
2013Sensors and Materials, Vol. 31, No. 6 (2019) 2013–2028
MYU Tokyo

S & M 1912

*Corresponding author: e-mail: zhangyhhit@163.com
https://doi.org/10.18494/SAM.2019.2406

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Segmentation of Activated Sludge Phase Contrast Microscopy 
Images Using U-Net Deep Learning Model

Li-Jie Zhao,1 Shi-Da Zou,1 Yu-Hong Zhang,2* Ming-Zhong Huang,1 Yue Zuo,1 
Jia Wang,1 Xing-Kui Lu,1 Zhi-Hao Wu,1 and Xiang-Yu Liu2

1College of Information Engineering, Shenyang University of Chemical Technology,
No. 11 St., Tiexi Economic and Technological Development Dist., Shenyang City 001021, China

2College of Environment Engineering, Shenyang University of Chemical Technology,
No. 11 St., Tiexi Economic and Technological Development Dist., Shenyang City 001021, China

(Received April 17, 2019; accepted May 29, 2019)

Keywords:	 wastewater treatment, activated sludge, phase contrast microscopy, image segmentation, 
U-Net model

	 For the activated sludge wastewater treatment process, the image segmentation of flocs and 
filaments has become a crucial component in the successful implementation of a sludge volume 
index (SVI) sensor and the early fault detection of filamentous bulking.  The segmentation 
of a phase contrast microscopy (PCM) image is a challenging problem because of the weak 
greyscale distinction between  flocs and filaments, as well as the artifacts of halos and shadows.  
In this work, we proposed an automatic floc and filament segmentation method for PCM images 
using a U-Net deep learning structure with data augmentation.  A loss function combining 
the binary cross entropy (BCE) function and Dice coefficient is proposed to improve the 
segmentation accuracy and sensitivity with unbalanced foreground and background samples.  
The performance of the segmentation algorithm is evaluated by the accuracy, precision, recall, 
F-measure, and intersection-over-union (IoU) metrics.  Lab-scale experiments on the activated 
sludge process have been carried out to verify the proposed image segmentation method.  Our 
proposed U-Net models with the combined loss function give better results than the U-Net 
models with BCE, fully convolutional network-VGG16 (FCN-VGG16), and a traditional 
segmentation method.

1.	 Introduction

	 The activated sludge process is a general and typical biological wastewater treatment 
process.  Biodegradation occurs in aeration tanks where microorganisms form activated sludge 
flocs.  The settling ability of activated sludge, which directly determines the quality of the 
wastewater effluent, is critical for the operation of wastewater treatment plants,   Therefore, the 
key to the operation of a sewage treatment plant is to have sufficient activated sludge with good 
settling ability.  
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	 Conventionally, the settling ability of the activated sludge treatment plants is monitored 
by measuring physicochemical parameters such as the sludge volume index (SVI).  However, 
regular measurements are costly, tedious, and time-consuming, and have associated 
environmental hazards.(1)  The morphological characteristics and internal structure of  flocs 
and filaments are closely related to the settling ability of activated sludge.  The morphological 
change of the activated sludge is used for the early detection and identification of abnormal 
operation conditions, such as sludge bulking and pin flocs.  Activated sludge microscopic 
examination is required for process control and stable plant operation.(2)  However, the accuracy 
and reliability of manual image analysis largely depend on the operator’s prior knowledge.  
	 With the development of microscopy and digital image processing technology, a large 
number of digital images of activated sludge can be collected and stored, and quantitatively 
analyzed.(3–6)  By extracting the morphological information of flocs and filaments from 
microscopic images, physical and chemical parameters such as SVI can be effectively measured, 
and the abnormal operation of a sewage treatment plant can be detected early.(7)

