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 One of the biggest challenges in ageing societies is to improve life, health, safety, and 
support of the elderly population in their daily life.  Currently, the number of elderly people 
living alone is increasing every year.  Living alone allows more freedom but raises the risk 
of serious injuries or fatal accidents.  Falls are the key cause of significant health problems, 
especially for an elderly person who lives alone.  Moreover, vital signs such as heart rate, 
balancing activities, and environmental context are crucial in relation to the user’s condition.  
To assist people living alone and improve their health quality, we firmly believe that the 
advances in Smart Devices, Smart Environment, and Internet of Things paradigms are very 
helpful for developing a fall and activity recognition system.  We propose a system using an 
unobtrusive device consisting of a smartwatch and a smartphone to identify falls and thirteen 
daily activities (e.g., walking, running, typing, and waving the hand).  The events leading to a 
fall, the speed of falling down, the heart rate while doing an activity, and the time passed since 
the fall are important data that we store to help a doctor diagnose and rehabilitate a patient.  
Environment sensors are used to indicate the indices of ambient conditions such as temperature, 
humidity, brightness, and motion detected.  Suitable machine learning techniques are used for 
daily activity recognition, and the processing time for classification was compared on the basis 
of a smartwatch and an Amazon Web Services (AWS) cloud server.  Threshold-based health 
risk analysis models are utilized for abnormal activity recognition and heart rate and heat index 
(temperature and humidity) determination.  The system issues different types of notifications 
such as warning messages, sounding alarms, and phone calls to related persons such as family 
members, caregivers, or doctors.  Various easy-to-understand visualizations are presented to 
track and monitor the subjects in real time, including heart rate, daily activity summary, health 
risk status, and environmental information.  
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1. Introduction

 Currently, many countries are facing ageing societies.(1)  Home safety is a concern not only 
for elderly people but also for people of any age.  It becomes a priority for the elderly, especially 
if they are living alone.  Falls are a primary cause of significant health problems and a leading 
cause of accidental injuries and deaths.(2)  In 2010, more than 662000 adults who suffered from 
nonfatal fall injuries were hospitalized.(3)  If assistance is not swiftly provided, the injuries could 
be fatal.  Timely care and assistance can reduce the hospitalization by 26% and the severity of 
injuries by 80% if caregivers or doctors are immediately notified after a fall occurrence.(4)  
 It is necessary to ensure that environmental conditions, such as light, temperature, and 
humidity, are appropriate for the safety of our loved ones and correctly set up to provide 
immediate alerts when they need help or assistance.
 The daily activity recognition system has become a significant research topic over the last 
decade with the deployment of automatic, reliable, and cost-efficient health monitoring services.  
Recently, numerous health tracking systems have been implemented extensively, but there has 
been a lack of robust proofs regarding the convenience of subjects and the cost efficiency of 
such systems.(5)  An example of a critical scenario is as follows.
 Mrs. Michele was an elderly person who was living alone.  Her phone was ringing but she 
was not picking up.  It was her daughter trying to ask whether she was ready to go for shopping.  
The daughter had no way of knowing what was going on and started to panic.  She frantically 
drove to her mom’s home, worrying that something serious had happened.  When she arrived, 
Michele was lying on the kitchen floor, unconscious.
 At the hospital’s emergency room, the doctor asked the daughter how hard Mrs. Michele had 
fallen and how much time passed since then.  She could not answer those questions because 
Mrs. Michele was home alone.  If we knew the conditions and leading to a fall, we would 
be in a much better position to diagnose and rehabilitate Mrs. Michele, the ER doctor said.  
Mrs. Michele ultimately received the proper treatment and was discharged from the hospital.  
However, the doctors recommended that she should be continuously monitored for her condition 
including heart rate and daily life activities.  The daughter was desperately looking for a 
solution that does not disrupt her working schedule yet offers a high level of privacy, freedom, 
and convenience to her beloved mom.  Deploy video cameras all over the house?  No, that is too 
costly and inefficient and does not offer privacy, the daughter thought to herself.
 The above scenario embodies a real challenge that exists in our modern life.  We need to take 
good care of our loved ones, but our busy schedule does not always permit it.  To address this 
challenge, in this research, we focused on the development of an affordable yet highly accurate 
user-friendly remote health monitoring system using unobtrusive devices.
 The major contributions of this study are summarized as follows:
(1) a holistic cost-efficient health monitoring system for indoor settings,
(2) a highly accurate daily activity and a fall detection algorithm, and
(3) an easy-to-understand timeline tracking of user activity using visualization techniques.
 The remainder of the paper is organized as follows.  In Sect. 2, we highlight related work on 
fall and activity recognition and classification, devices and wearables, and health monitoring 
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systems.  In Sect. 3, we provide the system architecture and explain the details of the proposed 
mechanisms.  In Sect. 4, we describe the experimental setup and offer insights regarding the 
obtained results.  Finally, in Sect. 5, we explain the visualization techniques used for activity 
representation and draw conclusions and future directions.

