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	 To address the challenges of autonomous capability enhancement in a smart home scenario, 
in this paper, we present a context-driven smart home control mechanism (SHCM) following 
software-defined network (SDN) design principles and a context cognition process.  SHCM 
has three SDN-based layers: a control plane, a fog computing plane, and a data plane.  We 
integrate a machine learning (ML) algorithm and an ontology model into the context cognition 
process, which will be leveraged to enhance the context-awareness-enabled automation level 
of smart home control systems.  In the control plane, a controller adopts a ML-based tool to 
make connotative clustering and association rules via mining multiattribute context features 
inherent in diverse sensing applications, and utilizes an ontology model to automate integrated 
context management.  Additionally, the fog computing plane applies edge-computing-supported 
context middleware to perform compressive sensing (CS)-based cross-layer context fusion.  
Furthermore, smart home devices implement context feedback in the data plane instructed by 
context-driven control strategies, which are mapped into the parameter matrix and matching 
rules in the lightweight flow-table mode.  The effectiveness of this proposed control mechanism 
is validated by experiments using a context-oriented smart home prototype platform, which 
implements a closed-loop context-oriented feedback control from cognition-deduced knowledge 
generation to knowledge-driven cooperation in a cyber-physical smart home scenario.  It is 
observed that the control mechanism can improve smart home automation and outperform 
baseline schemes.

1.	 Introduction

	 The advancement of science and technology has greatly improved the living standard of 
human beings and boosted the growing needs for an intelligent home control system.  A home 
network system controlled by the Internet of Things (IoT) and ubiquitous computing(1,2) is 



2104	 Sensors and Materials, Vol. 31, No. 6 (2019)

becoming increasingly smart with the advances of sensing, computation, and communication 
technology.  
	 Smart home systems (SHSs) with intelligent control mechanisms are evolving toward 
pervasive systems,(3) which can typically be designed as a network with a cyber-physical system 
(CPS).  In smart home application scenarios, a growing number of heterogeneous smart devices 
communicate and cooperate with each other using various wireless technologies for providing 
personalized services, which will create a dynamical home environment and lead to diversified 
complex context features in SHSs (e.g., heterogeneous, reusable, redundant, delay-sensitive, 
reconfigurable, and human-centered features).  Therefore, it will raise the critical problem 
of how to unearth and manage the multiattribute features of an integrated context in smart 
home networks.  On the other hand, owing to various heterogeneous devices, communication 
protocols, and context characterization models, the integration of interdisciplinary technologies 
from different fields in smart home application scenarios (e.g., the coexistence of various 
technologies for achieving cross-layer communication) is very important.  It presents several 
big challenges in the network functional infrastructure with heterogeneity-compatible, 
reconfigurable, and self-manageable capabilities.
	 To tackle the above challenges and efficiently support interacting diverse home services 
including machine-to-person and machine-to-machine intercommunications, we need to design 
appropriate methods to achieve integrated context cognition and management in SHSs.  Feature-
mining operations using machine learning (ML)(4) have been widely used in various functional 
designs of a self-aware control mechanism to achieve self-configuration and self-adaptive 
control.
	 Note that a context model helps to construct smart home control strategies in a convenient 
and flexible manner.  Ontology(5) can be formalized as a rule-based management tool to reveal 
semantic relationships in a pervasive system via describing the context at high-level abstraction.  
An ontology-based context model(6) has the advantage in meeting the fundamental context 
management requirements of the growing and interacting human-centered applications in 
SHSs.  The inherent vulnerabilities of non-software-defined network (SDN) infrastructure(7) 
are limited in achieving the autonomous capabilities (e.g., reusability and interoperability) 
of context processing for addressing the above challenges.  A flexible network functional 
framework is needed for standardizing various protocols and supporting diversity in smart home 
services.  SDN(8) technology facilitates network management and enables programmatically 
efficient network configuration in order to improve network performance and monitoring.  It 
seeks to be suitable for improving the multiattributed context processing capacity by decoupling 
network control and forwarding functions in network function architecture.  SDN also has 
the advantages of providing virtualization network resources and programming models for 
distributed heterogeneous context processing.
	 With the emergence of handheld mobile terminals in SHSs, many multilevel context 
services are often located at the edge of a home control center and should be processed nearby.  
Traditional service delivery methods based on cloud computing(9) will lead to a high network 
load and a transmission delay caused by context exchange between home devices and remote 
cloud servers.  Therefore, the requirement of middleware technology using edge computing is 
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put forward to achieve cross-layer context sharing and localized context processing in smart 
home scenarios.  Fog computing(10) viewed as SDN middleware inherits the advantages of 
not only cloud computing but also edge computing, which can give full play to the cross-layer 
capability and provide an effective way for local context processing in home scenarios.
	 Nowadays, many existing studies based on the above technologies have been applied to 
the design of a smart home control system.  The context-aware mechanism that infers user 
preferences and achieves user behavior pattern recognition has been studied in many different 
fields.  Allègre et al.(11) proposed a context-aware system to provide adaptive services based on 
the semantic analysis by defining user-system interactions to home automation.  Li and Liu(12) 
proposed a certain information management system for constructing context integration rules 
to achieve activity pattern recognition.  Owing to the increased cost and demands in SHSs, 
context-sensitive energy efficiency becomes a key requirement for developing smart homes.  
Andrade et al.(13) proposed an energy-aware management mechanism for SHSs using a fuzzy 
technique to reduce power consumption.  However, the above context awareness studies are 
focused on optimizing the gathering, processing, and transferring processes in smart home 
performance based on an isolated and environment-oriented context.  This will lead to some 
shortcomings in conventional context-processing schemes, which ignore the following functions 
including the device interoperability and human-oriented rule mining, and thus not adaptive 
to evolving environments and personalized habit profiles (personal intention).  Additionally, 
these context-aware frameworks focus on environment-oriented rather than human-oriented 
functions, which are relatively negligible for an end-user habit-profile-related context, which 
can be associated with the intention to use corresponding context-oriented services.  
	 As an ML-based mechanism, practical context cognition models using unsupervised and/
or supervised learning algorithms can help to analyze the evolving dynamic environment and 
diverse inhabitant activities, thus increasing the context-aware capability of a home control 
system.  Acting as unsupervised ML, K-means(4) is a clustering method for the mining of 
characteristics in a context classification situation and Apriori(14) helps to mine the priori nature 
in a frequent item and an association rule over transactional databases.  They can help to imply 
the connotation relevance of the context integrated in SHSs.  Reinforcement learning (RL)(15) 
is inspired by behavioral psychology and focuses on how software agents take actions in an 
environment to maximize cumulative reward.  Consequently, RL can enhance the self-learning 
ability of an unsupervised ML to mine the connotative behavior characteristics in the collected 
multiattributed context.  Wan et al.(16) proposed a dynamic sensor segmentation approach to 
achieve a better representation of activities and extract context features for real-time activity 
recognition using ML techniques.  
	 An ontology-based context learning system(17) is an efficient tool for context management.  
Cheng et al.(18) designed an ontology-based smart home reasoning system (ASBR) using support 
vector machines (SVMs) for rebuilding knowledge according to user preferences.  Middleware-
based gateway technology has been adopted by WSN-based smart homes(19) to collect data 
and learn the user behavior for accomplishing essential daily activities.  The advent of SDN(20) 
has the potential to revolutionarily improve the existing home control schemes by enabling 
distributed cyber-physical control.  Recently, the integration of smart home networks and SDN 
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has attracted the interest of researchers.  Yang et al.(21) designed a two-tier architecture, in which 
a logic control layer for data analysis and a cloud logic layer are utilized to handle the ever-
increasing data traffic in SHSs.  Xu et al.(22) designed an SDN-based smart home architecture 
that can be connected to other platforms via an open interface.  However, the existing SDN-
based research studies are limited in cross-layer and localized processing capabilities of an 
integrated multiattributed context, thus resulting in an unacceptable response delay and a low 
heterogeneity compatibility in SHSs.
	 Motivated by the above research progress in context-oriented technologies, we developed 
a novel context cognition prototype, by integrating ML-based context learning, fog-enabled 
context computing, and ontology-driven context management in an SDN architecture, to 
improve the context-driven autonomy ability in the smart home control mechanism (SHCM).  
The proposed prototype will be leveraged to enhance the ubiquitous context awareness 
processing in a smart home control system.
	 The main contributions of our proposed prototype can be summarized as follows to further 
optimize smart home control.
	 •	 A novel context-driven cognition prototype adopting ML-enabled multiattributed feature 

