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	 The flexible vehicle scheduling problem (FVSP) plays an important role in intelligent logistic 
systems (ILSs) as it improves transportation efficiency and reduces logistic costs through 
the optimization of the schedule of cargoes.  FVSP is difficult to solve because it is a typical 
combinatorial optimization problem (COP).  It has also been proved to be an NP-hard problem.  
In idealized models, the transportation time of cargoes in a logistic system is determined and 
given in advance.  However, the uncertain factors in real-world logistic systems, such as traffic 
jams and emergencies, always lead to an uncertain transportation time.  Fuzzy numbers can 
represent more information in real-world applications than constant or random values.  Thus, 
in this paper, we focus on FVSP with an uncertain transportation time (uFVSP), in which the 
transportation time is modeled as a fuzzy number.  A cooperative hybrid evolutionary algorithm 
(hEA) with a self-adaptive parameter mechanism is proposed and five uFVSP instances with 
different scales are adopted in numerical experiments to verify the effectiveness of the proposed 
algorithm.  The results show that our proposed algorithm has better performance than other 
algorithms for solving uFVSP in ILSs.  

1.	 Introduction

	 The flexible vehicle scheduling problem (FVSP) in an intelligent logistic system (ILS) has 
been an area of research in recent years applicable to many real-world application systems.(1)   

FVSP can be treated as a typical discrete combinatorial optimization problem (COP).  The 
objective function is minimizing the transportation cost through the optimization of the 
schedule of different cargoes with a set of precedence constraints.  In a single ILS, various 
users need to transport different kinds of cargoes to their destinations in the shortest time; these 
cargoes have different characteristics and constraints, such as different capacities and weights.  
Each user has various cargoes, and different cargoes can be transported by different vehicles.  
An illustration of FVSP is shown in Fig. 1.
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1.1	 Related work

	 The vehicle scheduling problem (VSP) was first studied in the 1960s and has attracted 
researchers’ attention in recent years.(2)  It is a typical COP in a research area, and it also 
widely exists in many real-world application systems, such as ILS, and smart cities.(3)  With 
the rapid development of ILS, FVSP becomes a critical problem to solve because its flexibility 
can increase the efficiency of transportation and a reasonable vehicle schedule can make the 
use of logistic resources rational.  Tarantilis et al. proposed a hybrid algorithm considering two 
local search strategies for VSP in logistic systems.(4)  Freling et al. considered a round-trip-
condition VSP with a hybrid algorithm.(5)  Laurent and Hao(6) and Mesquita and Paias(7) studied 
a simulation algorithm for FVSP with a specific preprocessing phase to optimize the vehicle 
schedule.  Laurent and Hao also proposed an integrated algorithm with an effective local search 
strategy to solve FVSP in a multiple-vehicle environment.(8)  Pepin et al. studied a hybrid 
algorithm combining a neighborhood search with a tabu search strategy to solve FVSP in a 
multiple-vehicle environment.(9)  Teng et al. proposed an effective algorithm for multiple-vehicle 
resource VSPs.(10)  
	 In practice, there are always uncertain factors in real-world ILSs, such as traffic jams, which 
lead to the variables in the speed from one moment to another.  Therefore, the transportation 
cost cannot be modeled by a single value or a determined value unlike in ideal and traditional 
FVSPs.  Recently, researchers have focused on FVSP with an uncertain transportation time 
(uFVSP) for both theoretical research and practical analysis.  Huisman et al. proposed a hybrid 
heuristics algorithm for FVSP in an uncertain environment.(11)  Hadiar and Soumis studied 
an algorithm with a comprehensive branch and price strategy for FVSP with uncertain time 
windows.(12)  Wei et al. proposed an effective algorithm with an organic fusion optimization 
strategy for FVSP with a fuzzy transportation cost.(13)  Shen et al. studied an effective 
probabilistic algorithm for uFVSP.(14)

