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	 Nowadays, indoor positioning is becoming one of the most important issues in smart cities.  
With the rapid progress of wireless communication and digital electronic technology, wireless 
sensor networks (WSNs) have been developed and are playing an important role in indoor 
positioning systems.  The received signal strength indicator (RSSI) is adopted by most range-
based localization algorithms.  However, the positioning system based on the RSSI is vulnerable 
to environmental interference and the RSS itself is unstable.  To tackle this problem, we propose 
an improved indoor localization based on the RSSI and general regression neural network (GRNN).  
In the raw data processing module, an improved average filter is proposed to make the raw 
data stable and reliable.  Then, an improved weighted centroid localization algorithm (IWCLA) 
is proposed to revise the positioning result on the basis of maximum likelihood estimation 
(MLE).  In the view of the complex and changeable indoor environment, an improved GRNN 
localization algorithm is proposed to achieve better applicability and higher positioning 
accuracy.  The effectiveness of the proposed methods is verified in different cases through 
simulation and experiment studies.

1.	 Introduction

	 The construction of smart cities is a developing trend throughout the world.(1,2)  The cities 
should be people-oriented and should achieve comprehensive and sustainable economic, social, 
and environmental developments.  The development of positioning technology has become 
an indispensable part of the construction of smart cities.  It is widely used in various fields, 
such as public safety, social networks, intelligent transportation, safe medical treatment, and 
location tracking.  Positioning technology is divided into indoor and outdoor positioning.  The 
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global positioning system (GPS)(3) and global navigation satellite system (GNSS)(4) both need 
to be maintained with the direct vision of the satellite in the outdoor environment in order to 
achieve the quality of communication applications.  Therefore, the GPS and GNSS are efficient 
as outdoor positioning systems, but not indoor positioning systems.  Indoor positioning is more 
difficult.  The complexity of the indoor positioning environment, the complex and changeable 
indoor space layout, multiple obstacles, multiple sources of interference, and other factors 
have great impacts on the accuracy and stability of indoor positioning.  The study of indoor 
positioning systems is essential.(5,6)

	 Indoor positioning, a research hotspot, is widely used in applications such as vehicle 
positioning.  Qu et al. used the technology of visual odometry to achieve a positioning 
accuracy of higher than 5 m.(7)  Wagner et al. used the technology of visual odometry and a 
gyro to achieve a positioning accuracy of higher than 2.5 m.(8)  Ibisch et al. used multicamera 
technology to achieve a positioning accuracy of higher than 1.2 m.(9)  These methods are all 
vision-related and require the target to be in sight.  In a real environment, such as a garage, 
there may exist disturbances or occlusions due to the large number of objects in the complex 
environment.  The indoor positioning methods mentioned above have certain limitations, and 
hence, a method based on the wireless sensor network (WSN) and received signal strength 
indicator (RSSI) is more applicable.(10,11)  Lin et al. used an optimized fingerprint-based 
positioning algorithm to achieve a positioning accuracy of higher than 3.5 m in a garage.(12)  In 
this work, we optimize the general radio-propagation-model-based localization algorithm to 
achieve an accuracy of higher than 4 m.  On the other hand, an improved general regression 
neural network (GRNN) positioning method based on an optimized method is proposed to make 
the positioning accuracy higher than 2.4 m.
	 At present, the indoor localization technology based on the WSN and RSSI mainly includes 
WIFI,(13) Bluetooth,(14) ZigBee,(15) and so forth.  The accuracy of WIFI localization can only 
reach about 2 m.  The stability of Bluetooth localization is low owing to signal interference, and 
Bluetooth devices are relatively expensive.  ZigBee localization has the advantages of low cost, 
reliable data transmission, stable network, low power consumption, and simple network layout.  
It supports a large number of nodes by using many fixed nodes to detect the RSSI value with an 
unknown destination node.  Then, better nodes can be chosen to estimate the unknown position 
of the blind node.  An indoor positioning experiment is performed using ZigBee to verify our 
methods.
	 In 2001, Laitinen et al. were the first to propose the location fingerprint-based positioning 
technology, namely, the database correlation method, which achieved significantly good 
positioning performance.(16)  Since the positioning performance mainly depends on the size and 
quality of the fingerprint database and the process of collecting data is time-consuming, the 
main challenges of the fingerprint-based positioning technology lie in two aspects.  The first is 
to increase the positioning accuracy, and the second is to reduce the workload.(17–21)

