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	 Compared with a regular power plant, the load and fuel composition of a captive power plant 
vary greatly, resulting in complex and variable working conditions, and for specific operating 
conditions, there is a lack of data.  Considering the irregularity and incompleteness of the data, 
a data-mining-based boiler energy management analysis method was proposed in this paper.  
This study adopted the random forest and recursive feature elimination (RF-RFE) method to 
select the features of distributed control system (DCS) monitoring data.  According to different 
load intervals, some data with better running conditions were selected for clustering.  According 
to the clustering center, adjustable parameters were optimized, and the obtained optimization 
results were input to the support vector machine model for energy consumption comparison.  
The results show that the method used in this study can reduce the unit energy consumption by 
3–5% by adjusting the controllable parameters.

1.	 Introduction

	 Traditionally, a coal-fired self-contained power plant is an important part of the thermal 
power industry.  It provides power supply for the production and operation of industrial 
enterprises and reduces the production cost of enterprises.  At the same time, it also takes into 
account the electricity and heat demand of surrounding enterprises and residents.  Some cities 
have problems such as the large capacity of the installed power grid, the low public load, the 
high proportion of coal-fired heating and self-sufficient power plants, and the limited new 
energy.  With the wide applications of the supervision information system (SIS) and distributed 
control system (DCS) in power plants, data mining technology has been widely used in the 
optimization of power plant management units.  Self-owned power plants have problems such 
as poor data conditions, large load variations (20–100%), and unstable materials.  As a result, 
there is a problem of insufficient data for specific working conditions.  Therefore, it is of great 
practical significance to adopt appropriate data screening and analysis methods.  
	 At present, the energy consumption management of a power plant aims at energy saving, 
emission reduction, and prolonging the service life of equipment.  Boilers are the key equipment 
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for energy conversion.  The energy consumption management of a power plant mainly focuses 
on the modeling of a boiler combustion system based on big data,(1–13) the optimization of a 
combustion coal mixture strategy,(14–16) and boiler unit equipment improvement.(17)  References 
1–5 indicate the use of the neural network method to model the key parameters of boiler 
combustion optimization and the selection of input parameters that is only based on manual 
operation experience.  Kim et al.(6) studied the estimation of NOX emission from coal-fired 
boilers of 500 MW units and the selection of input parameters.  On the basis of auto regressive 
moving average (ARMA), artificial neural network (ANN), and least squares support vector 
machine (LSSVM) modeling methods, the appropriate input parameters of the NOX emission 
model were selected by a sensitivity analysis method.  Cheng et al.(7) built a multiobjective 
optimization system for the energy consumption of coal-fired boilers.  Rahat et al.(8) used 
the data-driven Gaussian process (GP) regression model to establish the NOX emission and 
carbon content model of fly ash.  Then, they used the evolutionary multiobjective search 
algorithm to optimize the model parameters and gave the balance scheme of NOX emission and 
boiler efficiency under different loads.  Wang et al.(9) studied the application of the GP in the 
optimized combustion process of reducing the NOX emission of 330 MW boilers and applied 
the GP to simulate the relationship between NOX emission characteristics and boiler operating 
parameters.  The genetic algorithm (Ga) was used to optimize the GP model.  The case study 
showed that the method can adapt to changes in working conditions and the prediction of 
adaptive learning is effective.  Wang et al.(10) studied a 600 MW subcritical twin-wall double-
flue coal-fired boiler and established four models (BPNN, PCABPNN, PLSBPNN, and 
DBNBPNN) based on a reverse neural network (BPNN) to predict NOX emissions of coal-
fired power plants.  The feature selection method based on information interaction was used to 
optimize the input features of the model.  The results show that the model based on the DBN 
had a higher prediction accuracy  and a higher stability.  
	 As indicated above, different data mining methods were used to model the boiler efficiency 
and analyze the operable parameters, aiming at reducing the boiler energy consumption and 
pollutant emission.  However, the boilers studied were the energy conversion equipment of  
regular  power plants with management specifications and good data conditions.  At present, 
there are few related studies on captive power plants.  Taking a self-supplied power plant as 
the research object, considering the irregularity and incompleteness of the data, a data-mining-
based boiler energy management analysis method is proposed in this paper.
	 The rest of this paper is structured as follows. Section 2 shows the relevant theoretical basic 
methods, Sect. 3 introduces the energy management methods of a captive power plant, and Sect. 
4 describes the experiment and shows experimental results and finally conclusions.