Fig. 1.	 (Color online) Illustration of FVSP in ILS.
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	 Evolutionary algorithms (EAs) adopt and apply the principles and rules of biology and 
genetics to find the optimal solution through suitable encoding and decoding mechanisms.(15)  
EAs are highly efficient for searching the optimal solution to problems that cannot be solved by 
traditional algorithms, including NP-hard problems, COPs, and high-dimensional optimization 
problems.  As discussed above, FVSP is a typical COP and has been proved to be an NP-hard 
problem.(16)  Therefore, EAs are popular and have been widely used to solve FVSP in recent 
years.(17)  The application of EAs to FVSP can be classified into two cases, i.e., FVSP and 
uFVSP.  For FVSP, Zuo et al. proposed a novel heuristics algorithm with the help of Pareto 
solutions for VSP with a determined transportation cost.(18)  Zheng et al. researched an improved 
genetic algorithm with a self-adaptive strategy and a novel update strategy that used a quantum 
rotation angle for VSP.(19)  In addition to EAs for solving FVSP in the determined environment, 
there are also EAs for solving uFVSP.  Gu et al. proposed an improved cooperative EA for 
solving scheduling problems in which the processing time is modeled by stochastic values.(20)  
Zhang et al. studied an effective EA that combined GA and particle swarm optimization (PSO) 
for FVSP with bounded processing times and transportation constraints.(21)

1.2	 Motivation and contributions

	 As discussed above, although various algorithms have been proposed for solving FVSP, they 
cannot be directly applied to uFVSP.  Thus, we have proposed a hybrid evolutionary algorithm 
(hEA) combining GA and PSO with novel encoding and decoding strategies and a local search 
strategy.  The contributions of this paper are listed as follows: 
(a)	One-section encoding and decoding strategies are designed and applied to both GA and 

PSO, adopting a random key representation.  The decimal and integer parts represent the 
cargo sequence and vehicle assignment, respectively.  

(b)	A new population initialization is designed and adopted in the hEA.  Each gene is initialized 
according to the given upper and lower bounds to avoid searching in an invalid solution 
space.  

(c)	A cooperative coevolutionary framework is improved and an improved coevolutionary 
framework is adopted in our proposed algorithm.  The aim is to search for the optimal 
solution in multiple subsolution spaces instead of the size of the whole solution space 
because the whole solution space increases exponentially with the scale of the problem, 
reducing the performance degradation of the proposed algorithm.  

	 This paper is organized as follows.  The formulation of uFVSP is introduced in Sect. 2, the 
proposed hEA is designed and proposed in Sect. 3.  Numerical experiments and results are 
described in Sect. 4.  The final conclusion is presented in Sect. 5.  

2.	 Mathematical Model of uFVSP

	 In this section, we model the transportation cost using fuzzy numbers instead of single 
integer values.  FVSP can be described as an extension problem of VSP.  Each cargo can be 
transported by any available vehicle.  There exist precedent constraints among cargoes of the 
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same user.  Each cargo Cik can be transported by an available vehicle Vj with a transportation 
cost modeled by a triangular fuzzy number (TFN) ( )1 2 3, ,ikj ikj ikj ikjT t t t= , where 1 2 3, , andikj ikj ikjt t t  
stand for the minimum, maximum-likelihood, and maximum values, respectively.  The exact 
transportation cost cannot be estimated before the completion of transportation.  Therefore, we 
construct various concept scenarios ζ that correspond to the processing time.  The objective of 
solving uFVSP is to minimize the maximum fuzzy transportation time (Tmax) of all users.  
Indices: 

i user ID (i = 1, …, n)
k cargo ID (k = 1, …, ni)
j vehicle ID (j = 1, …, m)

Parameters:
n total number of users
m total number of vehicles
ni total number of cargoes of user i
Ui ith user
Cik kth cargo of user i
Vj jth vehicle
Tikj fuzzy transportation cost of Cik by Vj

Decision variables:
xikj 1 stands for Cik  transported by Vj

0 stands for Cik not transported by Vj
, S T

ikj ikjT T ≥0, start and end times of Cik transported by Vj

	 The formulation of uFVSP is written as
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Here, Eq. (1) is the objective function of uFVSP.  Equation (2) ensures that each cargo is 
transported only once.  Equations (3) and (4) ensure the precedence constraint of the cargoes 
of identical users.  The successor cargo needs to be transported after the completion of the 
preorder cargo of the same user.  Equations (5) and (6) represent nonnegativity restrictions.  