2. Related Works

 There are various available fall recognition systems using different techniques, devices, 
and visualizations methods.  Several of these methods or systems require a rather sophisticated 
hardware infrastructure.  This drawback motivates us to overcome these shortcomings through 
more in-depth investigation of the following areas.

2.1 Fall and activity recognition

 Activities of Daily Living (ADLs)(6) is a term used by healthcare professionals to refer to 
the basic self-caring tasks an individual does on a day-to-day basis.  The performance of these 
ADLs is important to determine long-term care and health coverage that should be applied.  
Table 1 presents an overview of ADLs detected and monitored in a literature review.  There 
are two types of activity recognition: 1) fall and 2) nonfall activities.  Nonfall activities can be 
subcategorized as movement and nonmovement activities.
 Our experiment simulated ADLs and falls based on the literature review.  More activities 
were proposed in order to cover real-life situations.  

Table 1
Overview of activities detected from literature review.
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2.2 Devices and wearables

 The most recent work for fall recognition has categorized approaches into three main types 
depending on the algorithms and sensors used.  The techniques were based on a vision device 
and image processing; an ambient device, e.g., a motion sensor; and a wearable device with a 
gyroscope and/or other sensors.(16)

 Vision-based techniques: Vision- or camera-based systems for fall detection provide very 
rich personal and environmental information.  Such devices are increasingly used owing to their 
multiple advantages over other sensor-based devices.(17–19)  Núñez-Marcos et al.(20) proposed a 
vision-based solution using convolutional neural networks to recognize a person falling down, 
and optical flow images were used as input to the networks.  Ozcan et al.(21) developed a fall 
detection system through the implementation of an embedded smart camera that employed 
histograms of edge strengths (ESs) and edge orientations (EOs).  Mastorakis and Makris(22) 
presented a novel fall detection system based on Microsoft’s Kinect sensor and similar to that 
described in Ref. 23.
 Ambient-based techniques: Ambient-based device sensors are used to identify falls through 
an infrared sensor, a single microphone, vibration data, or a pressure sensor.  Droghini et al.(24) 
proposed fall and nonfall detection systems using an acoustic signal similar to that described 
in Ref. 25.  Guan et al.(26) presented a novel method of detecting a fall using a pyroelectric 
infrared (PIR) sensor network similar to that of Yun and Song.(27)  Nadee and Chamnongthai(28) 
proposed a method of automatically detecting a falling person using an array of ultrasonic 
waves connected to a field-programmable gate array (FPGA) processor.  The ultrasonic sensor 
should be placed directly towards objects to acquire the highest measurement accuracy.  
 Wearable-based techniques: Recently, a variety of wearable devices have been made 
widely available and have become popular on the commercial market and in the active field 
of research in pervasive computing.(29)  Sztyler et al.(30) developed a robust wearable-based 
activity recognition system from seven wearable devices in different body positions, and the 
wrist was identified as the most suitable device location at which the acceleration pattern for the 
activity detection could be measured.  Pierleoni et al.(31) implemented a fall recognition system 
using a wearable wireless device consisting of a triaxial accelerometer, a gyroscope, and a 
magnetometer similar to that described in Refs. 32 and 33.