2.	 Theoretical Basis

2.1	 Random Forest and Recursive Feature Elimination (RF-RFE) Algorithm

	 The recursive elimination feature method uses a machine learning model to perform multiple 
rounds of training.(18)  After each round of training, the features corresponding to several weight 
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coefficients are eliminated, and then the next round of training is performed using a new feature 
set.  The random forest algorithm is a statistical learning theory.  The essence is a combined 
classifier with multiple decisions ( ){ }, , 1,2, ,kh X k Kθ = … , where { }kθ  is a random vector, 
obeying independent and identical distributions, which determine the form of the decision 
tree; K is the number of decision trees in the random forest.  A simple relative majority voting 
method is adopted, and the category of the number of decision votes H(x) is used as the category 
of the final sample, as shown in the equation

	 ( ) ( )( )arg max k
y k

H x I h x y= =∑ .	 (1)

2.2	 Support vector machine (SVM) regression 

	 In SVM(19) regression, input x is first mapped to the m-dimensional feature space by fixed 
mapping.  The linear model f(x, w) is shown as
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where gj(x), j = 1, 2, ..., n, w represents a set of nonlinear transformations, and b is a bias term.  
Regression estimates can be obtained by minimizing the empirical risk of the training data.  
SVM regression is shown as
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where C is a positive constant (regularization parameter).

2.3	 K-means clustering based on contour coefficients

	 The K-means algorithm(20) is a classical clustering method, whose clustering number is 
a custom parameter.  To improve the efficiency of clustering, the silhouette coefficient is 
introduced to determine the number of clusters.(21)  The silhouette coefficient quantifies the 
similarity of any object in the dataset to other objects in the clusters and the similarity of the 
object to objects in other clusters, and combines the two quantized similarities in a certain form 
to obtain evaluation criteria for the merits of clustering effects.  The calculation method for the 
silhouette coefficient is as shown in the equation
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where ai represents the average distance of the ith sample relative to all samples of the cluster 
in which it is located and bi represents the minimum average distance of the ith sample and all 
samples of other clusters.  The silhouette coefficient varies between −1 and 1.  When silhoutettei 
= 1, sample i is more dissimilar to samples in other clusters.  When silhoutettei = 0, the sample 
i cluster is not obvious.  Moreover, when silhoutettei = 1, sample i is assigned to an incorrect 
cluster.

3.	 Energy Management Strategy of Captive Power Plant

3.1	 Captive power plant energy management problem

	 From a control viewpoint, the energy loss of a captive power plant can generally be divided 
into controllable and uncontrollable energy losses.  Figure 1 shows the energy loss structure.  
Unit energy consumption is a key indicator of a captive power plant energy management.  Using 
data mining technology to solve the problem of high energy consumption in captive power 
plants is an important subject.
	 A captive power plant has more data characteristics, as shown in Table 1, including 
68-dimensional variable parameters and key indicator parameters, such as unit energy 
consumption.  The rated power of the power plant is 350 MW; however, owing to the change 
in load, the power plant does not necessarily operate under the rated operating conditions.  
To reduce unit energy consumption, the operating parameters are optimized on the basis of 
different working conditions.

Fig. 1.	 Energy loss in captive power plants.
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3.2	 Modeling framework

	 As shown in Fig. 2, the overall modeling ideas are as follows.  (1) The RF-RFE feature 
selection method is used to filter data features, and key features are selected.  (2) An SVM 
model is established for unit energy consumption.  (3) According to the load interval grouping, 
the grouped data are selected relative to some optimal historical operating parameters for 
clustering, and the key parameters are optimized according to the cluster center.  (4) The 
optimized parameters were substituted into the SVM model.  Then, the error between the 
output and the actual unit energy consumption is calculated, and the effectiveness of the cluster 
optimization method is verified.