mining schemes under an ontology structure is designed to optimize the human-oriented 
adaptive interoperability of heterogeneous devices in dynamic SHSs.

	 The proposed SHCM can enhance the human-centered environment adaptability of 
SHCM, which considers the preferences of different end-users under the ever-changing situation 
of SHSs.  In this paper, the adaptive interoperability of SHCM is instantiated as the energy-
aware context sampling of sensors and the user-profile-oriented output of actuators in SHSs.
	 •	 The use of a f low-table-driven context feedback mechanism in the SDN functional 

framework with fog computing middleware is proposed in SHCM to improve the energy 
efficiency and heterogeneity compatibility on cross-layer context processing.

	 SHCM adopts a f low-table matching mode to obtain ML-enabled control strategy 
outputs, which are mapped into a rule-based parameter matrix and instantiated as serial 
lightweight operations including context fusion and seamless heterogeneous communication 
protocol switching in the paper.
	 The rest of the paper is organized as follows.  In Sect. 2, we elaborate the context-cognition-
based system model with an ML-enabled SDN functional architecture prototype.  Section 
3 shows the construction of a specific context-driven control strategy in SHCM using the 
proposed prototype.  In Sect. 4, the proposed SHCM is evaluated through experiments.  Finally, 
conclusions and future work are presented in Sect. 5.

2.	 System Model and Functional Framework

2.1	 SDN-based CPS model 

	 SHS is modeled as a three-tier CPS-based functional architecture as shown in Fig. 1, where 
cognition-context-driven control strategies are optimized using a closed-loop cyber processing 
system in a SDN system, which is composed of the data, fog computing, and control.  



Sensors and Materials, Vol. 31, No. 6 (2019)	 2107

	 SHS is abstracted into CPS with context semantics processing and a context transmission 
topology.  In CPS, the context transmission topology is abstracted into a weighted directed 
graph, G(V, L, W), which constructs the context topology model based on graph theory and is 
formed as a reverse multicast tree rooted at the controller in the cloud.  Each smart home device 
is embedded with sensors and actuators in V with a hierarchical cluster and a heterogeneous 
supporting protocol.  Various communication technologies provide wire/wireless connectivity 
services on L for building an IoT-based topology on home service platforms.  W is the set of 
weights, which represents the diverse crucial levels of home devices in V.  
	 A software-defined wireless network (SDWN)(23,24) enables programmable and virtualized 
control in network equipment via the decoupling control and data planes.  The SDWN-based 
architecture(25) can separate complex control functions from the forwarding devices and 
develop a centralized control plane to improve the operability of managing the entire smart 
home network.  It also seeks to be suitable for the mining dynamic and heterogeneous nature 
of contexts in smart home scenarios, which would improve the scalability of context-oriented 
multitasking and the compatibility of heterogeneous protocols in SHCM.  The CPS network 
architecture in SHSs is constructed using SDN-based programmable planes.  In the control 

Fig. 1.	 (Color online) Cognitive context-driven prototype in SHCM.  
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plane, the controller unifies the entire home network and plays an important role in optimizing 
network management by decoupling control and forwarding functions provided by smart 
devices in the data plane.  Cyber learning functions for context awareness achieved with ML-
based algorithms will be leveraged to enhance the context cognition ability of the controller in 
SHSs.  Additionally, contexts are modeled as ontology in the cyber cognition module (CCM) for 
semantically applied context reasoning.
	 In our work, an ML-based ontology context model is applied as an effective tool to design 
a context-driven prototype of the SHS control mechanism.  It can facilitate the smart home 
services driven by semantics-based logics and feature-based rules, thus extending the context-
oriented cognition and management capabilities of SHCM.  Fog computing(26)-enabled context 
middleware is introduced into SHCM to take advantage of the edge computing capability and 
proximity processing superiority, and meets the requirements of delay-sensitive scenarios by 
providing more localized services and context fusion.  According to the context characteristics 
of the distribution generation and cross-layer communication mode, we take compressive 
sensing (CS)(27) as a context fusion tool to achieve energy efficiency in the fog computing plane.  

	 On the basis of the above three-tier functional planes, SHCM is endowed with an ML-based 
cyber learning capability and a fog-based cyber-computing capability in the SDN functional 
framework to optimize the context-oriented SHCM.  It will facilitate the cross-layer context 
integration and automatically provide satisfying home services for users in CPS-based SHSs.