	 With the fingerprint database, intelligent algorithms especially neural network (NN) 
algorithms can be applied to achieve a high positioning accuracy.  The back-propagation neural 
network (BPNN) is in common use,(22,23) but has a local minimum problem.(24)  The radial basis 
function neural network (RBFNN) has been developed to solve this problem.(25,26)  However, 
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it encounters difficulties in the determination of the number and center of hidden layer nodes 
in the network.  The GRNN is a regularized RBFNN that overcomes the disadvantages of the 
RBFNN to some extent.(27)  When the number of input samples is large enough, the network 
can approximate a function with arbitrary precision.  However, with the increase in the number 
of samples, the network becomes larger and the computational efficiency decreases.  Thus, 
proper dimensionality reduction is needed.  In this paper, improved indoor localization methods 
based on the RSSI and GRNN are proposed.  The main contributions are listed as follows.
(1)	An improved radio-propagation-model-based localization algorithm is proposed.  In the raw 

data processing module, an improved average filter is proposed to make the raw data stable 
and reliable.  Then, the improved weighted centroid localization algorithm (IWCLA) is 
proposed to revise the positioning result by maximum likelihood estimation.

(2)	An improved GRNN-based localization method is proposed to increase the applicability and 
accuracy of the positioning system in the real environment.  

	 The rest of this paper is organized as follows.  In Sect. 3, an improved filtering algorithm 
is proposed.  In Sect. 4, the use of maximum likelihood estimation (MLE) in the positioning 
problem and the revision of the position of the nodes to be tested by the IWCLA are described.  
Section 5 shows a description of the improved GRNN.  The simulation and experiment results 
are given in Sects. 6 and 7.  In Sect. 8, we present our conclusions.

2.	 Radio-propagation Path Loss Model

	 For signals propagating from the transmitter to the receiver, varying degrees of loss exist.  
To a large extent, the loss affects the accuracy of positioning based on the RSSI, so selecting an 
appropriate loss model is particularly important.
	 The two theoretical models most commonly used are the free space propagation loss model (free 
space) used in the ideal environment and the lognormal distribution model (shadowing) used in 
the actual environment.(28)

	 Signal interference has a serious impact on signal intensity loss.(29)  In this case, the free 
space propagation loss model is not applicable.  Therefore, the shadowing model (SM) is 
introduced.  The relationship between the received power and the distance is given by

	 ( ) ( ) ( )0 010 lg /PL d PL d n d d Xσ= + × × + ,	 (1)

where d is the distance between the receiver and the transmitter, d0 is the reference distance, 
n is known as the path loss exponent, PL(d) is the signal power (dBm) of the receiver, and 
Xσ denotes a zero mean Gaussian random variable that reflects the interference in an indoor 
environment.
	 In a practical application, it is desirable that d0 = 1 m and that the RSSI values of the receiver 
can be collected.  Therefore, the simple model can be represented as

	 ( ) ( )lgPL d A B d= + × ,	 (2)
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where A = PL(1) + Xσ and B = 10 × n.  From the known data of the received power and distance, 
the values of A and B can be calculated by linear fitting.