	 Since the collected samples do not require special preparation and filamentous bacteria can 
be observed at a relatively low magnification, phase contrast microscopy (PCM) is commonly 
used to observe activated sludge.  Over the last two decades, the processing and analyses of 
PCM images of activated sludge have received considerable attention and widely applied to the 
measurement of SVI and the early detection and fault diagnosis of sludge bulking in wastewater 
treatment plants.(8,9)  Grijspeerdt and Verstraete investigated the relevance of the morphology 
of activated sludge flocs and the settling ability of the sludge, and performed image analysis to 
estimate the settling ability of activated sludge.(4)  Khan et al. reported a robust segmentation 
of PCM images of filamentous bacteria, the identification of image analysis parameters for 
the morphology of the bacteria, and the measurement of SVI.(1)  The processing and analyses 
of microscopy images have proven to be a potential alternative monitoring tool in the early 
warning and prediction of the settling ability.(10) 
	 Image segmentation is a key step in image analysis and the basis for further understanding 
the microbial structure.  The accuracy of image analysis depends on the quality of the 
segmentation of microbial aggregates and filaments in microscopy images of activated sludge.  
Several traditional image segmentation algorithms, including edge detection, clustering, 
texture-based segmentation, watershed algorithm, and some combinations of algorithms, have 
been reported for activated sludge images.  Khan et al. applied nine different approaches to 
segment PCM images of activated sludge (AS) samples and assessed their effectiveness in a 
comparative experiment.(11)  The experiments have shown that these traditional algorithms have 
the risks of oversegmentation, undersegmentation, and failure, and are not always applicable to 
all PCM images.  Nisar et al. found that flocs are oversegmented using the Otsu thresholding 
algorithm.  Furthermore, they investigated three image segmentation algorithms for PCM 
images.(12)  Khan et al. proposed a robust segmentation procedure for flocs and filamentous 
bacteria, and investigated regression models for SVI on the basis of the extracted morphological 
characteristic parameters of filaments and flocs.(13)  Jenné et al. developed an automatic 
image analysis system for monitoring the floc and filament features of  activated sludge.(14)  
However, these methods usually require some parameters be manually set to achieve automatic 
segmentation.
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	 Currently, traditional image segmentation methods are based on the assumption of sharp 
grey contrasts between flocs and filaments.  In a microbial image of activated sludge captured 
by PCM, greyscale distinction is not clear owing to the illumination or sensor nonuniformity of 
PCM.  The water stain on the slide causes artifacts of halos and the shade-off of PCM images 
and many white spots inside microbial aggregates.  It is difficult to achieve high performance 
for the traditional segmentation method based on thresholds or edge detection in a complex 
view of PCM images.
	 Compared with a traditional image segmentation algorithm, image segmentation algorithms 
based on deep learning have made significant progress, which can solve many problems that 
cannot be solved by traditional image segmentation methods.(15)  Shelhamer et al. adopted 
contemporary classification convolutional networks into fully convolutional networks (FCNs) 
and transfer their learned representations to the segmentation task.(16)  The U-Net deep learning 
network is a potential tool that can be used to further improve the loss of detailed image 
information caused by the multiple down-sampling operations of the image in the network.(17)  
The U-Net model network structure is easily trained and is suitable for a small sample.  
	 In our work, an automated segmentation method for a PCM image is proposed to extract 
flocs and filaments using the U-Net deep learning structure with data augmentation.  In order 
to deal with sample imbalance, we propose a loss function combining the binary cross entropy 
(BCE) function and Dice coefficient to improve the segmentation accuracy and sensitivity with 
unbalanced foreground and background samples.  
	 The rest of the paper is structured as follows. In Sect. 2, we describe our experiment and 
image acquisition system, as well as an image segmentation algorithm based on the U-Net deep 
learning model.  In Sect. 3, we evaluate our proposed image segmentation method and discuss 
our main results.  We conclude the paper with some final comments and directions for future 
work in Sect. 4.