3.	 Proposed Algorithm 

	 In this section, the details of our proposed hEA, i.e., representation, evolutionary operators, 
and parameter self-adaptation, are introduced and described.  A flow chart of our proposed hEA 
is shown in Fig. 2.  

3.1	 Representation

	 Representation plays an important role in EAs because a suitable representation can help 
EA search in a more meaningful solution space.  The proposed hEA adopts a two-section 
representation for both GA and PSO.  The two sections represent the cargo sequence and vehicle 
assignment.  As shown in Fig. 3, the total length of each individual is twice the total number 

Fig. 2.	 (Color online) Flow chart of the proposed hEA.
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of all cargoes.  Then, we decode the individuals through a priority-based rule with the help 
of a network decoding mechanism, which ensures that the decoded solutions are all feasible 
solutions.(22)  This rule excludes more than 90% of infeasible solutions to increase the search 
efficiency of the proposed hEA.  For the second section, each real number must be rounded to 
an integer; the integer represents the index of the vehicle assigned to the corresponding cargo.  

3.2	 Evolutionary operators

(1) Genetic operators:
	 The proposed hEA adopts a probability-based crossover strategy (P-crossover).  Two 

chromosomes are selected, one of which is selected from the top of a list of chromosomes 
listed in decreasing order of their fitness.  Then, the proposed hEA generates a set of random 
real values from [0,1], and the size of this set is equal to the length of the chromosome.  We 
set the crossover probability as 0.7.  As shown in Fig. 4, if the random value is larger than 
0.7, the gene of the second individual is inherited by the offspring.  If the random value is 
smaller than 0.7, the gene of the first individual is inherited by the offspring.  The selection 
mechanism used in the hEA is tournament selection.(22)  The individuals with better 
performance are selected in the next generation.  

(2) PSO update strategy: 
	 The PSO update strategy adopted in this paper is expressed as

	 ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

 , 0,1
1

 ,   otherwise
i best i best i

i
i best i best i

wv q c r p q x q c r g q x q rand p
v q

wv q c r l q x q c r g q x q

    + − + − ≥    + = 
   + − + −    

	 (7)

	 where w represents the inertia weight used to determine the percentage of the current 
velocity.  c1 and c2 are constants, and r1 and r2 are two random values from [0,1].  vi(q) and 
xi(q) represent the velocity and position of an individual in the qth generation, respectively.  
pbest(q), lbest(q), and gbest(q) represent the personal best, local best, and global best positions 
of an individual in the qth generation, respectively.  This update equation performs well in 
balancing exploration and exploitation, which helps the hEA find an optimal solution.  

Fig. 3.	 Illustration of (a) random key representation and (b) network structure used for decoding.

(a) (b)
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3.3	 Self-adaptation of parameters

	 As mentioned above, w is a key parameter, which is adjusted using the equation  

	
( ) ( )
( )

0.5,0.3 , if  0,1
0.1 ,        otherwise

N U fp
w

C
 <= 


	 (8)

where N, U, and C represent normal distributions with parameters of 0.5 and 0.3 and a Cauchy 
distribution with a parameter of 0.1, respectively.  fp represents the selection probability.  We 
record the four parameters used for the self-adjustment of the selection probability, i.e., sn1, sn2, 
fn1, and fn2, after each 20 iterations.  They represent the numbers of offspring generated by pbest 
and lbest that are successfully and unsuccessfully propagated to the next iteration, respectively.  
All four values are counted and recorded.  The update equation is written as

	
( )

( ) ( )
1 2 2

2 1 1 1 2 2

.
sn sn sf

fp
sn sn sf sn sn sf

+
=

+ + +
	 (9)

4.	 Numerical Experiments and Analysis

	 In this section, the experimental settings and analysis employed to verify the effectiveness of 
the hEA are introduced.  The proposed algorithm and all the algorithms used for comparison are 
implemented on a PC with an Intel(R) Core(TM) i7-4790 CPU @3.60 GHz and 12 GB RAM.  
Five fuzzy instances are adopted to verify the superiority of the proposed hEA.  Three typical 
EAs, i.e., the GA,(23) PSO,(24) and differential evolution (DE),(25) are those used for comparison 
with the proposed hEA.  The parameters used in this section and those used for various EAs are 
listed in Tables 1 and 2, respectively.