2.3 Health monitoring systems

 Currently, the trend in health monitoring systems is moving from hospital-located devices to 
portable personal devices.(34)  Many existing health monitoring systems have inspired our work.  
Several of them are available to monitor health, activities, and environment by using different 
devices and applications for coping with an active lifestyle.(35)

 Omoogun et al.(36) developed a wearable wireless monitoring system to record the 
temperature and heart pulse and trigger an emergency response to enable interaction between 
the patient and the doctor.  Jalal et al.(37) implemented a healthcare monitoring system to track 
human movements in a scene by using a camera.  Kaninde et al.(38) developed a system using 
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temperature and heartbeat sensors to track the patient’s vitality and help in saving precious 
emergency response time.  Similarly, Kakria et al.(39) proposed a real-time heart monitoring 
system using a wearable sensor.  
 Bertolotti et al.(40) presented a measurement of a trunk movement system to evaluate the 
motion and balance control using an accelerometer and a gyroscope sensor.  George et al.(41) 
designed and implemented a patient monitoring system to enable a doctor to monitor a patient’s 
health (temperature, heartbeat, and ECG).  Lin and Lo(42) developed a mobile healthcare system, 
which could monitor physiological data through a smartphone.  Similarly, Abdullah et al.(43) 
presented a system for describing the status of health and fitness.  
 The advances in technology have resulted in an increased number of wristband or 
smartwatch devices for health monitoring.  The processing power of wristbands and 
smartwatches has increased, and most smartwatches are now furnished with sensors including 
an accelerometer and sensors for heart rate, ambient light, and so forth.  
 In previous works, most researchers used different devices for fall recognition such 
as smartphones, cameras, and other types of embedded devices, which were obtrusive, 
cumbersome, and difficult to install.  This was rather inconvenient for regular users, especially 
when sleeping or moving outdoors.
 For these simple reasons, a smartwatch was chosen for our recognition of falls and daily 
life activities instead of a smartphone or other devices.  Furthermore, our method could 
recognize falls and activities using the optimal model from different algorithms to achieve a 
high accuracy.  We also performed a health risk analysis in order to provide a warning in the 
case of an abnormal or high-risk occurrence.  Finally, several easy-to-understand, real-time 
visualizations were presented.

3. System Architecture and Model

3.1 System architecture

 In this section, we describe the system architecture, requirements, and functions of the 
proposed activity recognition system.  Figure 1 shows an abstract overview of the activity 
recognition system.
 The system supports three core functions: (1) activity recognition based on a smartwatch and 
a smartphone using machine learning algorithms, (2) health risk and environment data analyses 
based on real-time personal and environmental context, and (3) several visualizations of activity 
recognition to track the user activity/vital signs including heart rate and other sensors.
 Various machine learning techniques are used to recognize user activity on the basis of 
real-time sensor data collected from both a smartwatch that the user wears on the wrist and a 
smartphone.  Ten common key activities can be detected from a smartwatch including sitting, 
standing, lying down, walking, jogging, typing, holding/reading, looking at a watch, waving, 
and falling down.  The smartphone can be used to detect activities such as holding a phone, 
traveling with a phone, and calling on and putting down a phone.
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 An Android application is developed to gather the data from a smartwatch and a smartphone 
from a triaxial accelerometer sensor as X, Y, and Z coordinates.  The smartwatch is worn on the 
right wrist first and then the left wrist for training purposes.  Activity recognition is performed 
in two phases: training and real-time recognition.
 In the training phase, we generate recognition models using learning by demonstration, 
where a user performs the target activities and the system records relevant accelerometer sensor 
data from both a smartwatch and a smartphone.  After the iterative data collection is complete, 
preprocessing and cleaning are carried out to prepare the data for analytics.  During this phase, 
we utilize machine learning models in the WEKA tool(44) to build the recognition models using 
Naïve Bayes, k-nearest neighbor (k-NN), Decision Tree, and Random Forest classifiers.  We try 
multiple classifiers to select the best and highly accurate one for the real-time recognition phase.  
 In the real-time recognition phase, the selected optimal classifiers are used to classify the 
ten target activities captured by smartwatch-embedded sensors and four activities captured by 
the smartphone with the same stream window size.  In addition, the system sets the standard 
thresholds to check the heart rate, light, temperature, humidity, and air pressure.  The system 
displays several easy-to-understand dashboard visualizations to represent the various captured 
activities with a timeline.  The current activity is displayed in addition to the three most recent 
activities.
 The user dashboard is divided into three main sections: current and past personal activities, 
real-time vital signs (e.g., heart rate), and environmental conditions surrounding the user.  With 
such rich information, the system can intelligently determine when a high-risk situation occurs 
or an abnormal condition is detected and issue appropriate alerts to either the user to change 
activities or to the emergency team to provide immediate medical assistance.  The user may also 
configure the system to contact relatives when prespecified conditions occur.