2.	 Materials and Methods

2.1	 Lab-scale activated sludge system

	 A lab-scale activated sludge system is designed to simulate the biological wastewater 
treatment process, as shown in Fig. 1.  The activated sludge is sampled from a petrochemical 
wastewater treatment plant, and microorganisms are cultured in the laboratory.  The activated 
sludge was fed with synthetic wastewater with a chemical oxygen demand (COD) of 300 mg/L.  
The wastewater was prepared using a glucose solution, a phosphoric acid mixed solution, and 
a sulfuric acid mixed solution.  The wastewater is mixed with bacterial flocs in the aeration 
tank where pollutants are biodegraded.  The reactor is a fully mixed aeration tank where air 
is injected in the mixed liquor to maintain a sufficient amount of dissolved oxygen in the 
aeration tank.  The experiment lasted for two months.  In addition to the PCM of activated 
sludge, we measured several physical and chemical indicators such as sludge volume (SV), pH, 
temperature, COD, suspended solids (SS), mixed liquor suspended solids (MLSS), and SVI.  
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2.2	 Image acquisition system

	 All the activated sludge samples were collected from the aeration tank in the activated 
sludge experimental system.  The microbial image acquisition system includes an inverted 
optical microscope (Nikon Eclipse TS100), an industrial digital camera (ToupTek ToupCam 
ucoms03100kpa), and a set of image acquisition software (ToupView).  In this experiment, we 
used a phase contrast microscope equipped with a color CCD camera to capture the images 
of the activated sludge, as shown in Fig. 2.  The output signal of the CCD is digitized, and 
each digital image has a size of 1024 × 768 pixels.  The microscope has 10×, 20×, and 40× 
phase contrast objectives and a 10× eyepiece.  We chose typical images with a resolution of 
0.314 µm/pixel at 10× objective magnification.  

2.3	 Image segmentation algorithm

2.3.1	 Segmentation problem description 

	 PCM images of activated sludge were acquired.  When light passes through a sample with 
a different density (refractive index) in a phase contrast microscope, slight variations in light 
phase appear and are amplified to show visible changes in light amplitude.  This allows the 
shape and internal morphology of the microorganisms to be displayed without exogenous 
fixing or staining, thus facilitating the observation and analysis of microbial components 
by the experimenter.  However, the phase contrast microscope is too sensitive to the phase 
variation and has some imperfections in the imaging process, which causes some artifacts in 
the presented image such as halos, light spots, and shade off [see Fig. 3(a)].  The obtained PCM 
images have a low contrast among filamentous bacteria, flocs, and the background.  Most 
of the acquired images show a unimodal phenomenon in the grey histogram [see Fig. 3(b)].  
Therefore, some traditional segmentation methods based on greyscale thresholding will fail or 

Fig. 1.	 (Color online) Lab-scale activated sludge system.
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Fig. 2.	 (Color online) Image acquisition system. (a) Optical microscope with digital camera. (b) Image acquisition 
software.

Fig. 3.	 (Color online) Phenomena in PCM. (a) Halos, light spots, and shade off in the image. (b) Greyscale 
distribution of the image presenting a single peak.

(a) (b)

(a)

(b)

not be sufficiently good for segmenting filamentous bacteria and flocs from the background.  
Fuzzy boundaries of filamentous bacteria or flocs may cause unsatisfactory results with some 
traditional segmentation methods.  At present, some researchers have attempted to solve the 
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segmentation problems of PCM images.(18,19)  However, these methods usually require that 
some parameters be manually set to achieve the automatic segmentation of image processing.

2.3.2	 Image segmentation method

	 An automatic segmentation method of PCM images was proposed to extract flocs and 
filaments using the U-Net model, as shown in Fig. 4.  The proposed method consists of image 
acquisition, U-Net model training, and the online testing of the image segmentation of flocs and 
filamentous bacteria.  The image acquisition system aims to capture an activated sludge image 
through PCM from activated sludge experiments.  Datasets including input images and labels of 
flocs and filaments are divided into training, validation, and testing data.  
	 To improve the robustness of the networks, data augmentation is performed by elastically 
deforming the training samples using random cutting, rotation, and flipping methods.  To reduce 
the training time, the parameters of the floc image segmentation model are initially determined 
using filament segmentation model parameters.  The networks were trained with the Adam 
stochastic gradient descent optimization method with a new loss function.  The loss function is 
defined by the sum of the weighted binary cross-entropy function and Dice coefficient, which 
guarantees the smoothness of the gradient descent and improves the segmentation accuracy and 
sensitivity with unbalanced foreground and background class pixels.
	 In the online testing, the new input result was fed to the trained U-Net models to 
predict objectively the probability that each pixel belongs to filaments and flocs.  Then, the 
segmentation result is obtained by the fusion of filament and floc probabilities.
 

