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	 Robotic sensor systems play a vital role in the intelligent working of service robots, and 
service robots are important components of smart cities.  Robotic sensors sense information 
from themselves and their environment, and fuse pieces of information for use in perception, 
decision, planning, and control.  In this paper, we investigate the application of robotic sensor 
systems in 3D biped walking.  By using sensory feedback control, offline gait planning and 
online gait modification schemes have been proposed.  The gait planner plans the frontal and 
lateral reference trajectory of a biped robot.  Moreover, the kinetic constraint, zero moment point 
(ZMP) stability criterion, and unilateral constraint are taken into account, simultaneously.  The 
gait modification consists of the torso posture controller, the ZMP compensator, and the joint 
angle controller.  It is utilized to reduce the robot joint error through posture control and ZMP 
compensation.  Additionally, the online sensor parameter optimization based on reinforcement 
learning (RL) is proposed to improve the stable margin of walking.  Finally, simulations are 
presented to illustrate the effectiveness of the proposed method.

1.	 Introduction

	 A smart city is an integration of sensory, control, and intelligent technologies.(1)  It is an 
urban area that makes use of different types of sensor to collect data information and manage 
equipment and resources efficiently.(2)  It is referred to as a frontier concept and exploratory 
practice in the process of promoting industrial and urban informatization.  Its large-scale 
applications will become one of the new economic growth points in the future.(3)  The 
construction of a smart city will create a great demand for industry and will help people live 
conveniently.  It is becoming a more effective and vital approach to make developed countries 
competitive in the long term.  In 2004, Japan and Korea formulated the national strategic 
planning of U-Japan and U-Korea.  America has focused on strengthening the construction 
of intelligent infrastructure and promoting smart city application projects.  According to the 
statistics of the Chinese smart cities forum, 6 provinces and 51 cities have included smart cities 
in their government work reports in China.(4,5)
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	 Since sensors and their applications play a vital role in smart cities, it is significant to apply 
them to benefit humankind.  How to sense, integrate, and fuse information from sensors is a 
core problem.  Sensor perception acquires data knowledge from different sensors, which is the 
primary link of automatic detection and control.(6,7)  According to different sensing functions, 
sensors can be classified into, for example, thermal, force, magnetic, and gas sensors.  Sensor 
integration combines sensory data or data derived from disparate sources,(8,9) and sensor fusion 
fuses different pieces of sensing information into one representation.  These sensor technologies 
have the advantages of diverse environmental information, high robustness, and less 
uncertainty.  The branches of sensor integration and fusion include the integration pattern, the 
control structure, and the fusion algorithm.  Currently, common integration patterns are neural 
networks and logical sensors.(10,11)  The former pattern focuses on the mapping relationship 
between the input and the output, and the latter pattern regards physical sensors as logical 
sensors.  The control structure is selected according to different application scenarios.  For 
example, distributed blackboard control is suitable in real-time situations, and adaptive learning 
has a better control effect in a dynamic environment.  The essence of sensor fusion lies in the 
processing of uncertain information.  Common fusion algorithms(12,13) refer to, for example,  
the weighted mean, Kalman filter, multi-Bayesian estimation, and fuzzy logic.  The weighted 
mean processes a set of redundant raw sensing data by weighted averaging.  The Kalman filter 
has better real-time performance, which is usually utilized to deal with dynamic, low-level, 
and redundant data.  The multi-Bayesian estimation regards all sensors as a group consisting 
of multiple decision makers.  The fuzzy logic is a multivalued logic method, which represents 
uncertain sensor information in logical reasoning.  One of the most advanced and challenging 
sensor application fields involves robotic sensor systems.  Recent years have witnessed an  
increasingly rapid research on sensory feedback control for robotic sensor systems in smart 
cities.  Numerous results have been obtained.(14,15)  Different sensors are utilized to make 
a robot accomplish humanlike movements.  The rotating potentiometer detects robot joint 
rotation, and the six-dimensional force sensor reflects ground reaction force (GRF) information.  
Note that these works focus on the working principle and control methods of robotic sensors.  
However, there still exist numerous unsolved scientific challenges, such as gait planning, 
trajectory tracking, and environmental adaptability.  
	 In housekeeping service, disaster rescue, and medical rehabilitation, 3D biped walking is a 
humanlike walking mode, which is more approximate to the natural walking environment than 
2D biped walking.  However, adaptive 3D stable biped walking is difficult to achieve, because 
it needs to balance the frontal and lateral movements simultaneously.(16)  3D biped walking has 
the characteristics of multiphase, hybrid nature of legged locomotion and unilateral constraints, 
which must be satisfied by forces and torques at the foot–ground interface.  Additionally, the 
complexity of an environment will also lead to instability(17) and trajectory tracking error(18,19) 
in biped walking.  
	 To overcome the above problems, a hierarchical structure based on multisensor information 
feedback has been receiving increasing attention.  It has four layers, namely, the decision, 
coordination, execution, and perception layers.  The decision layer makes decisions according 
to the robot state, walking command, and environmental information.  It then interacts with 
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a remote master workstation through a wireless network.  The coordination layer coordinates 
commands between the execution and decision layers.  The execution layer carries out the 
trajectory tracking of each joint.  The perception layer senses environmental information and 
obtains the real-time walking state of the robot.(20,21)  It is the precondition of stable biped 
walking.  It consists of sensors including photoelectric encoders in each joint, force and torque 
sensors on the ankle, and upper body accelerometers.  The sensors can perceive information 
and deal with a 3D biped walker with model uncertainties and trajectory tracking errors.  
Although many advanced results on sensor applications in biped walking have been reported in 
the literature,(22–24) there are still some challenging issues to be addressed, including sensory 
feedback control and sensor parameter optimization.  All these observations motivate us in our  
current study.  
	 In this paper, we concentrate on a hierarchical biped walking structure based on multisensor 
information feedback with walking stability constraints and real-time sensory parameter 
regulations.  The main contributions can be summarized as follows.  
(1) A novel gait generation control strategy is proposed to plan the frontal and lateral reference 
trajectories for the biped robot, which takes the kinetic constraint, zero moment point (ZMP) 
stability criterion, and unilateral constraint into account.  The selection of gait parameters is 
formulated as a constrained nonlinear optimization problem, which is in the form of the moment 
quadratic function with continuous state switching conditions.
(2) A sensory feedback mechanism is utilized for trajectory tracking.  It is phase-dependent 
and consists of the torso posture controller, ZMP compensator, and joint angle controller.  The 
torso posture controller senses the robot posture information with the MEMS accelerometer and 
gyroscope.  The ZMP compensator uses force-sensing resistors (FSRs) to satisfy the walking 
stability criterion.  The joint angle controller measures the angle and angular velocity of each 
joint with joint sensors.  
(3) The online sensor parameter optimization is proposed on the basis of reinforcement 
learning (RL).  The sensory feedback control parameters are automatically adjusted in each 
walking cycle.  With this online learning scheme, 3D biped walking will satisfy gait planning 
constraints, and feedback parameters are also modified.