2.2	 Context-driven functional framework in SHCM

	 The intelligence of SHSs depends on the context-aware and ubiquitous computing 
capabilities in home control strategies.  The control plane acting as a fog server can manage 
network services according to the SDN protocol, perform the cyber learning function by mining 
the context features, and optimize control strategies, which can be downloaded into the data 
plane in the flow-table mode.
	 An ML-based ontology context model is introduced into the CCM to generate knowledge 
for revealing the variety in evolving ambient and the diversity in end-user habit profile.  CCM 
exploits the methodology of context cognition, which has been recognized as the core element 
of the context-driven prototype shown in Fig. 1.  In the SDWN-based smart home network, the 
control plane can take logically centralized control to facilitate network management and enable 
programmatically efficient network configuration.  
	 We take the fog computing plane to be functionalized as virtualized middleware, which 
can perform edge computing and localized processing to achieve CS-based cross-layer context 
fusion in SHCM, where the context computing and storage are performed at the edge of a smart 
home network, i.e., as close as possible to the end-user devices in the data plane.  This helps to 
reduce the total network load and network latency while improving the scalability to expand 
new context source devices into a smart home network.  We take the fog computing plane as 
context middleware in the SDN-based network framework to achieve seamless cross-layer 
context switching and compatible localized context fusion.
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	 The data plane in the physical system in SHSs is composed of actuators and sensors to 
execute context gathering and context feedback operations instructed by control strategies, 
which are yielded from the policy decision (PD) module.  Each sensor or actuator in the data 
plane plays the role of a logical switch to disassociate the context forwarding process obeying 
flow-table rules.  The duties of the data plane focus on specifically realizing the environmental 
adaptation and energy-efficient interoperability of home devices in SHSs.
	 The data processing function executed in CPS-based SHCM includes context generation, 
context fusion, and context feature extraction.  Specifically, the adaptive sampling method 
obeying the Nyquist sampling theorem is adopted by each sensor for context generation.  The 
flow-table-driven rules for context forwarding and routing are followed by each actuator.  
Heterogeneous context fusion is achieved in the fog node by CS.  The controller considered as 
the brain of the SDN is responsible for context feature extraction and context management using 
ML and ontology model data management.
	 The control mechanism adopts the ontology-driven context management and ML-based 
context learning in SHCM.  CCM in the cyber system of the control plane performs context-
driven operations (including context reconstruction, recognition, and training) to optimize the 
control strategy of the home system.  CCM adopts the ML mechanism to mine context features 
while revealing implicit environmental states and end-user habit profiles, which finally can be 
mapped into context-driven control operations.  Supervised learning (e.g., RL) and unsupervised 
learning functions using ML are embedded in the CCM of the control plane to improve 
the context-aware capability in SHCM, thus resulting in knowledge discovery on context 
reasoning in smart home appliances.  The ontology context model shown is used in CCM to 
optimize context management.  It encompasses the representation and definition of context 
categories to draw a logical chain diagram.  According to the output of CCM, PD constructs 
control strategies, which include optimal actions deduced by ML.  SHCM in the data plane 
is responsible for translating the control strategies (obtained by PD) into a control parameter 
matrix in the SDN-based flow-table mode, which is instructed by the ‘action field’ and subjected 
to the ‘match field’ shown in Fig. 1.  Then, the SHS physical system performs specific control 
operations based on the control parameter matrix in the over-the-air provisioning (OTAP) (28)-based 
wireless reconfiguration mode.
	 On the basis of the proposed SHCM, a closed-loop control strategy can be optimized by 
context cognition and context feedback in a smart home scenario, which essentially constructs a 
context-driven prototype shown in Fig. 1.

3.	 Construction of Context-driven Control Strategy in SHCM

3.1	 ML-based context cognition in SHS control plane

	 ML is adopted to rationalize the law inherent in a dynamic environment and evaluate the 
performance on individual activity recognition for promoting context-oriented personalized 
services.  We develop a context-cognition-driven control strategy in CCM to enhance the 
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autonomy of SHCM by ML-based feature mining and ontology-based management, which 
finally helps to enhance the interoperability and adaptability of smart devices in application-
oriented smart home scenarios, finally improving intelligent performance in SHCM.
Definition 1: Contexts B m nR ×∈x  are defined as functional states emerging from the 
interaction between diversity sensory information and corresponding functional structures 
realized by smart devices (sensors and actuators) with a computational ability in distributed 
and heterogeneous networks.  Each context will consist of both the environmental evolution 
information and the adaptive user profile in a smart home scenario.  
	 During a specific context gathering round B, the multiattributed context B m nR ×∈x  generated 
by the data plane can be modeled as a multidimensional matrix in the equation  

	 , 1( ) , ( ) , , Z , [1, ]B B m B
i j j jCluster i B j m+∀== ⊂ ∈ ∈Gx x i  ,	 (1)

where each component ,
B B
i j ontology∈ ⊂ Σx x  denotes the single-attribute context vector, B is 

the temporal dimension, i and j respectively represent the spatial dimension [i.e., hierarchical 
cluster structure Cluster(i)] and application-oriented dimensions, such as temperature, humidity, 
lighting, and location in xB.  The cyber status pool built by xB in the control plane tracks how 
the operational environment evolves with B, where new context states can be mined and new 
actions should be discovered.  
Definition 2: Situation sB is defined as a high-level context integrated to maintain the 
hierarchical knowledge structure and provide reasoning at low-level context abstraction in 
a smart home environment.  The situation used as the practical context model is heavily 
related to cognition modelling and understanding, especially in human activities and evolving 
environments.
	 Ontology is a useful concept tool supporting a nonintrusive context-aware system to achieve 
context-driven local service activation.  An ontology-based context model is utilized to analyze 
context-related services and reveal corresponding context driving rules according to the 
connotative features mined in the situation.
Definition 3: The context ontology Σontology formalized by using a 4-tuple structure is defined 
as Eq. (2) to describe, assess, and manage contexts as hierarchical structures for smart home 
applications.

