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	 The rapid detection and fine pose estimation of textureless objects in red-green-blue and 
depth (RGB-D) images are challenging tasks, especially for small dark industrial parts on the 
production line in clutter scenes.  In this paper, a novel practical method based on an RGB-D 
sensor, which includes 3D object segmentation and 6D pose estimation, is proposed.  At the 3D 
object segmentation stage, 3D virtual and detected bounding boxes are combined to segment 
3D scene point clouds.  The 3D virtual bounding boxes are determined from prior information 
on the parts and charging tray, and the 3D detected bounding boxes are obtained from the 2D 
detected bounding boxes in part detection based on a Single Shot MultiBox Detector (SSD) 
network in an RGB image.  At the 6D pose estimation stage, the coarse pose is estimated by 
fitting the central axis of the part from the observed 3D point clouds accompanied by a lot 
of noise, and then refined with part model point clouds by using the iterative closest point 
(ICP) algorithm.  The proposed method has been successfully applied to robotic grasping on 
the industrial production line with a customer-leverldepth camera.  The results verified that 
grasping speed reaches the subsecond level and that grasping accuracy reaches the millimeter 
level.  The stability and robustness of the automation system meet the production requirement.  

1.	 Introduction

	 Intelligent manufacturing is an important component of a smart city.  In view of the proposal 
of “made in China 2025”, a continuously increasing number of small and medium-sized 
enterprises are introducing industrial robots to upgrade their technology.  Industrial robots 
have numerous advantages such as high efficiency, stability, reliability, and good repeatability 
and adaptability to operate in a high-risk environment.  The conventional grasping mode of 
industrial robots is usually the teaching programming mode, which has disadvantages of low 
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flexibility, high requirement for placement position, and low fault tolerance.  In recent years, 
with the increasing application of machine vision in industrial production, the vision-guided 
grasping of industrial robots has continually attracted the attention of researchers and industry 
leaders.  The introduction of vision has greatly expanded the application range of robotic 
grasping and enhanced the adaptability and reliability of the system.  This is the trend of 
industrial automation development.
	 Visual guidance modes are divided into monocular and binocular visions.  Monocular vision 
estimates the coarse pose of an object by 2D image matching.  Binocular vision estimates the 
fine pose of an object by 3D point cloud registration.  Binocular vision can be obtained using 
a stereo or depth camera.  A stereo camera generates point clouds on the basis of the parallax 
principle and camera imaging model.  For a textureless object, stereo matching will fail because 
the corresponding point could not be found.  A depth camera, whether based on the structured 
light or time of flight, always acquires 3D information on objects in real time.  Currently, a 
depth camera has become a common sensor in a vision-guided robotic grasping system.
	 Industrial parts are usually textureless, smooth, and uniformly colored objects.  It is vital 
to extract discriminative feature descriptors that can represent the object shape.  In the study 
of Drost et al.,(1) the global model description was based on oriented point pair features 
(PPFs).  During training, all possible pairs of 3D points on a model are described and recorded 
in a hash table.  During detection, sampled pairs of 3D points from the scene are described 
and used to vote for corresponding object pose hypotheses.  The most voted pose clusters 
can then be refined with the iterative closest point (ICP).(2)  Choi and Christensen further 
augmented the PPFs with color information and its application to a voting-based 6D object 
pose estimation.(3)  In the study of Logoglu et al., two spatially enhanced local 3D descriptors 
(SPAIR and CoSPAIR) were proposed, and they outperform the state-of-the-art descriptors in 
both category and instance-level recognition tasks.(4)  The efficiency and performance of these 
methods directly depend on the complexity of the 3D scene, which might prevent their real-time 
applications.
	 Most of the best performing 3D detectors follow a view-based paradigm, in which each 
object is represented by hundreds or even thousands of images, called templates, which describe 
the object from a discrete set of viewing angles.  For example, Hinterstoisser et al.(5) create 3115 
template views over a quantized color gradient and surface normal.  Tolerance to misalignments 
is achieved by comparing the binarized representation with pixels in a small local neighborhood.  
The pose retrieved from the best matching template is used as a starting point for subsequent 
refinement with ICP.  Kehl et al. and Hodaň et al. optimized the matching process using a 
cascade-type and hash-coded voting scheme, improving the accuracy of 6D pose estimation.(6,7) 
They achieved a sublinear complexity in the number of trained objects by a hashing search.  
Although there are hundreds and thousands of templates, only a very small, predefined 6D 
pose space is covered.  Placing the object differently, e.g., on its head, would lead to failure if 
this view had not been specifically included during training.  Unfortunately, additional views 
increase computation time and add to overall ambiguity in the matching stage.
	 Over the last few years, deep-learning-based methods have shown promising results of object 
detection and 6D pose estimation.  Wohlhart and Lepetit(8) employed convolutional neural 