Fig. 4.	 (Color online) Flow diagram of image segmentation of flocs and filaments.
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2.3.3	 U-Net model for image segmentation

	 The architecture of the U-Net model for the PCM image segmentation of activated sludge is 
illustrated in Fig. 5.  The U-Net architecture consists of a contracting path (left side) for feature 
encoding and an expanding decoding path (right side) for full-resolution segmentation.  
	 In the encoding path, input images of size (384, 512, 1) are gradually encoded into smaller 
feature maps after being processed by four down-sampling modules.  Each module includes 
two 3 × 3 padded convolution layers and a 2 × 2 max pooling layer.  In the decoding path, four 
up-sampling modules are used to gradually restore abstract feature maps to a full-resolution 
image.  Each up-sampling module includes two 3 × 3 padded convolution layers and a 2 × 2 up-
convolution layer with stride 2.  He-normal is used to initialize each convolution layer.(20)  A 
rectified linear unit (ReLU) is used as the activation function.  Skip connections are established 
between the down-sampling and up-sampling modules to capture both the local and contextual 
information, which ensures that the details of the target image can be gradually restored.(21)  
The last layer includes a 1 × 1 convolution and a sigmoid activation function.  The sigmoid 
function is defined as

Fig. 5.	 (Color online) U-Net architecture for segmentation of flocs or filaments.
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where x is an input pixel value and S(x) is a probability map indicating that the pixel is a floc or 
filament object.  
	 An appropriate loss function in a complex scenario is critical to guaranteeing the 
performance of the deep learning model.  The BCE function is commonly used as a loss 
function for binary classifiers, i.e.,
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where X = {x1, x2, ..., xN} is an input image, N = W × H is the total number of pixels, the 
segmentation mask M = {m1, m2, ..., mN}, and each {0,1}im ∈ .  However, the BCE function 
does not take into account the imbalance between the foreground and background pixels, 
resulting in classification results that are biased towards the class with more pixels.  There is 
an imbalance in our segmentation task, where flocs or filaments occupy only a smaller portion 
in the microscopy image.  To publish the misclassified pixels, we define a new loss function by 
combining a weighted binary cross-entropy function and the Dice coefficient, 
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where β is the weight ratio of the foreground to the total number of pixels to balance the 
class frequencies, T is the real manual segmentation map and each im T∈ , P is the predicted 
segmentation map and each ( )iS x P∈ , and the Dice coefficient is defined as 
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	 The loss function can improve the test performance of the U-Net model under the class 
imbalanced condition using the weighted binary cross-entropy function and Dice coefficient.  
The activated sludge image is segmented by

	 {0,1,2}
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i
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∈
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where X is a test image, P1(X ) is the output probability map of the U-Net model for 
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segmentation flocs, P2(X) is the output of the U-Net model for segmentation filaments, and 
P0(X) = 1 − P1(X) − P2(X) is the probability map of the background in this image.  The 
segmentation result  is the fusion of the outputs of dual U-Net models.

2.3.4	 Performance assessment

	 As defined, earlier metrics are calculated for testing the images suggested here and in similar 
places to evaluate the proposed image segmentation method.  The formulas used are
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+

=
+ + +
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where true positive (TP) is the number of pixels whereby the positive class is correctly identified 
by the U-Net, false positive (FP) is the number of pixels whereby the positive class is incorrectly 
detected, true negative (TN) is the number of pixels whereby the negative class is correctly 
categorized, and false negative (FN) is the number of pixels whereby the negative class is 
incorrectly categorized.  
	 In the semantic segmentation task, the above indicators have different physical meanings.(22)  
F-measure is the harmonic mean of precision and recall, which has the same calculation formula 
as the previously mentioned Dice coefficient.  Intersection-over-union (IoU) is the intersection 
and union ratio of the two sets of ground truth and predicted segmentation.  The higher the IoU, 
the closer the predicted segmentation is to the ground truth.