3.	 Improved Average Filter for RSSI

	 In the indoor wireless network, the multipath and shadow effects can easily cause the 
fluctuation of the RSSI value.  In addition, owing to the complex and changeable indoor 
environment and frequent activities of indoor personnel, the received value of the RSSI will 
fluctuate around the real values.  The use of a filter to remove the noise is necessary.  Various 
filters can be used to smooth the RSSI value.  The simplest one is the average filter.(30) 
	 The average RSSI value requires a few packets from each beacon node.  The RSSI value is  
calculated as
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	 To better remove the sudden peaks, we adopt a new filter based on the average filter.  The 
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4.	 Radio-propagation-model-based Localization Algorithm

	 Since the original positioning system based on the RSSI is vulnerable to environmental 
interference and the RSS itself is unstable, the positioning accuracy becomes low.  In order 
to improve the positioning accuracy, the general positioning algorithm is optimized.  The 
positioning module can be divided into three phases.  First, the number of nearest beacon nodes 
for the blind node is determined in the determination phase.  Then, the initial positioning result 
of the blind node is calculated using the selected nearest beacon nodes in the positioning phase.  
In the correction phase, the initial positioning result is fine-tuned to obtain more accurate 
positioning coordinates.

4.1	 Maximum likelihood estimation

	 MLE is a statistical method.(31)  As shown in Fig. 1, the known coordinates of the beacon 
nodes are (x1, y1), (x2, y2), (x3, y3), …, (xn, yn), and the distances between the beacon nodes and 
the blind node are d1, d2, d3, …, dn, respectively, assuming that the coordinates of the blind node 
are (X, Y).
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	 Then, Eq. (5) is established as
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	 The equations are changed into the form of AZ = b, such as
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	 Utilizing the standard minimum variance estimation method, the coordinate of the blind 
node can be obtained as 

	 ( ) 1T TZ A A A b
−

= .	 (7)

4.2	 Determine the number of nearest beacon nodes

	 By MLE, N, the number of nearest beacon nodes for the blind node, must be determined and 
divided into  groups (three nodes per group because three nodes mean less calculation and high 
positioning accuracy).(32)  The MLE method [described by Eqs. (5)–(7)] is used to calculate the 
location of the undetermined blind node in each group.  Finally, the average value of the raw 
positioning results in the  groups is calculated as the raw positioning result.  Through many 
experiments, we found that N is not large.  Therefore, how to determine N becomes the focus of 
the offline phase.  Through experiments, the optimal N is determined to be four for this system.

Fig. 1.	 Maximum likelihood estimation.
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4.3	 Improved weighted centroid localization algorithm

	 It was found through experiments that the degree of matching between the lognormal 
distribution model and the actual situation decreases with increasing distance.  In view of this 
phenomenon, the IWCLA based on MLE is proposed in this paper to revise the raw positioning 
result, as shown in Fig. 2.
	 Point X1 is the blind node given by Eq. (7).  Point X2 is the revised node.  Their coordinates 
are (x1, y1) and (x2, y2), respectively.  Point C1 is a beacon node and c1 is the circle centered at 
point C1.  Point B1 is the intersection between line C1X1 and circle c1; its coordinates are (

1BX , 
1BY ).  

As the accuracy of the model decreases with increasing distance, a greater weight is given to 
the near point.  Similarly, points B2 and B3 are obtained by the previous method.  The IWCLA 
is shown as
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where r1, r2, and r3 are the radii of circles c1, c2, and c3, 
1BX , 

2BX , and 
3BX  are the abscissae of 

B1, B2, and B3, and 
1BY , 

2BY , and 
3BY  are the ordinates of B1, B2, and B3, respectively.  n is the 

weighted parameter.
	 The structure of the radio-propagation-model-based localization algorithm based on the 
methods proposed above is shown in Fig. 3.  First, four nearest-neighbor beacon nodes are 
selected and their RSSIs are sent to the improved average filters.  Secondly, the distances 

Fig. 2.	 (Color online) Weighted revision method.
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between the blind node and the four nearest beacon nodes are calculated using Eq. (2) (SM) and 
divided into four groups (three per group) with the position coordinates of the beacon nodes.  
Then, the four raw positioning results are calculated by MLE and revised using the IWCLA, 
respectively.  Lastly, the four revised positioning results are averaged to obtain the final 
positioning result.