Fig. 4.	 Illustration of crossover. 
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4.1	 Description of fuzzy instances in FVSP

	 Five fuzzy instances are adopted in this section, and they are named uFVSP1–uFVSP5.  The 
number of users ranges from 10 to 15 and the total number of cargoes ranges from 40 to 80.  
The total number of available vehicles ranges from 10 to 15.  To avoid anomalous experimental 
results, all experiments are run 20 times and the calculated average values are given as the final 
experimental results.  

4.2	 Superiority of hEA 

	 In this subsection, three typical EAs, i.e., GA, PSO, and DE, are adopted for comparison 
with the hEA to verify the effectiveness of the hEA.  We record three criteria, i.e,.  the best 
fuzzy transportation cost (Best), the average fuzzy transportation cost (Average), and the worst 
fuzzy transportation cost (Worst), to show the superiority and stability of the hEA.  The results 
are listed in Table 3.  Our proposed hEA performs better for all five instances.  This is because 
the hybrid of different EAs can balance the advantages and disadvantages of each EA.  The 
proposed hEA can balance the ability of exploration and exploitation so that the hEA can search 
for better solutions.  To remove the effect caused by the local search strategy, Table 4 lists the 
results of three typical EAs considering the same local search strategy in the hEA.  The results 
show that our proposed hEA still has the best performance.  

4.3	 Superiority of self-adaption of parameters 

	 In this section, we give the numerical experiments for the superiority of self-adaption of 
parameters.  We compare the performance of the hEA with that of the hEA without a parameter 
self-adaptive strategy (marked hEA’ for short) in four instances, i.e., uFVSP1–uFVSP4.  The 

Table 1
Parameter settings.
Instance Pop. Size Group Size hGA Gens GA Gens PSO Gens
uFVSP 1 100 100 1000 50 50
uFVSP 2 100 100 1000 50 50
uFVSP 3 100 100 1000 50 50
uFVSP 4 100 100 1000 50 50
uFVSP 5 100 100 1000 50 50

Table 2
Parameter settings of algorithms.
Alg.  c1 c2 w Cr.Prob Mu.Prob F C
GA — — — 0.5 0.5 — —
PSO 1.49 1.49 0.5 — — — —
DE — — — — — 1 0.5
hEA 1.49 1.49 0.5 0.5 0.5 — —
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Best and Worst performance characteristics are recorded in Table 5.  We can see that the hEA 
performs better than the hEA’ in all four instances.  The reason for this is that the parameter 
self-adaptive strategy can adjust the parameters on the basis of the performance and fitness 
during optimization.  The adjusted parameters certainly perform better than the determined 
parameters given in advance when facing uncertain factors.  

Table 3
Performance characteristics of hEA compared with those of three typical EAs. 
Instance GA PSO DE hEA
uFVSP1-Best (33,47,62) (31,45,60) (40,55,74) (21,30,44)
Average (37.0,52.3,68.0) (37.2,50.6,63.7) (40.1,56.3,73.4) (22.2,31.1,43.2)
Worst (42,55,70) (41,55,70) (41,55,70) (35,32,43)
uFVSP2-Best (53,72,92) (52,70,94) (52,73,93) (44,61,76)
Average (56.6,82.8,100.3) (54.8,64.9,99.0) (58.3,80.7,104.2) (43.1,63.6,84.2)
Worst (64,82,107) (64,82,109) (66,89,117) (50,72,94)
uFVSP3-Best (55,80,101) (56,77,95) (57,81,104) (31,50,66)
Average (59.6,81.7,106.1) (56.7,78.3,100.7) (60.3,94.4,108.2) (35.2,48.1,63.7)
Worst (61,84,105) (30.7,43.3,60.6) (61,88,114) (38,49,61)
uFVSP4-Best (44,60,82) (44,60,83) (44,61,82) (29,37,53)
Average (45.4,63.3,87.3) (45.5,63.6,87.3) (44.5,63.3,87.3) (27.3,39.4,53.7)
Worst (47,67,93) (47,68,92) (48,70,95) (26,40,55)
uFVSP5-Best (67,98,131) (68,96,130) (67,102,134) (42,57,81)
Average (70.3, 101.7, 133.4) (70.1,101.2,133.3) (70.3,102.7,133.4) (45.8,63.2,81.8)
Worst (73,106,136) (74,105,136) (74,113,148) (47,65,83)