Fig. 1. (Color online) Abstract architecture of the proposed activity recognition system.
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3.2 Model training phase

 In this section, we describe the offline training phase.  Figure 2 shows the workflow of the 
proposed activity recognition system including the following two phases: classifier training and 
testing (real-time recognition).

3.2.1 Sensor data gathering

 The system collects accelerometer, heart rate, and light sensor data from the smartwatch, but 
only accelerometer sensor data from the smartphone.  The triaxial accelerometer consists of X, Y, 
and Z coordinates as shown in Fig. 3.
 The smartwatch data for all activities are subsequently collected from both left and right 
wrists for 10 s at a 0.2 s sampling rate; this process is repeated three times in 30 subjects 
for both the smartwatch and the smartphone.  These data are sufficient for building robust 
classifiers.  To build classifiers, data from 20 subjects are used for model training, while the 
data from 10 remaining subjects are used for model testing.  In general, there are two types of 
accelerometer: 1) excluding and 2) including earth’s gravity type.
 In our experiment, a type 2 sensor was used, and the ranges of accelerometer sensor data are 
shown in Table 2.  

Table 2
Accelerometer sensor data ranges.

Acc_X (g) Acc_Y (g) Acc_Z (g) Diff_X (g) Diff_Y (g) Diff_Z (g) Velocity (m/s2)
Minimum −11.8397 −37.8688 −11.1625 −30.9057 −38.1583 −20.7841 0.06103992
Maximum 33.76751 24.29433 20.92284 36.57669 32.74578 19.48476 70.9963731

Fig. 2. Integrated steps of the proposed activity recognition system using smartwatch and smartphone.

Fig. 3. (Color online) (a) Triaxial accelerometer of smartwatch. (b) Triaxial accelerometer of smartphone.

(a) (b)
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1. Acc_X: X coordinate accelerometer sensor data; 
2. Acc_Y: Y coordinate accelerometer sensor data; 
3. Acc_Z: Z coordinate accelerometer sensor data; 
4. Diff _X: ΔX of X coordinate accelerometer sensor data between 2 data points; 
5. Diff _Y: ΔY of Y coordinate accelerometer sensor data between 2 data points;
6. Diff _Z: ΔZ of Z coordinate accelerometer sensor data between 2 data points;
7. Velocity: this is a created attribute based on 3 coordinates (ΔX, ΔY, and ΔZ); the velocity can 

be used to indicate the activity type; 
8. Minimum: minimum value indicates the lowest individual sensor value in each attribute;
9. Maximum: maximum value indicates the highest individual sensor value in each attribute.
 We selected four classification algorithms, namely, Decision Tree,(45) Naïve Bayes,(46) 
k-NN(47) (with k = 3, 5, and 7), and Random Forest(48) in the training phase using a 10-fold cross 
validation.  The performance of the four algorithms is compared, and the best one is chosen for 
real-time recognition based on accuracy, as shown in Table 3.

3.2.2 Data preprocessing

 In machine learning, data preprocessing is a crucial step to ensure data quality and prepare 
data for the next stage, which is modeling.  Major data preprocessing tasks are handling missing 
values, outliers, and performing data normalization.  
 In the first step of our data preprocessing, the data were searched for missing data from 
both the training and testing sets; there was no missing data in our data set.  In the second step, 
we checked all data for outliers, and found none.  In the third step, we applied the Min–Max 
normalization standard technique(49) to transform all numeric attributes in original data into a 
new range of [−1, 1].  The Min–Max normalization can be seen in Eq. (1) below.

 ( min )2 1
max min

x xx
x x
−′ = −
−

 (1)

Here, x' represents a new transformed value in the range of [−1, 1].  The two parameters, namely, (1) 
min x and (2) max x, represent the minimum and maximum values of attribute x, respectively.  
 Finally, the Euclidean distance is used to measure the velocity of the accelerometer data (i.e., 
the rate of change) as per Eq. (2).  The velocity measure indicates how different the data points 
are from each other; such points can be used to differentiate activities.