	 , , ,ontology context situation interpreter assignerΣ = Σ Σ Σ Σ 	 (2)

Here, Σcontext denotes the multiattributed context xB produced by different actuators and sensors 
in a data plane.  Σsituation (i.e., sB) represents the integrated context, and it can construct a set of 
information classes (i.e., contextual cases) with corresponding functional properties.  Σinterpreter 
is used as a feature-mining tool using ML-based technologies for context reasoning and Σassigner 
obtains SDN-mode outputs, which are mapped into a parameter matrix in the action domain of 
the flow table and achieve context-driven interoperations among smart devices.  
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	 The ontology-based context model (i.e., Σontology) in CCM is adopted to generate knowledge 
for revealing the variety in evolving ambient and the diversity in end-user habit profile.  ML 
algorithms including autoregressive moving average (ARMA)(29) models, K-means as well 
as the Apriori algorithm are utilized in Σinterpreter to mine the multidimensional attributes 
in xB.  This will enhance the context cognition ability in SHCM.  ARMA with sliding window 
techniques can capture the statistical characteristics of a time series, and it is commonly used in 
environment monitoring event assessment and user behavior event segmentation.  The ARMA-
based value factor ,

B
i jF  [defined in Eq. (3)] is designed as a context prediction tool in Σinterpreter 

to capture the time-correlation statistical characteristics of ,
B
i jx .  

	 , , , 2
ˆB B B

i j i j i j l
F

=
= −x x 	 (3)

Here, ,ˆ B
i jx  denotes the ARMA result of ,

B
i jx  and ||•||l is the normalized Frobenius norm.(30)  On 

the basis of information entropy theory,(31) the greater fluctuation in ,
B

i jF  will indicate a larger 

average amount of information contained in arriving ,
B
i jx  and a higher probability of important 

events occurring under the premise of no external influence.  This helps to underlie the 
temporal aggregation law of an evolving environment in SHS.  Besides revealing the above 
temporal-dimension characteristic of B

ontology∈Σx , the situation element sB B
ontology∈Σx  can be 

used to provide reasoning on the context integrated in a smart home scenario.  The K-means 
and Apriori algorithm are introduced into Σinterpreter to excavate the attribute-dimension 
characteristics including clustering and association rules in sB.  This can contribute to the 
analysis of the dynamic environment and diverse personalized habit profiles in a cyber system 
of a smart home.  K-means is used as a context-clustering tool in Σinterpreter to classify cases 
with situation sB.  Specifically, the similarity calculation with the nearest mean in a target 
context space is performed following Eq. (4) to find the most similar k cases and serve as a 

prototype of a context cluster.  Here, , 1
( )B

i j l
i

=
Ξ  denotes the rank of the context matrix.
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	 Through an iterative method, the value of each cluster center will be successively updated 
until the best clustering ,

B
i jC  are obtained by Eq. (4), which can construct the most similar 

contextual cases.  According to the partitioning results of K-means, the context space should be 
divided into case-based cells built by context clustering.  This helps to identify end-user habit 
profiles and provide corresponding personalized services in SHSs.  
	 Furthermore, the strong association rules inherent in ,

B
i jC  can be revealed by Eq. (5) using 

Apriori to achieve knowledge-based context reasoning over situation sB.  Viewed as a context 
association tool in Σinterpreter, Apriori is used for frequent item set mining and association rule 
learning over situation sB.  Specifically, by accumulating the candidate frequent items on ,

B
i jC  

while meeting the minimum support degree (i.e., min_conf ) and minimum confidence threshold 
(i.e., min_conf ), strong association rules ,

B
i jA  of sB can be used to mine a connotative situational 

relation and drive human-oriented cooperation among smart devices.  Accordingly, optimal 
control strategies instructed by association rules ,

B
i jA  will be implemented by Σassigner to guide 

the output behavior of smart devices in the data plane.

	

{ }| ( ), , , , ,

_ [ ], ,= : ( | ) _ [ ] ;, , , , , ,
_ [ ],

, , 1, , ,, , , ,

;B B B B Bx x Count x xi j i j i j i j i j th

B Bmin supp x xi q i jB B B B B B s.t. x P x x min conf x xi j i j i q i j i j i q Bmin suppt xi j
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	 Here, , ,( )|B B
i q i jP x x  denotes a strong correlation degree between the context vectors ,

B
i qx  

and ,
B
i jx .  thx  represents the threshold of minimum support count while meeting the frequent 

item set constraint.  ,
B
i jA  indicates a set of context-driven rules, which can satisfy both min_

supp and min_conf instructed by Eq. (5).  In CCM, ,
B

i jF , ,
B
i jC , and ,

B
i jA  are utilized to construct 

a context-aware model for analyzing end-user habitual preferences and driving corresponding 
interoperation services, therefore adding more convenience for smart home users.  Furthermore, 
we utilize RL-based Q-learning to train context characteristics obtained by ∑interpreter to further 
enhance the intelligence of a smart home control strategy, thus improving the self-adaptability 
of SHCM.  Through interactions (in terms of reward or punishment) between agents and a 
home environment, a context-characteristic space can be mathematically modeled by RL.  
Consequently, an automatic control strategy acquisition problem in SHSs is formulated as a 
Q-learning problem.
	 The RL-based environment of a smart home is characterized by a 4-tuple (S, A, P, R), where 

situation⊂ ΣS  denotes the context-characteristic space including ,
B

i jF , ,
B
i jC , and ,

B
i jA .  A is the 

action set produced by the PD module in SHCM and injected into the data plane in the flow-
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table mode for the execution of the control strategy.  Action selections in PD are performed by 
explicitly estimating the state transition in the context-characteristic space of the smart home 
environment.
	 P: S × A × S denotes the state transition probability, which is given by Eq. (9) to drive 
specific control operations.
	 The reward function R: S × A → R indicates the environmental reward to the corresponding 
action.  The local reward function ,

B
i jr ∈ R is designed as the third constraint term in Eq. (7).  It 

is deduced by a temporal-attributed redundant or multiattributed interactive degree to optimize 
context-driven control operations in the encouragement or punishment mode.  Then, global 
reward is accumulated by maximizing local reward in each context mining round using the Q 
function(32) by CCM.  The policy Γ shown in Eq. (7) should be constantly updated to match 

state-event pairs with optimal actions.  After the Bth iteration, ,
B

i jΨ  is obtained according to the 

comparison of the Q-value between the Bth and (B – 1)th rounds.
	 Each state element ,

B
i j situations ∈Σ  shown as Eq. (6) is composed of multidimensional 

attributes in ∑ontology, and it is updated in each context gathering round for Q-learning.  
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Here, λ and γ denote the learning and discount factors, ,
B
i j situations ∈Σ and ,

B
i ja  are the state and action in the 

Bth context gathering round, and ε and ζ represent the tuning step sizes for updating ,
B

i jΨ  and 
QB, respectively.  
	 On the basis of the policy Γ produced by PD in Fig. 1, a controller will produce optimal 
actions with a local maximum Q-value according to the equation  
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	 Here, 
max

thf  and min
thf  denote the upper and lower bounds of sampling frequency regulated by 

a sensor, respectively.  ,
B
i jp  indicates the cooperative probability observed among actuators.  