2.	 Dynamic Model

	 A complete walking step cycle of a biped robot can be divided into the double-support phase 
(DSP) and single-support phase (SSP).  The link dynamic model of the biped robot is depicted 
in Fig. 1.  It consists of five links: a torso and two legs with revolute knees and terminated with 
footplates.  The weights of the shank and thigh are m1 and m2, and their lengths are L1 and L2, 
respectively.  The robot here has a total of 9 degrees of freedom (dof) of motion: four in each leg 
and one in the upper body.  Several assumptions are made in advance.
Assumption 1: The impact between the swing leg and the ground is fully elastic, which satisfies 
the conservation of angular momentum.
Assumption 2: There is no up-spring and lateral shift between the leg and the ground when the 
impact happens.
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Assumption 3: Because the impact is instantaneous, the angular velocity suddenly changes 
while its angular displacement remains unchanged at the impact.  
	 To calculate the appropriate movement of the robot that leads to the given trajectory, the 
dynamics in the DSP is used, which can be derived from the Lagrange equation as

	 ( ) ( ) ( ) T,+ + = +M q q C q q q G q B J u�� � � τ ,	 (1)

where [ ]T 9 1
1 2 3 4 5 5 6 7 8 9, , , , , , , , ,q q q q q q q q q q ×= ∈q R  is the vector of generalized coordinates. 