Table 4
Performance characteristics of hEA compared with those of three typical EAs. 
Instance GA+LS PSO+LS DE+LS hEA
uFVSP1-Best (22,32,41) (21,42,43) (24,42,43) (21,30,44)
Average (23.1,31.7,44.7) (22.8,31.7,45.3) (23.6,33.2,44.8) (22.2,31.1,43.2)
Worst (25,33,41) (20,34,48) (20,34,48) (35,32,43)
uFVSP2-Best (41,58,78) (41,59,78) (42,64,84) (44,61,76)
Average (47.1,54.7,82.1) (46.8,64.1,85.4) (43.7,63.2,86.2) (45.1,66.6,86.2)
Worst (53,72,93) (51,75,97) (47,60,72) (50,72,94)
uFVSP3-Best (34,47,64) (34,48,63) (37,47,69) (31,50,66)
Average (35.0,48.4,63.2) (35.1,48.2,63.7) (35.3,49.3,65.1) (35.2,48.1,63.7)
Worst (34,49,67) (36,52,70) (32,51,65) (38,49,61)
uFVSP4-Best (29,37,43) (29,37,51) (28,40,53) (29,37,53)
Average (28.3,41.2,56.0) (28.6,42.2,57.7) (27.3,39.5,54.5) (27.3,39.4,53.7)
Worst (25,44,65) (26,44,64) (31,42,53) (24,40,55)
uFVSP5-Best (43,66,85) (47,62,84) (44,63,85) (42,57,81)
Average (47.6,66.3,88.1) (45.1,65.3,87.5) (45.2,65.1,85.3) (45.8,63.2,81.8)
Worst (51,67,82) (41,64,89) (36,65,83) (47,65,83)

Table 5
Performance of the hEA and the hEA without self-adaption of parameters.
Instance hEA’ hEA Instance hEA’ hEA
uFVSP1-Best (24,34,42) (21,30,44) uFVSP2-Best (42,59,80) (44,61,76)
Worst (28,35,44) (35,32,43) Worst (54,73,95) (50,72,94)
uFVSP3-Best (35,46,65) (31,50,66) uFVSP4-Best (33,39,46) (29,37,53)
Worst (36,51,68) (38,49,61) Worst (27,43,58) (24,40,55)
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5.	 Conclusion

	 The optimization of FVSP has significant meaning for both research-area and real-world 
ILSs.  However, the uncertainty existing in the real world cannot be ignored.  Therefore, in this 
paper, we consider FVSP with uncertain factors, in which the transportation cost is modeled by 
a TFN, and the objective is to minimize the maximum fuzzy transportation cost of all users.  
We propose a hybrid EA combining GA and PSO to balance the ability of local search and 
global search.  Then, a cooperative co-evolutionary framework is imported in order to help the 
hEA search for the optimal solution in multiple subsolution spaces to increase the probability 
of finding the optimal solution.  To balance uncertain factors, a self-adaptive parameter 
mechanism is also proposed.  Five fuzzy instances are adopted and the results of numerical 
experiments demonstrate the superiority of the hEA.  

Acknowledgments

	 This work is partly supported by the National Natural Science Foundation of China under 
Grant 61572100 and in part by a Grant-in-Aid for Scientific Research (C) of Japan Society of 
Promotion of Science (JSPS) No. 15K00357.

References

	 1	 A. Adamski: Procedia-Social Behav. Sci. 20 (2011) 1004. https://doi.org/10.1016/j.sbspro.2011.08.109 
	 2	 M. M. Webber: Eur. J. Oper. Res. 97 (1997) 3. https://doi.org/10.1016/S0377-2217(96)00298-6
	 3	 V. Pillac, M. Gendreau, C. Guret, and A. L. Medaglia: Eur. J. Oper. Res. 225 (2013) 1. https://doi.org/10.1016/

j.ejor.2012.08.015
	 4	 C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis: IEEE Trans. Intell. Transport. Sys. 10 (2009) 2.  