	 The reward function R: S × A → R can generate a positive reward or a negative punishment 
to adjust the step size at the sampling frequency ,

B
i jf  and cooperative probability ,

B
i jp  of round B.  

Then, the optimal action set { },
B
i ja ⊂ A will be fed into the switch flow table in the data plane 

and executed according to the transfer rule given by
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where ,
,( )

B
i js B

i jaχ  Γ  is the state assessment for action  and ,
B
i ja  under state ,

B
i j situations ∈Σ using Γ.  

	 Consequently, as a training result of Q-learning, ,
B
i j situations ∈Σ  should be utilized to optimize 

the context-driven outputs obtained by Σassigner.  
	 Owing to ML-based context mining and feature training, SHCM can be endowed with a 
context recognition ability to gain knowledge of human-oriented events and environment-
oriented evolving laws in dynamic and evolving smart home environments.  Cloud-computing-
based SHCM usually places computing and storage functions on a distant cloud platform.  It 
increases the transmission delay and bandwidth cost, and is not suitable for delay-sensitive and 
energy-constrained smart home applications.  Therefore, we adopt edge computing technology 
in this study to address the above challenges in the cloud-computing mode.
	 Fog computing acting as an edge computing platform can optimize data processing at the 
edge of the network, near the data source.  It significantly decreases the communication load 
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between the control and data planes, thereby reducing transmission costs and shrinking latency.
	 Motivated by the advantages of fog computing, the fog computing plane in Fig. 1 is 
introduced into the SDN-based network functional framework to realize redundancy 
compression, heterogeneity fusion, and localized processing of the context.  To keep the real-
time response and guarantee reliable transmission for smart home applications (e.g., the urgent 
alarming response), embedded sensors and actuators in smart devices should frequently collect 
environmental data and record huge historical operations.  This leads to the huge transmission 
cost and unacceptable transmission delay caused by the dense distribution of spatial-temporal 
redundant loads in a smart home network.  To address this issue, CS is adopted in the fog 
computing plane and used as a context-compressing tool in interpreter ontologyΣ ∈Σ  to achieve the 
sparsity and reconstruction on xB.  
	 Consequently, SHCM can adaptively adjust the sensor sampling frequency and actuator’s 
cooperative probability according to the dynamic environment statuses (nonmetal states) and 
various end-user habit profiles (metal states) in the data plane, respectively.  The design of 
optimal control strategies essentially reflects the context feedback process from a cyber system 
to a physical system in SHCM.
	 The SDN-based network function framework in the fog computing plane can improve 
the heterogeneity tolerance of SHSs through gateway middleware technology and a loosely 
coupled network structure.  In the proposed SDN-FC framework, the heterogeneous fusion 
function in the fog computing plane is achieved by adopting the SDN-based network functional 
framework to enable programmatically efficient network configuration and decouple network 
control forwarding functions.  It contributes to seamlessly manage heterogeneous physical 
resources and establishes compatible connectivity and interface between various types of home 
devices.  In home scenarios, mobile smart terminal devices frequently operated by end users 
in the data plane have characteristic random mobility and position sensitivity.  Thus, we need 
home applications to pay more attention to the context surrounding the local environment for 
enhancing the localized service quality.  Fog computing technology adopts the edge computing 
and localized context storage and processing mode.  It can timely process contextual service 
requests from the mobile terminal user surrounding areas and meet the requirements of delay-
sensitive applications such as real-time alarm on emergent events and a low-latency response in 
a mobile service situation accordingly.  
	 In essence, CS-based redundancy compression and fog-based local decision in the edge 
computing mode rationally optimize context resource allocation (i.e., context-related computing 
and storage resources), thus contributing to energy saving and localized service quality.  
Consequently, the total system response delay and energy cost are significantly reduced on the 
premise of quality of services in SHSs.  

3.2	 Flow-table-driven context feedback in SHS data plane

	 We achieve the optimal context feedback control in the data plane in the flow-table mode.  
On the basis of the functional modules in CCM for context cognition and context management, 
we design control strategies in SHCM using ontology-based context management and ML-based 
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context mining under the SDW-FC framework (shown as Fig. 1).  Then, the optimal strategies 
produced by CCM can be correspondingly transformed into a lightweight control parameter 
matrix and matching rules to achieve context-feedback cooperation.
	 Specifically, ∑assigner adopts the flow-table matching mode to let context-driven outputs 
[produced by Eqs. (8) and (9)] and context-mining features [produced by Eqs. (4) and (5)] be 
mapped into a parameter matrix (i.e., π1), which involves the cooperative output behaviors 
of smart devices stored in the action field of the flow table.  Each element in π1 contains the 
specific functional control parameters of various smart devices (e.g., the output level of the 
heater, the brightness grade of the lamp, the switching value scale of an air conditioner or a 
refrigerator, the frequency range of sampling rate, and the setting values of temperature and 
humidity for an environment sensor.  Matching rules (i.e., π2 in the match field) involve the 
clustering and strong association rules deduced by ML in multiattributed joint contexts in smart 
home scenarios.  Furthermore, the control parameter matrix [π1, π2]  should be downloaded into 
the action and match fields in the corresponding flow table entry of the switch.
	 Consequently, the context-driven control operations instructed by the action field and 
subjected to the match field are executed via smart devices (embedded with actuators 
and sensors) in the OTAP-based wireless reconfiguration mode.  Results indicate that the 
services constructed by the optimal cooperative outputs of smart devices can improve the 
interoperability and self-adaptation capabilities with low latency, and also enhance the energy 
saving effect in SHCM.