Sensors and Materials, Vol. 31, No. 6 (2019)	 2091

networks (CNNs) to generate descriptors of object views that efficiently capture both the object 
identity and the 6D pose.  Simple similarity and dissimilarity constraints between descriptors–
defined by Euclidean distance–are employed to train CNNs.  This method has been shown to 
outperform state-of-the-art methods based on the dataset of Hinterstoisser et al.(5)  Krull et al.(9) 
presented a model for the posterior distribution in 6D pose estimation, which uses a CNN to 
map rendered and observed images to an energy value.  They observed empirically that CNNs 
do not specialize on the geometry or appearance of specific objects; moreover, CNNs can be 
used with objects of vastly different shapes and appearances, and in different backgrounds.  
Mousavian et al.(10) extended Single Shot MultiBox Detector (SSD)(11) to include pose estimates 
for categories, which infers 3D bounding boxes of objects in urban traffic and regresses 3D box 
corners and an azimuth angle.  Kehl et al.(12) extend the SSD paradigm to cover the full 6D pose 
space and train on synthetic model data only.  This method has shown that color-based detectors 
can indeed match and surpass current state-of-the-art methods that leverage red-green-blue and 
depth (RGB-D) data while being around one order of magnitude faster.  However, the methods 
based on deep neural networks always require powerful hardware platforms to maintain good 
running.  Moreover, the networks of 3D object detection and 6D pose estimation require many 
more training samples and much more training time.
	 Although impressive results have been achieved in 3D object detection and 6D pose 
estimation from RGB-D images over the last decade, most of the existing methods cannot be 
used to grasp textureless parts on the production line in clutter scenes, especially small dark 
parts.  The robustness of an automation system is the key to industrial use, because it will 
directly reduce the production efficiency and even cause severe economic losses if grasping 
fails.  To accurately rapidly grasp small dark textureless parts from a charging tray on the 
production line in clutter scenes, a novel practical method based on an RGB-D sensor is 
proposed in this paper.  Different from the above methods of simultaneous 3D object detection 
and 6D pose estimation, the proposed method is a two-stage cascaded method including 3D 
object segmentation and 6D pose estimation.  The first contribution of our method is that 
3D virtual and detected bounding boxes are combined to improve the 3D part segmentation 
accuracy.  The 3D virtual bounding box is determined from prior information on the parts and 
charging tray, and the 3D detected bounding box is obtained from the 2D detected bounding 
box in part detection based on an SSD network in an RGB image.  The second contribution 
of our method is that the coarse pose is estimated by fitting the central axis of the part rather 
than the part model to improve the accuracy of the pose estimation.  The proposed method has 
been successfully applied to robotic grasping on the industrial production line.  The results 
verified that grasping speed reaches the subsecond level, and that grasping accuracy reaches the 
millimeter level, and the stability and robustness of the automation system meet the production 
requirement.  
	 The remaining sections of this paper are organized as follows.  3D object segmentation and 
6D pose estimation are detailed in Sects. 2 and 3, respectively.  Section 4 describes the practical 
application and results of the proposed method.  Finally, conclusions and future research plans 
are given in Sect. 5.  
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2.	 3D Object Segmentation