Table 3
Results of activity testing (%).

Algorithm

Random Forest Decision
Tree (J48)

k-NN
(k = 3)

k-NN
(k = 5)

k-NN
(k = 7) Naïve Bayes

Activity

Smartwatch’s
Activity 99.51* 99.08 99.20 99.13 99.03 87.71

Smartphone’s
Activity   99.91* 99.84 99.87 99.85 99.83 99.3
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 2 2 2
( , ) ( ) ( ) ( )j i j i j iDifference i j X X Y Y Z Z= − + − + −  (2)

Here, Difference (i, j) represents the accelerometer data from the ith and jth records, and X, Y, 
and Z represent the three axes.
 The Euclidean distance or velocity measure indicates the type of activity being performed 
by the subject.  For example, the velocity data of walking is relatively greater than those of 
standing, sitting, and lying down.  On the other hand, the velocity of walking is relatively lower 
than that of jogging or waving, as shown in Fig. 4 for a smartwatch, and Fig. 5 also shows 
relatively lower velocities for other activities from a smartphone.

Fig. 4. Velocity data of different activities from a smartwatch.

Fig. 5. Velocity data of different activities from a smartphone.
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3.2.3 Machine learning prediction models used

 Decision Tree: Decision Tree(45) belongs to the supervised learning algorithms that use a tree 
to represent a set of decision nodes.  Each internal node of the tree corresponds to an attribute, a 
branch corresponds to a value of an attribute, and each leaf corresponds to a class label.
 Naïve Bayes: Naïve Bayes(46) is a classification algorithm based on Bayes’ Theorem with 
an assumption of independence among predictors.  In simple terms, a Naïve Bayes classifier 
assumes that the presence of a particular feature in a class is unrelated to the presence of any 
other feature.  Naïve Bayes uses a similar method to predict the probability of different classes 
based on various attributes.
 k-NN: k-NN(47) is among the simplest algorithms for machine learning.  k-NN is a type 
of lazy, or instance-based learning, where the function is only approximated locally and all 
computation is deferred until classification.  k represents the number of nearest-neighbor 
data points that we would be looking at in the training data, and we take the most frequently 
occurring class and assign that class to the new data case.
 Random Forest: Random Forest(48) is a supervised classification.  It uses an ensemble 
learning approach by internally building multiple decision trees.  The ensemble learning takes 
advantage of combining voting powers of multiple decision trees to increase robustness and 
avoids the problem of over-fitting data to our training set.  In our model construction, we set 
two parameters of Random Forest to be 1) seven attributes per decision tree and 2) one hundred 
decision trees constructed.  During testing, the final decision is considered from the majority 
vote of all decision trees from the forest.

3.2.4 Model training and evaluation

 Falls and activity recognition were carried out in the offline phase.  Every activity had an 
equal number of data points.  The algorithms chosen to recognize the activity were based on 
machine learning as shown in Fig. 6.
 The data gathered from 20 subjects were contained across ten activities for a smartwatch 
and four activities for a smartphone.  There were a total of 60000 data points (5 × 10 × 3 × 2 × 
10 × 20) from the smartwatch and 12000 data points (5 × 10 × 3 × 4 × 20) from the smartphone.  
Seven attributes (Acc_X, Acc_Y, Acc_Z, Diff _X, Diff _Y, Diff _Z, and velocity) were selected to 
build the classifier models.

Fig. 6. Machine learning algorithms used for classification.
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 To compare the performance characteristics of the various models, it is important to choose 
the appropriate metrics that measure the algorithm’s performance.  The results of the classifier 
are commonly stored in an array known as a confusion matrix.  Thus, we chose this matrix to 
evaluate the different classifiers because it allows for visualizing and learning the performance 
of the algorithm.  
 Data from the smartwatch and smartphone were used to evaluate the same algorithms.  We 
used the 10-fold method to cross-validate and classify the activities.  Each of the four selected 
algorithms (with varying k = 3, 5, and 7 for k-NN) and a total of ten classifiers made up a total 
of 60 classifier models, where the best classifier model was chosen for use in the real-time 
phase.
 Table 3 shows the accuracies of the four algorithms.  As we can see from the results, the 
Random Forest algorithm outperforms the other three algorithms.  We attribute this to the 
classifier created for both datasets.  Thus, Random Forest will be used for real-time activity 
recognition.