( ) 9 9×∈M q R  is the symmetrical inertia matrix, which is positive definite, ( ) 9 9, ×∈C q q R�  is the 

centrifugal force and Coriolis force matrix, ( ) 9 1×∈G q R  is the gravity matrix, 9 9×∈B R  is the 
torque distribution matrix, 9 1×∈Rτ  is the actuator torques matrix, J is the Jacobian matrix, 
u = [Fext, τext] is composed of the GRF Fext and torque τext in the DSP, and u = 09×1 in the SSP.  
	 Remark 1: In this dynamic model, the coupling between the forward and backward 
directions have been taken into account, which precisely describes the biped robot, compared 
with the three-dimensional linear inverted pendulum (3D LIP).(25)

3.	 Gait Planning

	 To realize periodic stable walking, gait planning is carried out to discuss the coordination 
of each joint in a time sequence and task space.  It is assumed that the walking movement takes 
place in the sagittal and lateral planes, and on a horizontal surface without obstacles.  In this 
section, an offline gait planning method is introduced to control the bipedal to follow a stable 
reference trajectory in accordance with the ZMP stability criterion.  

Fig. 1.	 Dynamic model.
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3.1	 Kinematic constraints

	 In this section, a series of kinematic constraints are discussed to complete gait pattern 
generation and realize continuous switching between the swing foot and the support foot, taking 
the joint angle and velocity into account.  Each step should not be too low in order to improve 
the obstacle avoidance capability of biped robots.  Moreover, there is point contact between the 
foot and the ground at the beginning and end of each step.  Thus, it is necessary to divide every 
gait cycle into several subphases, including two parts in the SSP and three parts in the DSP.  
	 In the initial stage of the SSP, the tiptoe leaves the ground and the swing foot is raised.  The 
start time is assumed to be t1 when the robot speed is 0.  The distance between the feet remains 
unchanged, and only the tip of the toe of the swing foot touches the ground.  There exist the 
following constraints:

	 ( )( ) ( )( ) [ ]2 1

T1
1 1 0s O O s wC t t D L L= − = − −P q P q ,	 (2)

	 ( ) ( )( ) ( )( ) ( )1
2

12 3 1
1 1 1, O

s O
t

C t t t ×∂
= = =

∂
P q

V q q qq
� � 0 ,	 (3)

	 ( )3
2 1sC q t α= = − ,	 (4)

where 
1OP  and 

2OP  are Cartesian coordinates of O1 and O2, and D and Ls are the step and foot 
lengths, respectively.  Lw is the distance between the two legs.  α stands for the angle between 
the swing foot and the ground.
	 Then, in the middle stage of the SSP, the swing leg reaches the maximum height of the 
lifting step, where the footplate is parallel to the ground and the heel speed is 0.  The time is 
assumed to be t1.  Some kinetic constraints are described as

	 ( )( )4 T
2s foot z mC t H= ⋅ =P q e ,	 (5)

	 ( ) ( )( ) ( )( ) ( )
T

25 T
2 2 2, 0foot

s foot x x
t

C t t t
 ∂
 = ⋅ = ⋅ =
 ∂
 

P q
V q q e q eq

� � ,	 (6)

where Pfoot and Vfoot are the position and velocity at tm, and ex and ez are unit direction vectors 
along the x- and z-axes, respectively.  Hm is the step height.
	 At t3, which is the end of the SSP as well as the start of the DSP, the swing foot completes a 
step action in air when the heel of the swing foot touches the ground.  There are several kinetic 
constraints.

	 ( )( ) ( )( ) [ ]4 3

T1
3 3 0d O O s wC t t D L L= − = −P q P q 	 (7)
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	 ( ) ( )( ) ( )( ) ( )4
4

32 3 1
3 3 3, O

d O
t

C t t t ×∂
= = =

∂
P q

V q q qq
� � 0 	 (8)

	 ( )3
2 3dC q t β= = 	 (9)

Here, β refers to the angle between the heel and the ground at the foot placement.
	 In the middle stage of the DSP (at t4), the foot is in full contact with the ground surface.  
At the end stage of the DSP (at t5), the support foot begins to rotate around the toes.  The 
constraints are

	 ( )4
1 4 0dC q t= = ,	 (10)

	 ( )5
1 4 0dC q t= =� ,	 (11)

	 ( )6
2 5 0dC q t= = ,	 (12)

	 ( )7
2 5 0dC q t= =� .	 (13)

	 In accordance with continuous and periodic gait characteristics, the switch from the 
exchange of the swing foot to the support foot occurs at t6.

	
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 6 1 1 4 6 3 1 7 6 6 1 9 6 8 1

2 6 1 1 4 6 3 1 7 6 6 1 9 6 8 1

, , ,

, , ,w
q t q t q t q t q t q t q t q t

C
q t q t q t q t q t q t q t q t

 = = = =


= = = = � � � � � � � �
	 (14)

	 Remark 2: By adding kinetic constraints for gait planning, previous walking phases 
including the SSP and dDSP are divided into several subphases.  This is a clearer description of 
the 3D biped walking.  These kinetic constraints are also the basis of the ZMP stability criterion 
and reinforce learning for parameter modification, which is discussed in detail in Sect. 4.