2.1	 Motivation

	 The industrial production line is a structured environment; the robotic arm usually grasps 
parts from the charging tray at specific locations.  Ideally, the parts are all inserted vertically 
into the holes in the tray, and 3D point clouds of each part can be isolated using a set of 3D 
virtual bounding boxes, the size of which is determined by the part and the position of which is 
determined by the hole array in the tray.  The positions of the hole array are known after robotic 
grasping system calibration.  In reality, as shown in Fig. 1, some parts are inserted obliquely 
into the holes, which leads to the observed point clouds of a part not being covered entirely by a 
3D virtual bounding box.  
	 CNN-based 2D/3D object detectors have been widely applied to object location and pose 
estimation, and have achieved state-of-the-art results on multiple challenge datasets.  However, 
although the object detectors based on CNNs have shown promising results in handling object 
occlusion and background clutter, the detected bounding boxes cannot be accurately localized.(13)  
As shown in Fig. 1, the 3D detected bounding box excludes some observed point clouds.  For 
a small part with sparse point clouds, a localization error will severely affect the subsequent 
model fitting and pose estimation.  Considering the above two cases, we proposed to combine 
the 3D virtual and detected bounding boxes to segment 3D scene point clouds.  

2.2	 2D object detection based on SSD network

	 Compared with 3D object detectors based on CNNs, 2D object detectors require a much 
smaller number of training samples and a shorter training time, which are more suitable for 
low-cost engineering applications.  A majority of modern object detectors are based on two-

Fig. 1.	 (Color online) The black point is the observed point clouds of the part, the blue plane is the tray with the 
hole array, the red bounding box is the 3D virtual bounding box, the size of which is determined by the part and 
the position of which is determined by the hole array, and the green bounding box is the 3D detected  bounding box 
based on the RGB-D image.
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stage frameworks such as R-CNN,(14) SPP,(15) Fast-RCNN,(16) Faster-RCNN,(17) and R-FCN,(18) 
in which the first phase generates a sparse set of regions of interest (ROIs) and the second 
phase classifies each proposal by a network.  On the other hand, YOLO(19) and SSD(11) have 
popularized the one-stage approach, which removes the ROI pooling step and detects objects 
in a single network.  One-stage detectors are usually more computationally efficient than two-
stage detectors while maintaining a competitive performance.  YOLO predicts bounding box 
coordinates directly from an image and is later improved in YOLO9000(20) by switching to 
anchor boxes.  SSD places anchor boxes densely over feature maps from multiple scales and 
directly classifies and refines each anchor box.  Compared with YOLO, SSD has a significant 
improvement in mean average precision (mAP).  
	 The architecture of the SSD network is shown in Fig. 2.  VGG16(21) is used as the base 
network and its fully connected layers (FC6, FC7) are converted into convolutional layers.  In 
addition, SSD designs four extra feature layers connected to the end of VGG16.  Each extra 
convolutional layer outputs a feature map, which is used as an input for prediction.  These extra 
layers, together with Conv4_3 and the FC7 layer, predict the offsets to default boxes of various 
scales and aspect ratios and their associated confidences by small convolutional filters.  

2.3	 3D object segmentation based on region growing

	 The output of the SSD network is 2D bounding boxes, which will be back-projected to a 3D 
space with aligned RGB and depth images as shown in Fig. 3.  According to the idea described 
in Sect. 2.1, the union set of 3D detected and virtual bounding boxes is used to segment 3D 
scene point clouds.  Some noise and the observed point clouds of other parts are included in the 
initial results.  Furthermore, the region growing on the basis of the distance measurement is 
used to refine the segmentation shown in Fig. 4.

3.	 6D Pose Estimation

3.1	 Fitting the central axis of the part

	 From a single view with a depth camera, only partial point clouds of each object can be 
obtained, and the raw point clouds are more or less distorted and scattered.  A higher-level 

Fig. 2.	 Architecture of SSD network.(11)
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representation of these points as a set of shape primitives (e.g., planes, spheres, or cylinders) 
obviously gives more valuable clues for grasping.  There are a multitude of approaches based 
on superquadrics for modelling 3D point clouds with shape primitives.(22–24)  Superquadrics 
are a good trade-off between flexibility and computational simplicity, but sensitive to noise and 
outliers that will cause imperfect approximations.
	 The diameter of the small part in this paper is about 1 cm.  This means that there are only 
up to 11 point clouds per row reflected by the part when Intel RealSense D415 is installed 1 m 
away.  In contrast, there are more point clouds coming from the tray, as shown in Fig. 5.  The 
part model point clouds are shown in Fig. 5(a), while the observed point clouds are shown in 
Fig. 5(b).  Obviously, it is unreasonable to fit the part model with these 3D point clouds based 
on superquadrics.  Despite a lot of noise, it is not difficult to observe that all the point clouds 
are roughly symmetrically distributed along the central axis of the part, which inspires us to 
directly fit the central axis of the part with the point clouds by using the RANSAC algorithm.  