https://doi.org/10.1109/TITS.2009.2020187
	 5	 R. Freling, D. Huisman, and A. P. M. Wagelmans: Proc. Computer-aided Scheduling of Public Transport (Springer, 

London, 2012) 73–90. 
	 6	 B. Laurent and J. K. Hao:. Comput. Ind. Eng. 53 (2007) 542. https://doi.org/10.1109/TITS.2009.2020187
	 7	 M. Mesquita and A. Paias: Comput. Oper. Res. 35 (2008) 1562. https://doi.org/10.1016/j.cor.2006.09.001
	 8	 B. Laurent and J. K. Hao: Comput. Ind. Eng. 57 (2009) 277. https://doi.org/10.1016/j.cie.2008.11.028
	 9	 A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman: J. Schedul. 12 (2009) 1. https://doi.org/10.1007/s10951-

008-0072-x
	10	 J. Teng, S. Jin, and X. Lai: Math. Prob. Eng. 2015 (2015) 1. https://doi.org/10.1155/2015/506794
	11	 D. Huisman, R. Freling, and A. P. M. Wagelmans: Trans. Sci. 38 (2014) 4. https://doi/abs/10.1287/trsc.1030.006
	12	 A. Hadiar and F. Soumis: Comput. Oper. Res. 36 (2009) 7. https://doi.org/10.1016/j.cor.2008.08.010
	13	 M. Wei, X. Chen, and B. Sun: J. Intell. Fuzzy Sys. 29 (2015) 6. https://doi.org/10.3233/IFS-151972 
	14	 Y. Shen, J. Xu, and J. Li: Trans. Res. B 85 (2016) 19. https://doi.org/10.1016/j.trb.2015.12.016
	15	 M. Gen and L. Lin: J. Intell. Manuf. 25 (2014) 849. https://doi.org/10.1007/s10845-013-0804-4
	16	 Y. Jin and J. Branke: IEEE Trans. Evol. Comput. 9 (2005) 3. https://doi.org/10.1109/TEVC.2005.846356
	17	 M. Gen, R. Cheng, and L. Lin: Network Models and Optimization: Multiobjective Genetic Algorithm 

Approach (Springer, London, 2008) p. 105. 
	18	 X. Zuo, C. Chen, W. Tan, and M. Zhou: IEEE Trans. Intell. Trans. 16 (2015) 2. https://doi.org/10.1109/

TITS.2014.2352599
	19	 D. Zheng, J. Mao, N. Guo, C. Wang, and W. Qu: Proc. Control and Decision Conf. (Springer, Las Vegas, 2016) 

2147–2150. 
	20	 J. Gu, M. Gu, C. Cao, and X. Gu: Comput. Oper. Res. 37 (2010) 927. https://doi.org/10.1016/j.cor.2009.07.002
	21	 Q. Zhang, H. Manier, and M. Manier: Comput. Oper. Res. 39 (2012) 7. https://doi.org/10.1016/j.cor.2011.10.007 
	22	 X. Li and X. Yao: IEEE Trans. Evolut. Comput. 16 (2012) 210. https://doi.org/10.1109/TEVC.2011.2112662

https://doi.org/10.1016/j.sbspro.2011.08.109
https://doi.org/10.1016/S0377-2217(96)00298-6
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1016/j.ejor.2012.08.015
https://doi.org/10.1109/TITS.2009.2020187
https://doi.org/10.1109/TITS.2009.2020187
https://doi.org/10.1016/j.cor.2006.09.001
https://doi.org/10.1016/j.cie.2008.11.028
https://doi.org/10.1007/s10951-008-0072-x
https://doi.org/10.1007/s10951-008-0072-x
http://dx.doi.org/10.1155/2015/506794
https://doi.org/10.1016/j.cor.2008.08.010
https://doi.org/10.3233/IFS-151972
https://doi.org/10.1016/j.trb.2015.12.016
https://doi.org/10.1007/s10845-013-0804-4
https://doi.org/10.1109/TEVC.2005.846356
https://doi.org/10.1109/TITS.2014.2352599
https://doi.org/10.1109/TITS.2014.2352599
http://W.Qu:
https://doi.org/10.1016/j.cor.2009.07.002
https://doi.org/10.1016/j.cor.2011.10.007
https://doi.org/10.1109/TEVC.2011.2112662