3.3 Model testing phase

 The Random Forest algorithm is used for recognizing various activities in real time as per 
our performance evaluation.  Figure 7 shows the data flow of the proposed system at runtime.  
First, time series sensor data are collected in the window size.  Second, the velocity of the 
accelerometer data is calculated for each data point in that window.  Third, the data are fed to 
the classifier for recognition.  Lastly, the resultant activity is evaluated according to personal 
health risk thresholds related to the recognized activity (e.g., whether running represents a 
health concern given the heart rate readings).  In such a case, the system will either alert the user 
or take an automated predefined action such as calling a registered relative or an emergency 
team.

3.3.1 Data gathering

 The triaxial accelerometer sensor data are gathered from ten human subjects for 10 s for 
each target activity.  Each activity is repeated three times for statistical significance.  The total 
number of gathered data points is 30000 (5 × 10 × 3 × 2 × 10 × 10) from a smartwatch and 6000 
(5 × 10 × 3 × 4 × 10) from a smartphone.  We set a window size of 3 s buffer time (15 points) to 
last for one complete data collection cycle, as shown in Table 4.

Fig. 7. Real-time classification procedure.
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3.3.2 Runtime data preprocessing

 Similarly to the training phase, data preprocessing is performed at runtime during the 
recognition phase to ensure the high quality of the collected data and recognition process.

4. Experiment Results and Discussion

 In this section, we describe our experimental tests and setup, and provide additional insights 
regarding the overall performance of the proposed system.

4.1 Experiment setup

 A Moto 360 first-generation smartwatch is used for our experiment.  It is equipped with a 
TI OMAP 3 processor, 4 GB internal storage, 512 MB RAM, and Bluetooth 4.0 Low Energy 
connectivity.  The smartwatch runs the Android Wear operating system.(50)  A Samsung S5 
smartphone is connected to the smartwatch to track subject activity.
 The subject tried the smartwatch on both right and left wrists as shown in Fig. 8, and 
no significant difference was observed in the measurements.  The smartwatch reports 
accelerometer readings, heart rate, and light intensity.  The smartphone is used to gather the 
accelerometer sensor data only.
 A set of sensors are used to measure environmental parameters, using temperature, 
humidity, air pressure,(51) light,(52) ultrasonic,(53) and motion sensors as shown in Fig. 9.  In real-
life deployments, such sensors can be placed around the areas commonly occupied by the user, 
such as the living room, bedroom, kitchen, and garage.

4.2	 Real-time	classification

 The results of a classifier are commonly stored in an array known as a confusion matrix.  
This allows the visualization of the learning algorithm’s performance in a specific table.  An 
example of a confusion matrix is depicted in Fig. 10.
True Positives (TP): Number of positive instances that were classified as positive.
True Negatives (TN): Number of negative instances that were classified as negative.

Table 4
Example of accelerometer data of  3 s buffer time (15 points).
Index 1 2 3 4 5 6 7 8 9 10
Acc_X  −0.097  0.029  0.029  −0.124  0.149  −0.258  0.034  −0.097  −0.112  −0.129
Acc_Y  3.578  3.408  3.772  3.001  3.065  3.046  3.001  3.578  2.680  2.869
Acc_Z  8.664  8.793  8.140  9.018  8.891  9.078  8.851  8.664  9.038  9.090

Index 11 12 13 14 15
Acc_X  −0.107  −0.203  −0.198  0.111  −0.023
Acc_Y  2.761  2.764  2.783  3.061  3.010
Acc_Z  8.985  8.992  9.167  8.626  8.954
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False Positives (FP): Number of negative instances that were classified as positive.
False Negatives (FN): Number of positive instances that were classified as negative.

 ( )
TN TPaccuracy

TP TN FP FN
+

=
+ + +

 (3)

 The accuracy of the system is the most extensively used performance indicator in 
classification problems.

 ( )
TPprecision

TP FP
=

+
 (4)

 The precision or positive predicted value is the ratio of the number of correctly classified 
positive instances to the entire set of instances classified as positives.