4.	 Experimental Results and Analysis

	 The experiments are designed to evaluate the smart home control strategies performed by 
a context-driven prototype in SHCM.  The proposed prototype is simulated to test network 
performance and feasibility in a smart home environment using the SDN-based architecture 
shown in Fig. 1.
	 The implementation environment constructs a SHS with several network technologies 
(including WIFI, Ethernet, Bluetooth, and Zigbee) and has three types of devices (i.e., 
controller, fog node, and smart devices) that interact with each other to generate experimental 
data.  The smart home has been equipped with 43 smart devices (constructed by programmable 
actuators or sensors) that monitor light, humidity, temperature, and location to obtain raw 
context descriptions of user behaviors.  A controller with a lightweight OpenFlow platform(33) (i.e., 
POX) is responsible for constructing optimal control strategies and making smart devices in the 
data plane lightly carry out corresponding control operations in the flow-table mode.  The fog 
node is used as an ARM-embedded intelligent gateway (i.e., Arduino Raspberry Pi with 64-bit 1.4G 
CPU) to communicate with the control plane and wirelessly reconfigure smart devices in the 
data plane using OTAP (e.g., programmable thermostats, heater, air conditioner, humidifier, and 
lamp).  The network simulator NS3,(34) network building tool Gephi,(35) and ontology language 
tool Protégé 4.1(36) are used to construct the experiment verification platform and analyze the 
performance of the proposed SHCM using a cognitive context-based prototype.  We implement 
the case-based context ontology using the ontology language OWL, Protégé 4.1.  The evaluation 
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criteria focus on validating the performance of the context-ontology-driven control mechanism 
including adaptability and interoperability in SHCM.  

4.1	 Performance evaluation on ML-based context reasoning

	 On the basis of the software defined network framework, SHCM adopts ML technologies to 
mine context connotative characteristics and generate knowledge-based context reasoning in a 
smart home.  It excavates environmental evolving laws and end-user habit profiles, constructs 
a context-reasoning-based control strategy, and achieves context-feedback-driven cooperative 
actions on a smart home physical system.  The specific parameters of the ML-based context 
cognition algorithm are shown in Table 1.
	 K-means is adopted as an ML-based context interpreter in ∑ontology [formalized by Eq. (2)] to 
mine the connotative clustering characteristic in the multiattributed context B m nR ×∈x  [modeled 
as Eq. (1)].  Specifically, the context reasoning procedure can be performed using Eq. (4) to 
cluster the k service cases in the context space and classify the service objects closest to them, 
which finally help infer end-user intention and support personalized services.
	 On the basis of the context records accumulated, unsupervised learning is adopted to 
deduce clustering and strong association rules and correspondingly drive environment-adaptive 
and personalized services.  These experiments are designed to verify the effectiveness of the 
K-means clustering method in identifying the interaction between an evolving situation and 
corresponding services.  
	 The procedure is designed on the basis of the K-means algorithm to cluster the k service 
cases in the context space and classify the service objects closest to them.  Through this iterative 
method, the center of each cluster is updated successively until the best clustering result is 
obtained.  K-means is utilized to effectively manage context instances and take similarity 
calculation to infer end-user intention and support personalized services depending on the 
inhabitants’ related context by mining the connotative clustering characteristic in the integrated 
context.  The circular spots in Fig. 2 denote the cluster centers obtained by K-means, which can 
be applied by a centroid classifier to classify new contexts into existing ones, thus identifying 
some personalized habit profiles.  Figures 2(a)–2(c) indicate the statistical association between 
the inhabitant favorite preferences in a smart home context (e.g., temperature, light intensity, 
and humidity) and the corresponding output settings of actuators (i.e., thermostats) in an 

Table 1 
ML-based algorithm parameters.

ARMA Apriori K-means RL CS
Autoregressive 

2
Moving average 

1
Prediction accuracy

0.85
Window initial size

7

Min support degree
0.3

Min confidence threshold
0.5

Max rule number
120

Sort rule
1(support), 0(confidence)

Mean range
[10, 26]

Covariance range
[5 0, 0 2]

Distribution type
Gauss

Cluster threshold
300

Learning factor 
0.5

Discount factor
0.3

Tuning step
[0.002 ,0.018]

Round
1600

Observations 
64

Signal length
256

Signal sparsity
7

Transformation 
Fourier-positive
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air conditioner.  For example, when the indoor temperature falls into the range indicated in 
Refs. 5 and 15, the air conditioner will adjust the actuator output at 35 to meet the customary 
preferences, which essentially reflect the context-aware service produced by rule-based context 
reasoning in the CCM of SHCM.  
	 Figure 2(d) denotes a case-based context mining situation in the sleeping schedule profile, 
in which a metal-state-related activity pattern represented as personalized daily routing is 
recognized by an activity recognition model construct by clustering in the lighting context.  
	 The simulation results in Fig. 2 imply that SHCM can improve the situational awareness 
ability through ML-based feature mining, which contributes to providing appropriate services 
associated with user preferences.
	 The environment-oriented adaptability and human-oriented recognition ability can be further 
augmented by supplementing the position dimension in the context mining.  Therefore, we use 
context clustering results with location-aware reasoning to further enhance the humanized 
effect in SHCM.  Simulation results in Fig. 3 are produced by K-means to evaluate the nearest 
centroid classifier and produce clustering rules, which are then mapped into the corresponding 

Fig. 2.	 (Color online) Analysis of user-system interaction context by K-means clustering.  (a) Light intensity 
setting mining.  (b) Humidifier setting mining.  (c) Indoor temperature setting mining.  (d) Sleeping habit mining.

(a) (b)

(c) (d)

https://en.wikipedia.org/wiki/Nearest_centroid_classifier
https://en.wikipedia.org/wiki/Nearest_centroid_classifier
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parameter setting matrix π1 and then downloaded into the data plane in the flow-table mode.  
Consequently, SHCM utilizes [π1, π2] to drive the cooperative actions implemented by smart 
devices in SHCM and accordingly provide context-aware services.  
	 It can be seen from Fig. 4 that the end-user preferences can be deduced from the knowledge-
based rules using a context-association Σinterpreter (i.e., Apriori algorithm) according to Eq. (5), 
and this can generate strong association rules to mine the connotation relevance in situation sB, 
so as to infer the inhabitant behavioral law and instruct rule-based user-system interactions.  
Specifically, we can excavate the end-user habit profiles and the evolving law of the dynamic 
environment, and use them to motivate the self-adaptive cooperation driven by the output 
parameter matrix (related to customary preferences) and executed by smart devices in the data 
plane according to the association rules produced by integrated context mining.  According to 
the analysis of the output of strong association rules and the frequent item calculation of the 
transaction set, Fig. 4 shows the ranked results where the ordinate denotes the confidence and 
the support belongs to the connotation of association rules.  Some association operations [e.g., 
‘close door -> close window (40%, 66.6667%)’, ‘Turn on air conditioner -> Turn on humidifier 
(30%, 100%)’] are mined to infer end-user habit profiles and finally to improve the human-
orient interoperability of smart devices in the data plane.

Fig. 3.	 (Color online) Analysis of user-system interaction with the location dimension.  (a) Habit profile with 
humidity.  (b) Habit profile with light intensity.  (c) Habit profile with temperature.