3.3	 Modeling process

	 According to the modeling framework proposed in Sect 3.2, this study was implemented in 
the following four steps:
Step 1: Using the RF-RFE feature selection method, key features are selected; the random forest 
is a combined model composed of multiple regression decision tree models.  The implementation 
of the RF-RFE algorithm can be summarized as follows: (1) train a random forest from data 
samples, input features are 68-dimensional parameters, and the output characteristic is unit 
energy consumption; (2) calculate the importance of features and eliminate irrelevant variables; (3) 
repeat (1) and (2), until no further variables are maintained.
Step 2: According to the result of step 1, a linear support vector machine model was established 
for unit energy consumption.  The input variables of the model are total coal, total air, water-to-

Table 1
Data parameter description.
Parameter Unit Number
Load MW 1
Separator temperature ℃ 2
Main steam temperature ℃ 10
Main steam flow t/h 1
Main steam fountain temperature ℃ 8
Reheater  pressure MPa 4
Reheater temperature ℃ 4
Water pressure MPa 3
Water flow t/h 2
Water temperature ℃ 2
Pressure difference MPa 4
Total wind NM3/h 1
Furnace temperature ℃ 2
Furnace negative MPa 2
Oxygen from furnace outlet % 2
Air prebody temperature ℃ 12
Received base carbon % 8
Unit consumption g/kWh 1

http://method.is
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coal ratio, water flow rate, load, output variable which is unit energy consumption, and linear 
kernel function.
Step 3: According to the result of step 1, historical data sets are grouped on the basis of the load; 
loads are grouped according to the rated powers of 65–75, 75–85, 85–95, and 95–100%.  
	 The grouped data were selected with some optimal historical data sets for k-means clustering 
based on the contour coefficient.  The data sets were determined using the best number of 
classifications and the cluster  center according to the size of the contour coefficient.  On 
the basis of the cluster center, other key parameters of the corresponding load interval were 
optimized, and the optimization method is shown as

	 2 2

1 2 1 2

[ ] [ ]center center

center center center center

load i load x i x
load load x x

− −
=

− − ,	  (7)

where load[i] is the load, loadcenter2 is one load center constant, xcenter2 is one parameter 
constant, loadcenter1 is another load center constant, xcenter1 is another parameter constant, and 
x[i] is the variable to be optimized.

Fig. 2.	 Overall modeling ideas in this study.
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	 The operating parameters can be optimized from Eq. (7) as 
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,	 (8)

Step 4: The optimized parameters are substituted into the unit energy consumption linear 
SVM model, the error between the corresponding model output and the actual unit energy 
consumption is calculated, and measurements are performed to determine whether unit energy 
consumption is optimized.

4.	 Experiment and Analysis

4.1	 Experimental data

	 The experimental data used in the experiment are selected by one month data sampling in 
the power plant, and a total of 355 sample data sets are obtained.  The power plant rated power 
is 350 MW.  Loads are grouped according to the rated powers of 65–75, 75–85, 85–95, and 95–
100%.  Each group has 57, 31, 40, and 127 sets, as shown in Fig. 3.

4.2	 RF-RFE feature selection

	 The RF-RFE feature selection method is used to select key features from the results shown 
in Table 2.  In Table 2, when the result is true, the parameter is selected.  Five characteristics, 
namely, total coal volume, total air volume, water-to-coal ratio, feed water flow rate, and unit 
load, are selected as key variables.

Fig. 3.	 (Color online) Sample description.

Table 2
RF-REF feature selection results.

Load … Total air … Total coal … Water-to-coal ratio Water supply flow
True False True False True False True True
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4.3	 Unit energy consumption model based on SVM

	 The input variables of the model are total coal, total air, water-to-coal ratio, water flow rate, 
load, output variable, which is unit energy consumption, and linear kernel function.
	 There are 300 train and 55 test sets.  These train and test sets are completely independent of 
each other.  The results are shown in Figs. 4(a) and 4(b), and the mean squared error (MSE) and 
mean absolute error (MAE) are  shown in Table 3.