5.	 Improved GRNN Localization Algorithm Based on RSSI

	 The radio-propagation-model-based localization algorithm mainly relies on the radio 
propagation path loss model.  However, because of the complex and changeable indoor 
environment, it is difficult to build a model that fully conforms to the current signal attenuation 
situation.  In contrast, the NN localization algorithm based on the RSSI can achieve better 
applicability and higher positioning accuracy in the real environment.
	 Neural network localization algorithms, using the fingerprint database as training data, are 
based on fingerprint-based positioning technology.  Fingerprint-based positioning technology is 
generally divided into two phases: offline and online phases.  The positioning process is shown 
in Fig. 4.
(1)	Offline/training phase

This phase includes data preprocessing and database establishment.  In the positioning area, 
the position of a beacon node is determined at a certain interval, and the RSSI values of all 
the punctuation marks measured at each beacon node are filtered and stored in the database 
together with the position coordinate information of the beacon nodes.

(2)	Online/positioning phase
In this phase, the signal intensity information detected by the user in real time is compared 
with that in the fingerprint database, and the target location is calculated using the 
correlation matching algorithm.  Common matching algorithms include the nearest-neighbor 
method, K nearest-neighbor method, K weighted nearest-neighbor method, and NN 
algorithms.

	 For NNs, in the training phase, the fingerprint database is used to train the NNs to obtain 
network parameters that conform to the training data.  In the positioning phase, there are two 

Fig. 3.	 Structure of the radio-propagation-model-based localization algorithm.
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problems that need to be solved: (1) In order to reduce the modeling time and improve the 
recognition rate of the classification system, an optimal NN structure must be selected for 
modeling.  (2) As the positioning area increases, the amount of beacon nodes and the number of 
training data also need to be increased.  This will result in an increase in NN input, an increase 
in network dimension, a complex network structure, and a greatly reduced computational speed.
	 For problem 1, the GRNN is a good choice.  Its number of neurons in the hidden layer is the 
same as the number of input samples.  When the number of neurons in the hidden layer is large 
enough, the network can approximate a function with arbitrary precision.  However, with the 
increase in the number of samples and hidden layer neurons, the network becomes larger and 
the computational efficiency decreases.  This is where the proper dimensionality reduction is 
needed.
	 To overcome the shortcomings of the GRNN, an improved GRNN is proposed to solve 
problem 2.  Since the distance of the wireless signal transmission is limited, with the increase 
in distance, its reliability is reduced.  Therefore, instead of using the GRNN directly, the 
positioning area is divided into several small regions, each of which corresponds to an improved 
GRNN network, and the classification criterion corresponds to the structure of the nearest 
beacon nodes for the blind node in the region (for example, if there are six beacon nodes in 
total, the blind node with the same four nearest-neighbor beacon nodes will be divided into the 
same region).  In this way, the network dimension is reduced, and the positioning accuracy is 
improved.
	 On the bases of the structure of the radio-propagation-model-based localization algorithm 
in Fig. 3, the structure of the improved GRNN is established as shown in Fig. 5.  The structure 

Fig. 4.	 (Color online) Fingerprint-based positioning flow diagram.
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is simplified in comparison with the IWCLA, where MLE and the IWCLA are replaced by a 
single GRNN and the radio-propagation loss model is not needed.  Thus, it can avoid possible 
impacts caused by model inaccuracy as the GRNN is a model-free method.  In the proposed 
improved GRNN method, four single GRNNs are included by setting the number of nearest 
beacon nodes as four.  Every single GRNN has three RSSI inputs and two coordinate outputs 
of x and y.  The improved GRNN is proposed to reduce the network dimension and improve the 
positioning accuracy.
	 A single GRNN processing phase is shown in Fig. 6.  RSSI(i) and (x, y)(i) mean the ith input 
and ith output of the jth single GRNNj.  The maximum values of i and j depend on the size 
of the dataset and the number of single GRNNs, respectively.  An improved GRNN has four 
single GRNNs and one area may use several improved GRNNs.  In the offline phase, each 
single GRNN corresponds to three particular RSSIs [for example, the three nearest-neighbor 
beacon nodes for the blind node in the training set are RSSI1, RSSI2, and RSSI3 with the output 
coordinates (x, y), which are put in the corresponding single GRNN network for training].  In 
the online phase, the blind node is estimated in the corresponding area and four corresponding 
single GRNNs are chosen to form the improved GRNN with other components, as shown in Fig. 5.  
The three NN algorithms (BPNN, RBFNN, and improved GRNN) are compared in Sect. 6.3, 
and the improved GRNN model based on the RSSI is verified to be more suitable for an indoor 
localization system.