(a) (b)

(c)
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	 The experimental results in Fig. 4 indicate that the context-driven strong association rules 
deduced using Eq. (5) can efficiently guide the cooperative operations of smart devices in the 
data plane.  As can be seen from the results, the optimal set of actions obtained using Eq. (8) 
should improve the interoperability of smart devices via achieving context feedback (denoted by 
action field π1 and matching field π2 in the flow-table-driven mode) on the physical system of a 
smart home.
	 The above experiment results can be utilized to infer end-user preferences or intentions and 
provide corresponding suitable services, which can be exploited to further improve the context-
driven cooperative ability of smart devices.  By introducing ML into CCM, output operations 
in SHCM will be automatically adjusted to make the scenario be more suitable to end-user 
requirements.

4.2	 Verification of adaptive sampling-based context feedback

	 Figure 5 shows a comparison of the instantaneous energy consumption between the adaptive 
sampling strategy and the fixed sampling mechanism in SHCM.  The result shows that the 
proposed adaptive sampling strategy [shown as Eq. (8)] can automatically capture the time 
window containing the abnormal time series (e.g., emergency or alarm events taking place) and 
accordingly increase the sampling frequency to guarantee the reliability of the valuable sampled 
context.  Additionally, this adaptive sampling adjustment method can automatically reduce the 
sampling frequency when the context flow fluctuation occurs smoothly, therefore observing the 
effect of filtering on the temporal redundant context.  Figure 5 also suggests that the adaptive 
sampling mechanism consumes more energy than the fixed sampling one during the specific 
monitoring periods of 20 and 30 s when high-application-value events occur.  In contrast, the 
energy cost in the fixed sampling strategy remains stable, which is insensitive to the evolving 
situation of the environment.  However, the average energy consumption of the control system 
is lower than those obtained by the fixed sampling strategy in a longer period.  

Fig. 4.	 (Color online) Strong association-rule-driven cooperative operations in SHCM.  (a) Confidence rate on 
cooperation and (b) support on cooperation.

(a) (b)
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	 It is important to reduce the average latency time (ALT) between the control and data planes 
in the application of SHCM.  We define ALT as the average transmission latency from the data 
plane to specific controllers in the control plane during the given period, which is calculated as

	 1 min ( ),
s

d s d sv control planed
ALT delay v ,v v ,v

n ∈  
= ∀ ⊂∈∑ V G ,	 (10)

where min delay(vd,vs) denotes the minimal transmission delay between any sensor 
 d av dat plane∈ ∈ ⊂V G and a given v control planes ∈ ∈  ⊂V G; n represents the accumulated 

number of reachable communication paths from sensor vd to controller vs.
	 As can be seen from the results in Fig. 6, with the decrease in distance between fog nodes 
and the event center and the increase in the number of fog nodes, ALT will be significantly 
reduced.  ALT reaches its maximal value when the number of fog nodes is zero, which shows 
that the control system does not adopt the fog computing mode.  The main reason for this is that 
more storage and computing resources can be allocated for localized context processing, while 
SHCM adopts the fog computing mode to enhance the context processing ability.  It will be 
beneficial to delay-sensitive smart home applications (e.g., alarming for emergency), which need 
a small delay for achieving a real-time system response.
	 Figure 7 shows a comparison of the average cumulative energy costs of a temperature 
context monitor with different energy saving mechanisms in the living room during a period of 
time.  The results of the corresponding statistical analysis of the context set are shown in Table 
2.  These results include the average test results for environmental monitoring application with 
200 experimental tests.  The ordinate in Fig. 7 denotes the normalized energy consumption ratio 
(i.e., the ratio to the corresponding maximal energy consumption).  The diagram indicates that, 
compared with the fixed sampling mechanism, the CS-based adaptive sampling mechanism can 
reduce the total energy consumption from 21 to 48% during the monitoring periods of 1 and 

Fig. 5.	 (Color online) Adaptive sampling vs fixed sampling mechanism on instant-energy consumption.
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110 s under the premise of QoS in the monitoring application.  With time, the total energy cost 
gap between the different context processing methods (i.e., context sampling, compressing, and 
transmitting) continues to expand.  On the basis of the principle of CS, the raw context can be 
converted into sparsity and reconstruction-based knowledge, which can be used to reduce the 
transmission energy and delay caused by context communication in SHSs.  The result shows 
that the CS-based adaptive sampling method has a higher performance in terms of the energy 
saving effect than the fixed sampling method adopted in the same smart home scenario.

4.3	 Evaluation of ontology-based context management

	 In the control plane, the ontology-based context model plays a key role in  supporting an 
efficient context management, which is utilized to perform context interpretation, drive context-
related services, and reveal context-event relations (ERs) based on the connotative feature 
mining in a certain situation.  The ontology-based context management in SHCM is evaluated 
by semantic analysis to verify logical conflicts and determine the relationship in Fig. 8 for a 
home situation at runtime.  

Table 2 
Results of statistical analysis of context set.

Parameter Value
Fixed sampling Adaptive sampling + CS

Variance 0.068 0.011
Mean 0.554 0.184
Standard deviation 0.260 0.105
Confidence level 0.95 0.95
Confidence interval (0.554 ± 0.051) (0.184 ± 0.020)
Sampling mean error 0.02609064 0.0105

Fig. 6.	 (Color online) Analysis of ALT in fog 
computing mode.

Fig. 7.	 (Color online) Average energy consumption 
comparison in context processing.
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Fig. 8.	 (Color online) Ontology-based relationship model for context management.

	 An ontology function interface based on a context-driven ER model in SHCM is illustrated 
in Fig. 8, which can essentially embody the context interaction process driven by association 
rules and clustering results obtained using Eqs. (4) and (5) from the perspective of context 
management.  The ER model bears the main function of database management for building the 
context pool in Fig. 1, which includes eight entities, namely, users, user preferences, sensors, 
sensor context, device, device operation records, alarm rules, and triggering records.
	 The specific context entities in the relationship model of SHCM are constructed by context 
mining and context reasoning performed with the ML mechanism using Eq. (7).  Consequently, 
the ontology-based model in SHCM can be converted into a relationship context entity model 
to guide the cooperation of smart devices in the data plane, thus finally improving the context-
driven autonomous management ability in SHCM.  

