bar and MCC stage.  The thermal camera module with the above temperature-
calibration methodology is used and mounted on the triaxial optical positioning platform.  
Owing to the very high power coherent exitance of the LD bar upon serious damage of the 
microbolometer FPA behind the IR lens, the optic path is off-axis by 30°, which includes 
the normal direction of the focal plane of the thermal camera.  The optical imaging distance 
between the objective and the IR lens is about 2.85 cm.  The digital imaging data and spatial 

Fig. 3.	 (Color online) Numerical approximation of 
R ≡ Res. using the optimized Rs (i.e., goodness of fit 
of coefficient of determination) by linear regression 
analysis at the steady-state ambient temperatures of 
15–45 ℃.

Fig. 4.	 (Color online) Numerical approximation 
of O using the optimized Rs (i.e., goodness of fit of 
coefficient of determination) by linear regression 
analysis at the steady-state ambient temperatures of 
15–45 ℃.
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Fig. 8.	 (Color online) Maximal, minimal, and 
average temperatures calibrated using 120 data 
sets recorded with temperature-dependent R, B, F, 
and O at different ambient temperatures. The target 
(blackbody) temperature was 100 ℃.

Fig. 5.	 (Color online) Maximal, minimal, and 
average temperatures calibrated using 120 data 
sets recorded with temperature-dependent R, B, F, 
and O at different ambient temperatures. The target 
(blackbody) temperature was 20 ℃.

Fig. 6.	 (Color online) Maximal, minimal, and 
average temperatures calibrated using 120 data 
sets recorded with temperature-dependent R, B, F, 
and O at different ambient temperatures. The target 
(blackbody) temperature was 50 ℃.

Fig. 7.	 (Color online) Maximal, minimal, and 
average temperatures calibrated using 120 data 
sets recorded with temperature-dependent R, B, F, 
and O at different ambient temperatures. The target 
(blackbody) temperature was 70 ℃.

Fig. 9.	 (Color online) System structure setup of  LD bar with multimetal solder, MCC, cooling-water circulation 
tube, and microzone functional thermal camera.
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intensity are transferred into NI-PXI through the RJ-45 port of Giga-Ethernet for microzone 
functional thermal imaging and real-time calibration associated with high-precision temperature 
measurement.  Figure 10 shows the thermal image of the high-power LD bar corresponding to 
the schematic diagram of the Type 1 package.  There are two positions where the temperatures 
are monitored: the beam surface of the LD marked by “+” and the junction below the hard 
solder, i.e., the topmost surface of joint multimetal layers, marked by “×”.  In this research, we 
use two kinds of joint mounted structure for the package of the high-power LD with the peak 
wavelength of 808 nm.  One comprises Cu/AlN/Cu multimetals soldered with Au80Sn20, as 
shown in Fig. 10; the other comprises submounted Cu10W90 sandwiched with two 5-µm-thick 
Au80Sn20 solders defined with the Type 2 package, as shown in Fig. 11.

Fig. 11.	 (Color online) Schematic diagram of Type 2 package with the high-power LD bar using submounted 
Cu10W90 sandwiched with two 5-µm-thick Au80Sn20 solders. 

Fig. 10.	 (Color online) Thermal image and schematic diagram of high-power LD bar comprising Cu/AlN/Cu  
multimetals soldered with Au80Sn20 (Type 1 package).
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5.	 Real-time Temperature Analyses on Two Types of Submounted LD Bar 

	 For Type 1 package, the temperature of the beam surface on the edge LD bar approaches 
43 ℃ as the driving DC current increases to 34 A.   In contrast, the temperature of the Cu/
AlN/Cu metal joint is only 24.5 ℃, which is close to the ambient temperature of 22.5 ℃, as 
shown in Fig. 12.  The higher DC driving current indicates a larger temperature difference 
between the beam surface on the edge LD bar and the Cu/AlN/Cu metal joint.  This means that 
once the lasing process begins, the heat absorbed by the LD bar is not conducted effectively 
into the Cu/AlN/Cu metal joint mounted in the water-cooled MCC module, resulting in the 
decreasing efficiency of LD power.  However, for the Type 2 package shown in Fig. 13, the 
temperature of the beam surface on the edge LD bar remains at only 47.7 ℃ as the driving 
DC current increases beyond 90 A.  The temperature of the joint on the sandwiched Cu10W90 
approaches 44.5 ℃, which is higher than the ambient temperature of 23.0 ℃.  These differences 
in temperature between the beam surface of the LD and the joint on the sandwiched Cu10W90 
are almost the same.  This can be explained by the submount package providing the better heat-
conducting junction for the removal of heat generated from the high-power LD bar.  The peak 
wavelength suddenly shifts from 803.25 to 804.75 nm when the DC driving current exceeds 
55 A.  Furthermore, a driving current higher than 85 A causes the peak wavelength to shift 
to 805.45 nm.  It is concluded that the hop mode appears in the single-mode LD owing to the 
changes in operation temperature.  A high power of 86.6 W and a peak wavelength of 805.25 
nm can be obtained under the DC driving current of 90 A.  By real-time microzone temperature 
monitoring, the changes in the temperatures of the beam surface of the high-power LD bar 
and its joint submount are resolved well.  The temperature-driving current curve provides the 
optimal choice of metal joint materials and the process of Type 2 package on the junction of the 
high-power LD bar.

Fig. 12.	 (Color online) Temperature vs DC driving current curves of beam surface on the edge LD bar as the 
driving DC current increases to 34 A. In contrast, the temperature of the Cu/AlN/Cu metal joint is only 24.5 ℃, 
which is close to the ambient temperature of 22.5 ℃.
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6.	 Conclusion

	 An optical zoom-in and stray-radiation sleeve was slipped onto an IR lens with a constant 
focal length, and the proposed correction methodology for the regression coefficients R, B, 
F, and O of a microzone temperature-monitoring thermal camera was used for real-time 
temperature measurement.  In our research, we have used a commercial room-temperature-
operated long-wavelength infrared imaging module incorporating a lens with a focal length 
of 19 mm and a lens sleeve designed to reduce thermal stray radiation, to shorten the distance 
between the lens and the object measured (from 50 to 2.85 cm).  Hence, the spatial resolution 
approaches 8.5 μm, providing a zoom-in function to observe the temperature of a microzone 
containing the interfaces of a submount solder for an LD.  The accuracy of temperature 
measurement is higher than ±1 ℃.  Applying the proposed microzone temperature-monitoring 
thermal camera for the evaluation of the package of an HPLD, we clearly observed the real-time 
temperatures of the junction of multimetal joints and the beam surface of the LD.  In the future, 
by realizing heat distribution and thermal crowding on the junctions of the submount and LD to 
optimize the joint materials and packaging process, a high-performance package for the high-
power LD bar or array will be obtained.
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