3.2	 ZMP stability criterion

	 From the results of recent research,(25,26) the most intuitive and popular choice for the ZMP 
position is set in the middle of the sole of the supporting foot, as shown in Fig. 2, where the 
tipping moments are zero.  The ZMP was first put forward by Vukobratovic for measuring the 
dynamic stability conditions in biped walking.(27)  It can be defined as the point on the ground 
where the net moment of the inertial and gravity forces equals zero.  P stands for the ZMP in Fig. 2.  
In terms of stability, the robot is stable as long as there is a ZMP inside the supporting polygon.  
The polygon is the minimum domain of contact points between the foot and the ground.  Thus, 
the ZMP position should be calculated to satisfy ZMP constraints.



Sensors and Materials, Vol. 31, No. 6 (2019)	 2079

	 The pressure distribution ( , )extF x y  in Fig. 2 shows the reaction force from the ground.  
This force can be decomposed into ( , )z

extF x y , ( , )x
extF x y , and ( , )y

extF x y , where ( , )z
extF x y  is the 

component perpendicular to the ground, and ( , )x
extF x y  and ( , )y

extF x y  are components tangential 
to the ground.  The ZMP is defined as the point at which the moment generated by the reaction 
force satisfies 0x y

ext extτ τ= =  on the ground.  Let (xzmp, yzmp) represent the coordinates of the 
ZMP on the foot, 

	 ( ) ( , ) 0x z
ext zmp extS

x x F x y dxdyτ = − =∫∫ ,	 (15)

	 ( ) ( , ) 0y z
ext zmp extS

y y F x y dxdyτ = − =∫∫ ,	 (16)

where the domain S indicates the foot area and ∂S represents a set consisting of all the boundary 
points in S.  Thus,  (xzmp, yzmp) are calculated as

	
( , )

( , )

z
extS

zmp z
ext

xF x y dxdy
x

F x y
=
∫∫ ,	 (17)

	
( , )

( , )

z
extS

zmp z
ext

yF x y dxdy
y

F x y
=
∫∫ .	 (18)

	 Therefore, the ZMP constraints can be described as

	 ( ) ( )2 2
zmp zmp zmpx x y y δ′ ′− + − ≥ ,	 (19)

where ( ),x y S′ ′ ∈∂ , δzmp is the ZMP stable threshold.

Fig. 2.	 Schematic diagram of ZMP.
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	 On the other hand, some other constraints are also discussed to satisfy unilateral constraints.  
These constraints are aimed at satisfying the condition that the support foot touches the ground 
without slipping.

	 0z
extF > ,	 (20)

	 ( ) ( )2 2x y z
ext ext extF F Fµ+ < ⋅ ,	 (21)

where x
extF , y

extF , and z
extF  are the components of the GRF extF  on the x-, y-, and z-axes of 

coordinates, respectively.  μ is the friction coefficient.

3.3	 Walking parameter optimization

	 On the basis of the above kinetic constraints [Eqs. (2)–(14)], ZMP constraint [Eq. (19)], and 
unilateral constraints [Eqs. (20) and (21)], the walking trajectory of each joint planning can be 
written in the form of piecewise fourth-order polynomials.  By discretizing the continuous time, 
the Kth fourth-order polynomial is described as

	

( ) ( )

( ) [ ]

1
4

1
0

,

( 1,2,3,...,9).
,

t k k k

j
i ikj t k k

j

t t t t

i
q t C t t t

+

+
=

Λ = − −


=
= Λ ∈


∑ ,	 (22)

where tΛ  expresses the proportion of time in a walking cycle and qi(t) is the ith joint angular 
trajectory.
	 As for trajectory optimization, the torque minimization criterion is adopted to design the 
cost function ( ),J q q� :

	 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 6

1 3

T T T,
t t

t t
t t dt t t t t dt= + +∫ ∫J q q u u� τ τ τ τ .	 (23)

	 Equation (12) describes the quadratic integral of torque in the SSP and DSP.  Therefore, gait 
planning becomes a classical nonlinear constraint optimization problem, which can be solved 
by sequential quadratic programming (SQP).
	 Remark 3: SQP is considered to be one of the most effective ways to solve nonlinear 
constrained optimization.  It transforms the optimal trajectory and optimal control input into 
a nonlinear optimization problem with constraints.  This method solves the local optimal 
solution of a stable periodic gait, which can be realized by the Fmincon function in the Matlab 
Optimization toolbox.  Compared with other nonlinear optimization methods, SQP has a good 
convergence and boundary searching capability.
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4.	 Sensory Feedback Control