3.2	 Fine 6D pose estimate

	 Owing to noise, the fitted posture calculated from the observed point clouds deviates from 
the true posture  of the part model, as shown in Fig. 6.  The coarse posture will be refined by the 
ICP algorithm.  ICP is sensitive to the starting value.  A good starting value not only increases 
the convergence speed, but also prevents convergence to the local optimal.  As shown in Fig. 7, 
O′-X′Y′Z′ is the starting coordinated system for ICP, which is defined as follows: the Z′-axis is 
the normal of the fitted plane based on the observed point clouds, the Y′-axis is determined by 
Z × S1S1′, the X′-axis is determined by Y′ × Z′, and the origin O′ is located at the central point of 
all point clouds.  Theoretically, O′-X′Y′Z′ coincides with the O-XYZ coordinated system when 
ICP finishes; the system is located at the center of the part model and the X-axis is the same 
as the central axis of the part model.  Then, the X-axis becomes the refined posture, and the 
grasping position shown in Fig. 6 is also obtained.

Fig. 4.	 (C olo r on l i ne) Ref i ne d p oi n t c loud 
segmentation based on region growing.

Fig. 3.	 (Color online) 3D bounding box and 3D 
isolated point clouds. 
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4.	 Experimental Results

4.1	 Robotic grasping system

	 The robotic grasping system and production line are shown in Fig. 8: the orange rectangle 
shows the YK-XG industrial robotic arm, which provides 4 degrees of freedom, the yellow 
rectangle shows the gripper, the green rectangle shows Intel RealSensor D415, which is sealed 
to waterproof and dustproof it, and red arrows denote the heading direction of the production 

Fig. 5.	 (Color online) (a) Part model point clouds, 
and (b) observed point clouds, which contain a lot of 
noise, but still show rough symmetrical distribution 
along the central axis of the part.

Fig. 6.	 (Color online) SS ′ is the true posture of 
the part mode, S1S1′ is the fitted posture based on 
the observed point clouds, and the green rectangle 
represents the position and opening width of the 
gripper.

(a) (b)

Fig. 7.	 (Color online) S1S1′ is the fitted posture based on the observed point clouds and O-XYZ is the coordinated 
system of the part model. O′-X′Y′Z′ is defined as follows: the Z'-axis is the normal of the fitted plane based on the 
observed point clouds as shown on the right,  Y′ = Z' ×S1 S1' , X' = Y' × Z',  and the origin O′ is located at the central 
point of all point clouds.
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line.  A tray carries 8 × 8 = 64 parts at a time.  In addition to depth camera and hand-to-
eye calibrations, the coordinates of the hole array in the tray in the grasping area should be 
measured before running the system.  The automation system is developed in the C++ language 
in the windows operating system.  The CPU frequency of the industrial computer is 3.3 GHz 
without GPU.  The robotic grasping system can operate in the regular working environment of 
the factory, and no additional illumination source is required.  

4.2	 3D object segmentation

	 The training samples are labeled manually using LabelImg software.  The training dataset 
contains 156 images and each image contains not less than 5 parts.  Data augmentations, such 
as rotation and color transform, are applied to ameliorate the diversity of samples.  More than 
6000 part samples are obtained with data augmentation; which are sufficient for single-target 
detection.  The SSD network is fine-tuned in Caffe in the Ubuntu operating system.  The 
mAP is 90.1%.  The detection results based on the SSD network from the RGB image in the 
production environment, which are satisfactory in the dim and clutter scenes, are shown in Fig. 9.  
The detected parts are marked with green rectangles with certain probabilities.  Clearly, the 
bounding boxes do not surround the parts exactly.
	 Object detection based on the SSD network from the RGB image has the risk of omitting the 
parts.  Thus, the 3D detected bounding boxes obtained from the 2D detected bounding boxes 
in part detection based on the SSD network are combined with the 3D virtual bounding boxes 
determined by the parts and tray to isolate the scene point clouds shown in Fig. 10; this cannot 

Fig. 8.	 (Color online) (a) Robotic grasping system and production line. The orange rectangle shows the YK-XG 
industrial robotic arm, which is shown in detail in (b), the yellow rectangle shows the gripper, the green rectangle 
shows Intel RealSensor D415, which is shown in detail in (c), and red arrows denote the heading direction of the 
production line. 
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only ensure that no parts are omitted, but also improve the part segmentation accuracy.  From 
the sizes of the parts and tray, the length and width of the 3D virtual bounding box in this 
system are both 6 cm.  Figure 11 shows the point clouds of the parts labeled with red numbers in 
Fig. 9.  