4.4	 Comparison of context-driven adaptability with linebase  

	 To analyze the performance adaptability of the proposed SHCM, the performance of the 
controller system, which includes the adaptability of heterogeneous communication protocol 
switching and the dynamic context-case matching, was observed.  Figure 9 presents the results 
of the analysis of the compatibility of the cross-layer heterogeneous communication protocol (i.e., 
environment-related context) switching.  According to the link switching case shown in Fig. 9, 
we observed a change in throughput with a nearly seamless response time (less than 1).  It is 
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produced by the impact of redirection flows on heterogeneous communication switching, while 
SHCM adopts fog computing middleware in the SDN functional framework.
	 In SHCM, the controller initially creates rules on the favorite wireless communication 
technology for the end user, and thereafter, it updates the rules on the use of WIFI interfaces 
whenever a new link is available as shown in Fig. 9(a).  Similarly, Fig. 9(b) shows the seamless 
rerouting of flows during the link switching between Ethernet and WIFI.  With the context-
adaptable SHCM, a home device can maintain the original communication connection or 
achieve seamless communication protocol conversion following a change in the ubiquitous 
communication environment.  For example, a mobile handheld device can adaptively switch 
into a suitable protocol according to the changing communication environment in a smart home.  
To evaluate the robustness-related adaptability for an ever-changing context (i.e., context events 
with diverse arriving rates), we synthesize the following indicators (including links failures, 
packets loss, and network latency) of different control mechanisms in a dynamic smart home 
environment.  We define the context-oriented unfitness degree ηunfitness as

	 1
* *ALTunfitness P L lLR FRη η η η

=
= ,	 (11)

where ηPLR and ηLFR represent the average packet loss rate (PLR) and link failure rate (LFR) of 
a network, respectively.  ηALT denotes ALT in Eq. (10).  ηPLR is calculated using different sensors 
in different rooms of a smart home scenario.  The comparison of the ηunfitness [defined as Eq. 
(11)] of SHCM with schemes 1(11) (i.e., baseline), 2 ,(37) 3,(38) 4,(18) and 5 (i.e., SHCM without fog 
computing) is shown in Fig. 10.  We consider scheme 1 as a baseline scheme, because it is not 
provided with the context-driven processing capability and SDN-based functional framework 
in a SHCM.  The system performance in scheme 1 can be improved by respectively utilizing 
the ML algorithm (adopted in scheme 2) and ontology classes (used for scheme 3) to enhance 
context learning and context management capabilities.  Furthermore, scheme 4 is supported by 

Fig. 9.	 (Color online) Adaptive context switching for heterogeneous communication protocol.  (a) Adaptive 
protocol switching with Zigbee and WIFI, and (b) adaptive protocol switching between Ethernet and WIFI.

(a) (b)
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Fig. 10.	 (Color online) Comparison of adaptability with dynamic context case.

the SDN-based platform to develop the ability of processing the cross-layer and heterogeneous 
context.  Results in Fig. 10 indicate that the proposed SHCM performs better than the baseline 
schemes with respect to different context-event arrival rates due to the context cognition 
capabilities of CCM, which are produced by ML, the ontology model, and fog computing.

5.	 Conclusions and Future Work
 
	 In this study, we developed a context-driven prototype to achieve the intelligent control 
and management of a SHS by integrating ML-driven context learning, fog-enabled context 
computing, and ontology-based context managing in the SDN architecture.  This architecture 
is divided into three functional layers including control, fog computing, and data planes.  The 
controller in the control plane produces optimal control strategies using ML-based approaches, 
which perform unsupervised-learning-based context feature extraction and reinforcement-
learning-driven context feature training.  Additionally, we apply an ontology-driven context 
model to reveal rule-based semantic relationships implied in context management and facilitate 
context-aware smart home services, thus finally improving the capability of context cognition 
and context management in SHSs.  Furthermore, we design the fog computing plane as a 
cross-layer context middleware to achieve context fusion by CS for low-dimension context 
reconstruction in the edge computing mode.  Finally, the control strategy is mapped into the 
corresponding parameter matrix and matching rules in the lightweight flow-table mode.  It 
guides the interoperations among smart devices in the data plane by sensor-related adaptive 
sampling and actuator-related cooperation.  Experimental results indicate that the proposed 
context-driven system control mechanism can enhance the autonomous ability in SHCM while 
being automatically adapted to personalized habit profiles and an evolved environment.  It 
contributes to improving the autonomous capability (including adaptability, heterogeneity 
compatibility, and interoperability) of SHCM, which can create environment-adapted and user-
friendly home services, thus prompting its usage in other distributed user-system interaction 
control systems.  The evaluation results also prove that SHCM can outperform the baseline 
schemes.
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	 Some concrete future research directions and novel technologies, which can open new 
vistas for the future, have been added in our study.  Our research results would be integrated 
with some advanced research directions including cybersecurity,(39) green communication,(40) 
cognitive radio,(41) and optical mobile communications technologies(42) to further improve 
energy efficiency and autonomy in SHCM.  
	 The future technical prospects of the paper are illustrated as follows.

•	 Green communication provides the next densification solutions for IoT-based networks,  
which process essential data, applications, and services directly in their routers in order to 
be autonomous from the central cloud and to preserve the Internet bandwidth from local 
communications.  It can help to further greatly reduce the system energy cost in SHCM and 
essentially embody the green communication effect.  

•	 Cognitive radio (CR) is an intelligent radio frequency technology that can be programmed 
and configured dynamically to detect available wireless channels in its vicinity to avoid 
interference and congestion.  CR-based technology can be introduced into OTPA to achieve 
flow-table-driven context feedback in the data plane, which can further improve the 
detection capability of the available wireless spectrum and optimize the reconfiguration of 
control parameters in SHCM.

	 The proposed control mechanism SHCM has some limitations in the following aspects.
•	 As in IoT-based SHSs, a context is shared among home devices, imposing severe security 

challenges.  SHCM lacks cybersecurity considerations on the control mechanism in a smart 
home system.  Recently, cyber-hacker attack has frequently appeared and threatened home 
networks; thus, it is important to add security services in SHCM to protect end-user privacy.  
In our future work, we should design architectural systems to manage security assessment 
and mitigate hostile attacks according to the current context of a smart home network.

•	 SHCM is limited in human-centered control strategies.  Psychological factors can affect 
the patterns of end-user service usage.  However, SHCM has not achieved the level of 
human experts and only investigates a single human-oriented context by ML-based feature 
mining.  Our future research will extend the findings of the present study to provide a more 
comprehensive understanding of motivation and promote the human-oriented smart home 
services by adopting psychology and microculture knowledge.
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