	 In spite of walking trajectory planning in advance, it is possible for the robot to fall while 
walking, owing to the differences between the dynamic model and the actual robot.  Therefore, 
sensory feedback control must be utilized to realize automatic gait adjustment.  Typical 
humanoid robots are equipped with many different types of sensor (e.g., gyroscope, acceleration 
sensor, FSRs in the feet, and sensors measuring the actual joint angles).  In this section, sensor 
information regarding the torso and ankle is used to modify the preplanned trajectories, and the 
feedback control parameters are set by RL.  The system block diagram with sensory feedback 
control is shown in Fig. 3.
	 Figure 3 shows the three main parts, namely, the torso posture controller, ZMP compensator, 
and joint angle controller.  The first part is designed to prevent the deviation of the torso angle 
away from the ideal value.  The middle part is aimed at reducing errors between actual and 
reference values.  The last part acts as a feedback to convert the above control command to the 
actions of the robot.

4.1	 Posture controller

	 The posture angle of the torso plays a vital role in stable robot walking.  The torso posture 
sensors, including the accelerometer and rotating gyroscope, are easily affected by the walking 
process.  The excessive tilt of the upper body will result in the center of mass (COM) deviating 
from the stable region.  If an immediate recovery is not adopted, the robot will fall down.  Thus, 
one of the effective methods of posture recovery is to adjust the hip joint angle of the support 
foot.  With the information from the torque sensor installed on the foot, the robot decision layer 
can decide which leg is the support leg.  The torso posture sensors installed in the upper body 
then modify the desired hip joint in real time.  The detailed parameter formula is described as

	 ( ) ( )1 1d r d r
hip P torso torso D torso torsoq k kθ θ θ θ∆ = − + −� � ,	 (24)

Fig. 3.	 (Color online) Sensory feedback controller.
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where d
torsoθ  and d

torsoθ�  represent the desired values of the torque angle, whereas r
torsoθ  and r

torsoθ�  

represent the actual ones.  1
pk  and 2

pk  are modifying parameters.

4.2	 ZMP compensator

	 The main goal of the ZMP compensator design lies in reducing the ZMP error between 
the actual and reference values, thus guaranteeing the stable walking in accordance with the 
preplanned trajectory.  The ZMP compensator parameter is modified as

	 ( ) ( )2 2d r d r
ankle P ZMP ZMP D ZMP ZMPq k x x k x x∆ = − + −� � ,	 (25)

where d
ZMPx  is the theoretical ZMP, which can be calculated using the planned gait, and r

ZMPx  is 
the ZMP measured by force sensors.

4.3	 Parameter modification with policy gradient learning (PGL)

	 In this subsection, the PGL algorithm is utilized to realize feedback parameter modification.  
This algorithm is a type of reinforced learning with the idea of “attempt-assessment-improvement”.  
It is advantageous in solving the local optimal solution of policy, especially in the absence of a 
cost function situation.  

	 Let 1 1 2 2
P D P Dk k k k =  K  be the feedback parameter set.  Assume that the objective equation 

is differentiable for every parameter in it, then the optimal solution can be found by calculating 
the gradient of the objective equation F(K),

	 ( ) ( ) ( )hip hip ankle ankleF q q q qα β= ∆ + ∆ + ∆ + ∆K ,	 (26)

where ( )
1

1 N
d r

hip torso torso
i

q N θ θ
=

∆ = −∑ , ( )
1

1 N
d r

hip torso torso
i

q N θ θ
=

∆ = −∑ , and f ot t
N T

−
=

∆
 is the number 

of interpolation steps in the SSP.  α and β are the weighting factors.
	 Moreover, it is necessary to generate p policies around K0.  ( )1 1,2, ...,i

m m p− =K  stands for 
the policy set, where p is proportional to the search space s.  Thus, the policy set generation 
equation is described as

	 [ ]1 0
1 2, , ...,i

m sρ ρ ρ− = +K K ,	 (27)

where { },0,j j jρ ε ε∈ − + .

	 In addition, the gradient ∇K  will be orthogonalized, and η is the fixed step size factor.  The 
pseudocode of the proposed PGL is as follows (Table 1).
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Table 1 
Pseudocode of proposed PGL.