3.	 Results and Discussion

3.1	 Dataset

	 For validating the presented method, several representative images are collected in the lab-
scale activated sludge process.  The collected digital image has a size of 1024 × 768 × 3 pixels.  
PCM images are labeled as floc mask and filament mask, as shown in Fig. 6.
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	 Figure 6(a) shows the original microbial image and Fig. 6(b) shows the ground truth of the 
flocs and filamentous bacteria manually labelled with the LabelMe Software Tool.(23)  The flocs 
are in red, and the filamentous bacteria are in green.  The flocs and filaments are greyed out 
and scaled to 512 × 384 greyscale image in Figs. 6(c) and 6(d), respectively.  A total of 69 typical 
images and their mask labels are selected to form the sample dataset.  The dataset is randomly 
divided into 52 for training, 7 for validation, and 10 for testing.  Testing datasets are used to 
evaluate the accuracy of the activated sludge image segmentation based on the improved U-Net 
deep learning network.

3.2	 Environment configurations 

	 In this work, we used Keras based on TensorFlow as the deep learning framework.  Keras is 
a high-level neural network with a focus on enabling fast experimentation.  All the tests were 
conducted in a 2.30 GHz 6-core Intel® Xeon® CPU E5 with 13 GB of RAM and NVIDIA Tesla 
K80 GPU with 12 GB memory with an Ubuntu 18.04 operating system.  All program codes run 
in a python environment.

Fig. 6.	 (Color online) Original image and annotation: (a) original image, (b) ground truth, (c) filament mask, and (d) 
floc mask.

(a) (b)

(c) (d)



Sensors and Materials, Vol. 31, No. 6 (2019)	 2023

3.3	 Training of U-Net model 

	 The U-Net models of the floc and filamentous image segmentations were trained in 
sequence.  The U-Net model of the floc segmentation was first trained, whose parameters were 
used as the initial values of the filamentous bacterial U-Net model.  During model training, both 
the maxima of epochs and steps per epoch are set to 200.  For each epoch, 52 training images 
and labels were augmented with 400 training data by randomly cutting, rotating, and flipping.  
This image augmentation included a random combination of rotation_range (0.2), width_shift_
range (0.05), height_shift_range (0.05), shear_range (0.05), zoom_range (0.05), and horizontal_
flip using the ImageDataGenerator function implemented in Keras.  We set the training batch 
size to 2, the validation batch size to 10, and  the number of validation steps to 5.  To reduce the 
risk of overfitting, we use a storing optimal model parameter strategy.  Specifically, the weight 
parameters of the model are saved in HDF5 format by determining whether the validation loss 
is the new smallest value at the end of each training epoch.  
	 Figure 7 shows the U-Net model training of the floc and filament image segmentations.  In 
Figs. 7(a) and 7(b), the left diagram shows the combined loss function and the average IoU score 
value of the training data.  The right diagram is the combined loss function and the average IoU 
score value of the validation data.  As shown in Fig. 7, the convergence rate of the filamentous 
bacterial U-Net model is higher than that of the floc U-Net model.

(a)

(b)

Fig. 7.	 (Color online) U-Net model training of floc and filament image segmentations. (a) Training of the U-Net 
model for microbial floc segmentation. (b) Training of  the U-Net  model for filamentous bacterial segmentation.
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3.4	 Experimental results and analysis

	 We evaluate the U-Net models with the combined loss function and compare it with U-Nets 
with BCE, FCN-VGG16, and a traditional segmentation method.  The segmentation results of 
the testing image are shown in Fig. 8.  
	 In Fig. 8, (a) is the original image, (b) is the ground truth obtained by manual labelling, and 
(c), (d), (e), and (f) are the segmentation results of U-Nets with BCE, U-Nets with the combined 
loss, the model FCN-VGG16, and the traditional segmentation method, respectively.  The fully 

Fig. 8.	 (Color online) Results of PCM image segmentation using the test dataset: (a) original image, (b) ground 
truth, (c) U-Net (BCE), (d) U-Net (combined), (e) FCN-VGG16, and (f) traditional method.