6.	 Simulation Results

	 MATLAB is used to verify the proposed methods and algorithms.  The simulation includes 
comparisons of several filters, and verifications of the efficiency of the IWCLA and improved 
GRNN.

Fig. 5.	 Structure of the improved GRNN.
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6.1	 Noise filtering algorithm

	 The signal intensity loss is affected by the reflection of the environment, the multichannel 
dynamic reflection, and the mutual interference between multiple signal emitters.  The loss is 
referred to as noise.  The measurement statistics indicate that the noise is a Gaussian distribution 
function with an average of zero.  
	 Here, when the MATLAB normrnd (MU, SIGMA) function is used to simulate 
environmental noise, the Gaussian distribution function parameter MU represents the average 
and SIGMA represents the standard deviation.  Normrnd (0,7) is used to simulate noise in the 
experiment.  We assume that the actual signal strength is −60 dBm and noise interference is 
added to it with the sampling period of 1 s.
	 In addition to the two average filters, there is also a feedback filter(30) to reduce positioning 
delay and a smoothing filter(32) to make the positioning data more reliable.  In the simulation, 
the four filters are each verified.  The simulation results are shown in Fig. 7.
	 In Fig. 7, the orange solid line represents the raw signal without noise.  The green dashed 
line represents the raw signal with noise.  The dashed lines of other colors represent the signals 
filtered by different filters.  The mean-square-root errors of the average filtered, feedback 
filtered, smooth filtered, improved average filtered, and raw signals are 0.18, 0.41, 0.25, 0.16, 
and 0.67 dBm, respectively.  Although the filtering effects of the average and smooth filters are 
not as good as that of the improved average filter, their values are also close to that of the raw 
signal without noise, indicating that they have better filtering effects than the feedback filter.  
The signals filtered by the average, feedback, and improved average filters gradually level off 
with time.  Although the feedback filter reduces noise to a certain extent, it does not exhibit 
a good filtering effect, and the filtered RSSI value still changes with noise fluctuation.  It is 
obvious that the improved average filter has the best filtering effect among the four filters.

Fig. 6.	 (Color online) Single GRNN processing phase. (a) offline and (b) online phases.

(a)

(b)
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6.2	 Improved weighted centroid localization algorithm

	 The static positioning simulation scene described in this section is shown in Fig. 8.  The 
positioning area is 40 × 40 m2.  Seven beacon points are set in the area, and their coordinates 
are (10,0), (30,0), (0,20), (20,20), (40,20), (10,40), and (30,40).  In this scenario, the lognormal 
distribution model is used in Eq. (2), where the path loss coefficient is set to three, and the noise 
is set to a Gaussian distribution random number with a mean of zero and a standard deviation of 
seven.
	 In the simulation, 100 points to be located are randomly generated, and the number of their 
nearest beacon nodes, N, is waiting to be determined.  3

NC  groups are calculated by MLE [shown 
in Eqs. (5)–(7)] and the average result is the final positioning result.  With different N values, 
different positioning results are obtained as shown in Fig. 8.
	 According to Eq. (6), the greater the number n, the higher the accuracy of the positioning, 
and the higher the cost of calculation and hardware.  In practical applications, the distant nodes 
are unreliable because of interference effects, thus causing great error in the positioning.  The 
grouping method is used when N nearest-neighbor beacon nodes are selected and divided into 

3
NC  groups to use the MLE in line with the rule of three nodes per group.(32)  We compare 

the positioning result with different N values, as shown in Fig. 8 (the blue asterisk represents 
the beacon point, the black asterisk represents the target positioning point, and the red circle 
represents the actual positioning point).  The calculated average distance errors are 2.387, 1.015, 
2.272, and 5.642 m with N = 3, 4, 5, and 6, respectively.  It can be clearly seen in the figure 
that the distance between the target and the actual positioning point is the smallest when N = 4.  
According to the simulation results, N = 4 is selected for the best positioning effect.