 ( )
TPrecall

TP FN
=

+
 (5)

 The recall or sensitivity or true positive rate is the ratio of the number of correctly classified 
positive instances over the entire set of positive instances.

Fig. 8. (Color online) (a) Smartwatch on left wrist. (b) 
Smartwatch on right wrist.

(a) (b)

Fig. 9. (Color online) Environment sensor devices.

Fig. 10. Confusion matrix.
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 Raw sensor data collected from both the smartwatch and the smartphone are preprocessed 
at runtime to clean and prepare the data for classification using the Random Forest algorithm.  
The model’s performance is evaluated using Eqs. (3)–(5).  The classification algorithm yields 
average accuracies of 99.19% for smartwatch-based activity recognition, as shown in Table 5, 
and 100% for smartphone-based activity recognition, as shown in Table 6.
 It could be seen that some activities from the smartwatch were misclassified since some 
values from particular activities were strikingly close to the other activities.  For instance, the 
velocity of waving a hand might be the same as that of walking or jogging, and thus the result of 
classification could misclassify the activity, as shown in Table 5.
 Classification performance is very significant for the real-time system.  In this paper, we also 
consider the processing time to classify an activity on the basis of two different environments: (1) 
on the smartwatch and (2) on the Amazon Web Services (AWS) cloud server.  
 On the smartwatch, the classifier is installed directly on the smartwatch in order to classify 
the activity after gathering the sensor data from the smartwatch.  The prediction result will be 
sent to a cloud database afterward.
 Another option is that the classifier is installed on the AWS cloud server.  The raw sensor 
data are obtained from the smartwatch and sent to the cloud database without classification.  
After that, the data are retrieved from the cloud database using a background application 
installed on the AWS cloud server for classification.  The prediction result will be sent to the 
cloud database afterward.  
 The performance is measured by fetching the time-series data stream into the classifier 
using the window size.  One window size contains the data point between 15 (3 s) and 50 (10 s).  
The data are fetched from one hundred windows one-by-one into the classifier, and this process 
is repeated in 10 rounds before obtaining the average processing time.
 Figure 11 shows the comparison of performance for classification between two environments.  
The time of performance slightly increases for both environments when the number of data 

Table 5
Evaluation results of real-time smartwatch’s activities.
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Accuracy (%) 100.0 100.0 96.32 100.0 96.32 100.0 100.0 100.0 99.30 100.0 99.19
Precision 1.000 1.000 0.963 1.000 0.963 1.000 1.00 1.000 0.930 1.000 0.985
Recall 1.000 1.000 0.963 1.000 0.963 1.000 1.000 0.935 1.000 1.000 0.986

Table 6
Evaluation results of real-time smartphone’s activities.
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Accuracy (%) 100.00 100.00 100.00 100.00 100.00
Precision 1.000 1.000 1.000 1.000 1.000
Recall 1.000 1.000 1.000 1.000 1.000
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points is higher.  Furthermore, the performance on the AWS cloud server is significantly faster 
than that on the smartwatch at around 10 ms.

4.3 Activity visualizations

 The mobile application provides a rich interactive graphical interface to the user showing 
the current activity, real-time heart rate, the three most recent activities detected by the system, 
and surrounding conditions.  The application uses simple representative symbols to display such 
activities.  The application also provides a communication platform to interact with the user and 
healthcare support system.

4.3.1 User dashboard

 Figure 12 shows the end user dashboard divided into primarily two sections.  The top section 
shows current and recent activities and vital signs.  The bottom section displays the environment 
context around the user including light, temperature, humidity, and air pressure.  Such sensor 
data information could be relevant or even affect the user’s health conditions positively or 
negatively.

4.3.1.1 Fall and activity recognition

 Figure 13 shows the current activity and time elapsed during this activity and the visual 
representation of the associated health risks.  These activities are detected from the smartwatch 
sensor data analytics.
 The system also provides the brightness level around the user as measured by the smartwatch 
to help users adjust the brightness to a healthy level recommended for a current activity (e.g., 
reading) to maintain healthy eyesight.(54)  An alert message will pop up in case the brightness 
level(55) is below a certain threshold to be safe for the current activity as shown in Fig. 14.