(a) (b) (c) (d) (e) (f)
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convolutional neural model FCN-VGG16 uses VGG16 as the backbone of the model and uses 
parameters pretrained on the imagenet dataset.  For the traditional image segment of filaments 
and flocs, we have applied the combination of Gaussian filtering, Otsu thresholding algorithm, 
Hole filling, and morphological operations.  The DSeg segmentation program(24) is used for 
segmenting filaments, and the PHASECONG MATLAB Code(25) for removing halos.  Note 
that our improved U-Net models can correctly segment the objects on 10 test images with halos, 
light spots, and shade off.  Our trained models are also not affected by the red ruler on the 
image.  
	 Table 1 gives the segmentation performance characteristics of four methods.  The mean in 
Table 1 is the average of the corresponding indicator of segmentation for flocs and filamentous 
bacteria, except for the background for 10 test images.  From Table 1, it is easy to observe that 
our proposed U-Net models with the combined loss function have obvious advantages in terms 
of model accuracy, precision, recall, F-measure, and IoU.  The improved loss function helps 
improve the PCM image segmentation performance.  The filamentous bacteria in our captured 
images have fewer pixels, which causes the positive and negative class imbalance of the training 
samples.  Our improved loss function combines the BCE and Dice coefficient, which ensures 
the smoothness of gradient descent and enhances the image segmentation performance.

4.	 Conclusions

	 In general, the key to measuring the SVI and early detection of filamentous bulking based 
on digital image analysis lies in the image segmentation performance of flocs and filaments 
for the activated sludge wastewater treatment process.  We proposed an automatic floc and 
filament extraction method for PCM images using the U-Net deep learning model with data 
augmentation.  A loss function combining the BCE function and Dice coefficient is proposed to 
improve the segmentation accuracy and sensitivity with unbalanced foreground and background 

Table 1
Segmentation performance characteristics of four methods for filamentous bacteria and flocs.
Model Objective Accuracy Precision Recall F-measure IoU

U-Nets with BCE 

Background 0.9758 0.9919 0.9805 0.9861 0.9617 
Floc 0.9759 0.7915 0.9218 0.8451 0.8661 

Filamentous 0.9888 0.7435 0.6643 0.67508 0.5255 
Mean 0.9824 0.7675 0.7930 0.7604 0.6958 

U-Nets with the 
combined loss

Background 0.9777 0.9880 0.9864 0.9872 0.9733 
Floc 0.9812 0.8703 0.8951 0.8780 0.8163 

Filamentous 0.9912 0.7592 0.8016 0.7725 0.6772 
Mean 0.9862 0.8147 0.8484 0.8252 0.7467 

FCN-VGG16

Background 0.9666 0.9811 0.9809 0.9809 0.9626 
Floc 0.9756 0.8385 0.8606 0.8459 0.7369 

Filamentous 0.9848 0.7015 0.5841 0.5918 0.4380 
Mean 0.9802 0.7700 0.7223 0.7189 0.5875 

Traditional method

Background 0.9122 0.9562 0.9440 0.9496 0.8947 
Floc 0.9117 0.5172 0.5645 0.5144 0.4132 

Filamentous 0.9725 0.3990 0.4082 0.3814 0.2810 
Mean 0.9421 0.4581 0.4864 0.4479 0.3471 
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class pixels.  Our method achieved a mean IoU of 74.67%, a mean F-measure of 0.82, and a 
mean precision of 81.47 % for two types of objects (i.e., floc and filament) on the test set.  The 
visualization also shows the performance of our model.  
	 It is worth noting that the PCM image from the AS process may be contaminated with 
phase shifts and light scattering interferences.  Thus, ensemble image segmentation techniques 
combining images at a different magnification should be considered to enhance the image 
segmentation performance.  In addition, because manual labelling is time-consuming, 
semisupervised image segmentation algorithms should be explored in the future.
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