Fig. 7.	 (Color online) Simulation results of noise filtering algorithm.
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	 However, it is found through experiments that the degree of matching between the lognormal 
distribution model and the actual situation decreases with increasing distance.  When the 
IWCLA presented in Sect. 4.3 is used to revise the positioning result based on the MLE with N = 4, 
the average distance error is reduced to 1.0 m.  The simulation result is shown in Fig. 9.

6.3	 Comparison of three NNs

	 This simulation is set up under the MATLAB simulation environment.  Six beacon points 
are arranged in an 80 × 60 m2 rectangular positioning area and their coordinates are (20, 20), 
(40, 20), (60, 20), (20, 40), (40, 40), and (60, 40).  Then, 500 points are generated randomly and 
their RSSI values are calculated from the six beacon nodes in accordance with the lognormal 
distribution model (in the real experiment, an RSSI value can be measured directly using 
reliable hardware).  Then, the coordinates of the 500 points and 500 × 6 RSSI values are 
stored in the file as the training data of the NN.  Twenty points to be measured are randomly 
generated, and the RSSI values they receive is used as the input of the NN.  Here, the path-loss 
coefficient of the lognormal distribution model is set to three, and the noise in the positioning 
scene is set to a Gaussian distribution random number with a mean of zero and a standard 
deviation of seven.

Fig. 8.	 (Color online) Simulation results of the MLE method. (a) N = 3, (b) N = 4, (c) N = 5, and (d) N = 6.

(a) (b)

(c) (d)
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	 The BPNN and RBFNN have the same input and output layers.  Each point to be measured 
receives RSSIs from six different beacon nodes, and the coordinates of each point are needed.  
Therefore, the number of neurons in the input layer is set to six corresponding to six beacon 
nodes, and the number of neurons in the output layer is set to two corresponding to the 
coordinates of x and y.  The positioning area is divided into several regions, each corresponding 
to an improved GRNN with four inputs and two outputs.
	 These three NNs have different structures and hidden layers.  On the basis of the 
experimental results, the BPNN’s hidden layer is set to one with three neurons, the RBFNN’s 
hidden layer is set to one with six neurons, and the single GRNN’s (an improved GRNN has 
four single GRNNs) hidden layer is set to one with np (the number of input samples in the pth 
single GRNN) neurons.
	 Figures 10(a)–10(c) show the simulation results of the BPNN, RBFNN, and improved 
GRNN, respectively.  Cyan asterisks indicate the beacon nodes, the black asterisk is the actual 
position of the point, that is, the expected value of NNs, and the small red circle is the position 
calculated by NNs.  In order to adopt the best NN results in the positioning system of the WSN, 
the BPNN, RBFNN, and improved GRNN models are compared and analyzed from the three 
aspects of training time, the number of neurons in the hidden layer, and the average distance 
error.
	 Table 1 shows the training time, the number of neurons in the hidden layer, and average 
distance errors of three different NNs.  The learning rate of the BPNN is obviously lower than 
those of the other two networks.  According to the Euclidean distance calculation, the average 
distance error of the improved GRNN is less than those of the other two networks.  From 
the perspective of training time and average distance error, the improved GRNN network is 
obviously superior to the other two.  

7.	 Experiment Results

	 The positioning system is composed of ZigBee gateway and ZigBee beacon nodes.  The 
Mdv-stm32-107 and emb-stm32w-m1 development boards are respectively used in the designs.