4.4	 Cluster based on contour coefficients

	 After grouping, the data are selected on the basis of certain historical better working 
conditions.  In accordance with the selected data, we used k-means clustering based on the 
contour coefficient method.  The results are two, two, two, and three classifications, as shown 
in the cluster center in Table 4.

Fig. 4.	 (Color online) (a) Train and (b) test results.

(a) (b)

Table 3
Train and test errors.
Error Train set Test set
MSE 3.351 4.628
MAE 1.265 1.540

Table 4
Cluster center.

Parameter 65–75% 75–85% 85–95% 95–100%
Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 3

Unit load 239.57 260.56 290.63 276.72 302.67 327.47 341.82 338.98 337.09
Total coal 102.23 113.19 123.58 117.86 130.03 143.17 137.14 135.28 136.39
Total air 647.31 768.50 779.15 767.62 857.84 939.39 936.52 963.30 933.32
Water-to-coal ratio 7.59 7.75 7.96 7.73 7.03 7.58 8.39 8.63 8.23
Water flow 64133.50 83193.90 105424.00 90350.30 117048.40 142203.30 145097.00 149505.00 136905.00
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4.5	 Optimization and analysis

	 The load is an uncontrollable variable, depending on the external requirements of the plant.  
Total coal, total air, water-to-coal ratio, and water flow rate are operating parameters of the 
power plant.  By adjusting the corresponding parameters, the unit energy consumption can be 
reduced and the energy loss of the power plant can be minimized.  According to the cluster 
center, the load variable was used as a reference standard, the manipulated variable parameters 
were tuned, and the optimized parameters were input into the support vector machine model.  
In this study, three sets of samples with different load intervals were selected, and a total of 12 
sets of samples were tested.  The optimization results were compared with the actual running 
results.  The comparison results are shown in Table 5.
	 In Table 5, ACV represents the actual operating parameter and OP-V represents the 
parameter after optimization.  According to the unit energy consumption results in Table 
5, other key parameters were optimized according to the load requirements of different 
intervals.  The optimized results show that the unit energy consumption can be reduced by 
3–5%.  For different self-supplied power plant load requirements, the goal of saving unit energy 
consumption can be achieved.

5.	 Conclusions 

	 In this study, the RF-RFE feature selection method was used for feature selection, and some 
data with historical parameters were selected according to different load intervals for clustering.  
According to the cluster center, tunable parameters were optimized, and optimization results 
were input into the SVM model for energy consumption.  Comparison results show that the 
optimized parameters can reduce the energy consumption of the power plant and conserve 
energy, which has a certain engineering guiding significance.

Table 5
Comparison of optimization results.

Interval Load Total coal Total air Water-to-coal ratio Water supply Unit consumption
OP-V ACV OP-V ACV OP-V ACV OP-V ACV OP-V ACV

65–75%

239.70 112.53 102.30 683.90 648.11 6.94 7.59 64212.03 64257.80 469.44 443.39
240.66 108.10 102.80 724.90 653.61 7.22 7.61 65173.34 65123.30 449.17 430.34
245.54 116.67 105.35 647.50 681.78 7.30 7.64 77044.67 69554.40 475.15 450.30

75–85%

290.08 145.57 123.35 824.41 778.69 7.04 7.95 114810.10 104822.00 501.83 435.25
281.23 125.38 119.71 805.69 771.35 7.41 7.81 92623.90 95229.60 445.83 426.89
278.06 113.90 108.41 700.13 738.73 8.02 7.75 93325.81 91797.90 419.62 407.47

85–95%

323.21 152.12 140.91 984.77 925.39 7.56 7.49 144534.20 137887.00 470.64 441.31
319.28 152.53 138.83 979.21 912.48 7.38 7.44 137759.30 133904.00 477.75 445.61
325.61 147.06 142.18 967.82 933.29 7.77 7.54 142886.30 140324.00 451.64 421.13

95–100%

340.60 136.55 134.33 955.72 989.04 8.41 8.97 144458.00 160330.00 420.91 397.98
339.15 136.65 135.18 991.40 966.03 8.54 8.67 150180.10 150654.00 402.93 389.98
350.60 161.41 156.19 1020.00 1010.18 7.19 7.37 146411.10 145938.10 460.36 445.61
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