PGL algorithm
INPUT: K0, η, Niter

OUTPUT: K*

1 begin
2 initialize K ← K0
3 for each iteration i = 1 to Niter

4 generate p random policies 1i
m
−K  near Ki−1

5 evaluate F(K) at all p policies 1i
m
−K

6 for each parameter { }1,2...j s∈

7 Evaluate , jF ε− , 0F  and , jF ε+

8 if , jF ε− > 0F  and , jF ε+ > 0F

9 0i
j∇ ←K

10 else

11 , ,
i

j j jF Fε ε+ −∇ ← −K
12 end if
13 end for

14
i

i
i

η∇ ← × KK
K

15 1i i i−← −∇K K K
16 end for
17 return K*

18 end

	 Remark 4: By the real-time detection of robot walking data, the sensory feedback controller 
modifies the current posture of the robot in accordance with the planned gait, with the aim of 
reducing the errors between the measured and desired ZMPs.  This is a sensor fusion concept, 
and the PGL can be used to solve the problem by iteration, realizing minimized cost function 
and model parameters.

5.	 Simulation

	 To verify the proposed methods given in Sects. 3 and 4, simulations are implemented.  Table 
2 lists the parameters of the robot used in the simulation.  The sensor is mounted on the sole of 
the foot and obtains data to determine the ZMP during walking.  
	 There are also some inequality constraints, including the friction coefficient, actuator motor 
torques, and GRFs.  Let |τ| < 250 N·m, μ < 0.4, and the tangential component of GRF x

extF  < 400 N.
	 The ZMP positions along the x- and y-directions are shown in Fig. 4.  It can be seen that 
the actual ZMP trajectory can track its reference trajectory.  COM and ZMP positions are 
overlapped, which indicates that RL for parameter modification can improve the ZMP tracking 
accuracy, compared with  the traditional PID control used in Ref. 28.
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Fig. 4.	 (Color online) ZMP positions. (a) X- and (b)  Y-directions.

Fig. 5.	 (Color online) Phase plots of joint angles. Fig. 6.	 (Color online) GRFs in X- and Y-directions.

(a) (b) 

	 Figure 5 shows phase diagrams of joint angles.  Each curve is in the form of a limit cycle, 
which indicates the walking process to be asymptotically stable and periodic.  The GRFs along 
the x- and y-directions are described in Fig. 6.  The curves are periodic, representing the switch 
between the support leg and the swing leg.  In the SSP, when the legs are off the ground, the 
GRFs are equal to zero.  The tangential component of GRF also satisfies x

extF  < 400 N.
	 Figure 7 illustrates the hip and ankle angle rotation modifications with time, where the PGL 
algorithm described in Sect. 4.3 was utilized.  The modifying policy is in real time.  The red and 
blue curves describe the alternating continuous changes along with the left and right directions.  
The joint motor torques are described in Fig. 8 and satisfy the actor motor torque condition, 
|τ| < 250 N·m.  It can be seen that all the actor motors are within the range of stable operation.

Table 2
Biped robot parameters.

Torso Thigh Shank
Link length (m) L0 = 0.788 L1 = 0.406 L2 = 0.473
Link mass (kg) m0 = 37.63 m1 = 5.53 m2 =3.32
Link inertia (kgm2) I0 = 1.948 I1 = 0.076 I2 = 0.062
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Fig. 7.	 (Color online) Rotation angle modifications with time. (a) Hip and (b) ankle.

Fig. 8.	 (Color online) Joint motor torques with time.

(a) (b)

6.	 Conclusions

	 In this paper, an overview of a smart city was discussed, including increasingly rapid 
development in various countries, the core technologies of sensors, and their application 
scenarios.
	 As one of the many applications in smart cities, robotic sensor systems are investigated.  
They can integrate motion, interaction, and manipulation functions to assist or replace human 
beings in daily tasks.  A gait planning strategy was proposed for a 3D biped walker with 
kinetic constraints and the ZMP stability criterion.  The walking parameters were regulated 
via sensory feedback control.  The sensory controller consisted of the torso posture controller, 
ZMP compensator, and impact reducer; the parameters of these controllers are automatically 
regulated in each walking cycle by the policy gradient RL method.  The proposed method 
provides an optimal walking gait and improves the trajectory tracking accuracy.  In the future, 
a robust sensory controller against external disturbance for the robotic sensor applications 
is expected.  In addition, human beings tend to utilize learned experiences to realize more 
complicated movements in high-dimensional environments in smart cities.
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