Fig. 9.	 (Color online) Simulation results of the IWCLA.
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	 The MDV-STM32-107 development board is used for the ZigBee gateway to be placed on 
the moving objects to be located.  The system is also used for networking.  Beacon frames 
containing RSSI are sent, positioning calculation is performed, and positioning results are sent 
out.  
	 The EMB-STM32W-M1 development board is fixed indoors, used for the ZigBee beacon 
node, and used to join the ZigBee network when the system is in operation.  It receives RSSIs 
and forward them to the gateway.
	 We place the gateway on top of the car and the beacon nodes at a fixed position of the garage 
at the same height as the gateway.  Since the road in the garage is flat, the vertical position of 
the gateway will not change when the car is being driven in to the garage.  Thus, although the 
experiment is conducted in a 3D environment, a 2D positioning method can still be used.
	 The experiment is carried out in a parking lot with a size of 30 × 60 m2.  Nineteen beacon 
nodes between carports are relatively evenly distributed in the parking lot, as shown in Fig. 11 
(the black asterisk represents the target position; the red circle represents the actual position 
in experiment 1; the blue circle represents the actual position in experiment 2).  The radio-
propagation-model-based and improved GRNN localization algorithms are each used to locate 
mobile nodes.  
(1) Experiment 1:  Radio-propagation-model-based localization algorithm

Before the experiment, preparations should be made; that is, in the experiment scene, mobile 
nodes should be placed at distances of 0.5, 1, 1.5, 2, 3, 4, 5, 6, and 7 m from any beacon node.  
The RSSI values accepted by mobile nodes should be measured many times, and the average 
value for the same position should be calculated.  Then, Eq. (2) is used to fit the RSSI and 
Euclidean distance d, that is, A and B are calculated as −60.54 and −29.96, respectively.

Fig. 10.	 (Color online) Simulation results of three NNs. (a) BPNN, (b) RBFNN, and (c) improved GRNN.

Table 1
Performance of three NNs.
Type of NN Training time (s) No. of neurons in hidden layer Average distance error (m)
BPNN 19.24 3 1.46
RBFNN 7.92 6 1.43
Improved GRNN 0.13 np in pth single GRNN 1.08

(a) (b) (c)
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(2) Experiment 2: Improved GRNN localization algorithm
Before the experiment, the training data must be collected, and the position of the carport 
is selected as the training points (10 training points per carport).  The 62 × 10 data values 
collected are used to train the improved GRNN.

	 The results of the experiment are shown in Table 2.  The positioning accuracies in 
experiments 1 and 2 are 2.5–3.9 m (mean: 3.1 m) and 1.1–2.3 m (mean: 1.8 m), respectively.  
The accuracy of the improved GRNN localization algorithm is significantly higher than that 
of the radio-propagation-model-based localization algorithm in the real environment.  Since 
the positioning area is large and the garage is full of vehicles that may cause disturbances or 
occlusions to the positioning, it is still a challenge to locate the vehicle in the garage with good 
positioning accuracy and positioning stability.  In contrast to other positioning methods used in 
the garage, our methods consider both the positioning accuracy and positioning stability (based 
on the WSN and RSSI), and yield a good positioning result.

8.	 Conclusions

	 We studied the indoor wireless positioning technology based on the RSSI and GRNN.  
Firstly, an improved average filter was proposed.  Secondly, an improved weighted centroid 
algorithm was proposed to revise the approximate position of the mobile node by MLE.  Then, 

Fig. 11.	 (Color online) Layout of parking lot test scene.

Table 2
Results of the two algorithms.

No. Target position Experiment 1 Experiment 2
Actual position Positioning error (m) Actual position Positioning error (m)

1 (20,15) (18.1,17.5) 3.1 (18.6,14.1) 1.6
2 (25,10) (23.1,13.2) 3.7 (23.9,12.1) 2.3
3 (10,15) (12.1,16.5) 2.5 (11.8,16.3) 2.2
4 (30,5) (27.7,3.9) 2.5 (28.3,4.1) 1.9
5 (35,20) (32.9,17.9) 2.9 (33.8,20.9) 1.5
6 (50,15) (47.5,12.8) 3.3 (48.2,13.9) 2.1
7 (45,20) (45.9,23.8) 3.9 (44.7,21.1) 1.1
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an improved GRNN was proposed in response to the GRNN’s deficiency in achieving better 
applicability and higher positioning accuracy in the real environment.  Finally, the effectiveness 
of the proposed methods was verified in different cases through simulations and experiments.  
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