4.3	 6D pose estimation

	 After 3D point cloud segmentation, the RANSAC algorithm is used to fit the central axis 
of the part and the plane parallel to the central axis.  On the basis of practical experience, the 
distance thresholds are set to 4 and 2 mm, respectively.  The fitted axis is the coarse posture of 

Fig. 9.	 (Color online) Detection results based on SSD network from RGB image. The detected parts are marked 
with green rectangles with certain probabilities. To keep the technology secret, the upper half of the image is 
blurred.

Fig. 10.	 Scene point clouds.
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the part.  Next, the part model point clouds are used to refine the coarse posture by using the 
ICP algorithm.  The iteration will stop if any of the following criteria are met: (1) the number of 
iterations reaches 20; (2) the difference between the current transformation matrix (R,T) and the 
previous one is smaller than 10−6; (3)  the mean squared error (MSE) between the current and 
previous sets of correspondences is smaller than 0.1 mm; (4) the maximum distance between the 
current and previous correspondences is smaller than 2 mm.  The coarse and refined postures 
are displayed in red and blue lines in Fig. 12, respectively.  The position and posture of grasping 
the parts in the world coordinated system are detailed in Table 1.  
	 The real scene of robotic grasping is shown in Fig. 13.  The time of 3D object segmentation is 
about 0.20 s, the time of 6D pose estimation is about 0.18 s, and the total time of grasping a part 
is less than 1 s.  The automatic grasping system works continuously for 8 h on the production 
line without any failure.  The opening width of the gripper is 1.7 cm, and the maximum 
diameter of the part is about 1 cm; this proves that the grasping accuracy is millimeter level.  
The grasping accuracy decreases with increasing distance, so the robotic grasping system 
requires that the maximum distance between the depth camera and the parts is limited to 1.5 m 
based on our experiment.

Table 1
Position and posture of grasping the parts in the world coordinated system.
No. Posture 	 X (mm) 	 Y (mm) Z (mm) α (rad) β (rad) γ (rad)

1 Coarse 	 3.503 	 183.550 	 −494.342 	 0.067 	 0.028 1.687 
Refined 	 −1.188 	 107.510 	 −509.576 	 −0.023 	 0.164 1.621 

2 Coarse 	 −43.924 	 147.768 	 −782.998 	 0.233 	 0.024 1.485 
Refined 	 −17.308 	 94.595 	 786.340 	 0.155 	 0.047 1.475 

3 Coarse 	 −427.081 	 98.291 	 −841.410 	 0.807 	 0.124 1.660 
Refined 	 −480.803 	 42.463 	 −812.166 	 0.810 	 0.222 1.621 

Fig. 12.	 (Color online) The black points are part 
model point clouds from the side view. The red point 
and line are the observed point clouds and the posture 
fitted by using RANSAC, respectively.  The blue point 
and line are the point clouds observed after translation 
and the posture refined by using ICP, respectively.

Fig. 11.	 3D point cloud segmentation of the detected 
parts.
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Fig. 13.	 (Color online) Real scene of robotic grasping. (a) The scene before grasping and (b) the scene when 
grasping. 

5.	 Conclusions

	 In this paper, a practical method of accurately rapidly grasping small dark textureless parts 
in clutter scenes is proposed.  In this method, the position information of the charging tray, 
combined with object detection results based on the SSD network from RGB images, is used to 
improve the accuracy of 3D part point cloud segmentation, then the known part model and its 
symmetry characteristics are used to estimate the 6D pose from the observed point clouds.  A 
millimeter-level grasping accuracy and a subsecond-level grasping speed are achieved using 
a customer-level depth camera.  The practical application on the industrial production line 
proves the stability and robustness of the proposed method.  In this paper, the robotic grasping 
of regularly placed parts is addressed.  In future work, we will focus on bin picking in a heavy 
clutter scene.  
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