Sensors and Materials, Vol. 31, No. 6 (2019)	 2141

	23	 F. Pezzella, G. Morganti, and G. Ciaschetti: Comput. Oper. Res. 35 (2008) 10. https://doi.org/10.1016/
j.cor.2007.02.014

	24	 J. Kennedy: Encyclopedia of Machine Learning: Particle Swarm Optimization (Springer, London, 2011) pp. 
760–766.

	25	 K. Price, R. M. Storn, and J. A. Lampinen: Differential Evolution: A Practical Approach to Global 
Optimization (Springer, London, 2006) p. 145.

About the Authors

	 Lu Sun received her B.S. and M.S. degrees from Dalian University of 
Technology in 2013 and 2015, respectively, and is currently a Ph.D. student 
at the School of Software, Dalian University of Technology.  She focuses on 
evolutionary algorithm, probabilistic graphical models, and their applications 
in combinatorial optimization problems.  (sunlu517@mail.dlut.edu.cn)

	 Lin Lin is currently an associate professor at the School of Software, 
Dalian University of Technology (DLUT), China and is a senior researcher 
at Fuzzy Logic Systems Institute, Japan.  He received his M.Sc and Ph.D. 
degrees in engineering from Graduate School of Information, Production 
and Systems, Waseda University, in 2005 and 2008, respectively.  He was 
a research assistant at the Information, Production and Systems Research 
Center (IPSRC), Waseda University, from April 2006 to March 2008, a 
visiting lecturer at IPSRC, Waseda University, and a postdoctoral research 
associate supported by the Kitakyushu Foundation for the Advancement of 
Industry, Science and Technology (FAIS).  His core research interests are 
computational intelligence, deep learning, probabilistic graphical models, and 
their applications in combinatorial optimization and pattern recognition.  

		  (lin@dlut.edu.cn)

	 Haojie Li received his B.E. degree from Nankai University, Tianjin, China, 
in 1996 and his Ph.D. degree from the Institute of Computing Technology, 
Chinese Academy of Sciences, Beijing, China, in 2007.  He is a professor 
at the School of Software, Dalian University of Technology, Dalian, China.  
From 2007 to 2009, he was a research fellow at the School of Computing, 
National University of Singapore, Singapore.  He has coauthored more than 50 
journal and conference papers, including those submitted to IEEE Transaction 
on Circuits and Systems for Video Technology, IEEE Transactions on 
Multimedia, IEEE Transactions on Image Processing, ACM Multimedia, 
and ACM ICMR.  His research interests include social media computing, 
multimedia information retrieval, and probability graph models.  Professor Li 
is a member of ACM and IEEE.  (hjli@dlut.edu.cn) 

https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.cor.2007.02.014


2142	 Sensors and Materials, Vol. 31, No. 6 (2019)

	 Mitsuo Gen received his B.E., M.E., and Ph.D. degrees in electronic 
engineering from Kogakuin University in 1969, 1971, and 1975, respectively 
and his Ph.D. degree in informatics from Kyoto University, Japan, in 2006.  
He is a senior research scientist at Fuzzy Logic Systems Institute and a 
visiting professor at Tokyo University of Science, Japan.  He was a professor 
in the Graduate School of Information, Production and Systems, Waseda 
University, Japan from 2003 to 2010.  He was a visiting professor at the 
National Tsinghua University in Taiwan from 2012 to 2014, Department 
of Industrial and Management Engineering, a Hanyang chair professor of 
Hanyang University in Korea from 2010 to 2012, and a visiting professor in 
the Department of IE & OR, the University of California, Berkeley, CA from 
1999 to 2000 and in the Department of Industrial Engineering, Texas A&M 
University in College Station, TX, in 2000.  He has coauthored five books 
such as Introduction to Evolutionary Algorithms (Springer in 2010), Network 
Models and Optimization: Multiobjective Genetic Algorithm Approach 
(Springer in 2008), and Genetic Algorithms & Engineering Optimization.  
He is an area editor of Computers & Industrial Engineering and an editorial 
board member of several international journals.  (gen@flsi.or.jp)