Fig. 11. (Color online) Comparison of the processing time’s performances.
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4.3.1.2 Environment context

 The bottom part of the dashboard shows the environmental context surrounding the 
user including light, temperature, humidity, and air pressure.  This helps the user avoid 
uncomfortable conditions.  The system provides the functionality to identify the level of health 
risk based on the thresholds of temperature and humidity(56) as shown in Fig. 15.
 The iconic colors for the temperature and humidity show different heat indices, ranging from 
the normal level (green color) to the caution level (yellow color) and the dangerous level (red 
color).
 Additionally, our system provides motion detection functionality using an ultrasonic sensor.  
The system performs analytics on the basis of raw sensor data from the motion detector to 
provide rich information including the time and distance between the object and the sensor as 
shown in Fig. 16.

4.3.2 Health risk analysis

 The system performs background analytics on the basis of the raw sensor data collected 
from personal and environment sensors to provide alerts and recommendations related to the 
health conditions of the user.  For each recognized activity, the system maintains four thresholds 
that refer to the following health risk levels: normal, low, moderate, and high.  The system may 
correlate between different activities as well as environment conditions to determine the health 

Fig. 12. (Color online) Dashboard of activity and 
environment monitoring.

Fig. 13. (Color on l ine) Cu r rent and prev ious 
activities from smartwatch and smartphone.

(a) (b)

Fig. 14. (Color online) (a) Light on and (b) light off and warning message for turning on the light.
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risk level and issue the appropriate alert.  The health risk analysis is shown in Fig. 17.  The 
different risk levels are as follows:
 Normal Level: Measurements of vital signs relevant to recognized activities are within the 
normal range and do not pose any health threats.
 Low Level: The vital signs and/or environment conditions exceed the first threshold level, 
and hence potentially pose a low-level risk to the user’s health.  In such a case, an alert message 
will be sent to the smartwatch and smartphone in order to advise the subject to change his/her 
activity.
 Moderate Level: The analysis shows a moderate health risk level when the measured or 
calculated sensor values exceed the second threshold level.  Moreover, in this case, an alert 
message will be sent to the smartwatch and smartphone recommending a change of activity.
High Level:  When the health risk level indicator exceeds the third threshold level, an alert 
message will pop up and a sound will be emitted to alert the user.  If no acknowledgment/
response is received from the user, the system makes a call to a relative or an emergency 
number.

Fig. 15. (Color online) Environment monitoring and 
warning system.

Fig. 16. (Color online) Motion detection system: (a) 
motion detected and (b) no motion.

(a) (b)

Fig. 17. Warning system flow.
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 The color for the activity symbol reflects the health risk level, ranging from normal to 
moderate to high, as shown in Fig. 18.  Additionally, the color of the heart rate follows the same 
concept.

4.3.3 Activity reporting

 The system offers a visualized activity report from historical data using various visualization 
techniques including pie charts, graphs, bars, and so forth.  The reports provide an interactive 
visual understanding of the user’s past activities including health risk levels and percentages.
 Figure 19 shows two sample reports, one for the activity summary [Fig. 19(a)] and the other 
for the heart rate [Fig. 19(b)].  The user can search by date(s), time period, activity type, vital 
sign, and percentage.  The user can also click on a slice of the pie chart on the activity to show 
more specific details.
 Figure 19(b) shows a pie chart at the bottom that represents the summary heart rate risk 
level.  The heart rate status is indicated(57) by different colors: green means a healthy level, 
yellow represents a caution level, orange indicates an unhealthy level, and red means a risky 
level.
 The system also provides the real-time monitoring of the heart rate during the current 
activity as shown in Fig. 20.  It can show the changes in the heart rate of the subject while 

(a) (b) (c) (d)

Fig. 18. (Color online) Health risk levels: (a) normal (green), (b) low (yellow), (c) middle (orange),  and (d) high (red).

(a) (b)

Fig. 19. (Color online) (a) Summary activity report 
by date.  (b) Summary of heart rate.

Fig. 20. (Color online) Heart rate monitoring during 
activities.



Sensors and Materials, Vol. 31, No. 6 (2019) 1865

(a) (b)

Fig. 21. (Color online) Radar graphs of recommended daily activities (minimum and maximum values): (a) healthy 
and (b) unhealthy.

performing the activity.  Moreover, the system provides a recommendation of upper and lower 
limit healthy thresholds for the heart rate in order to alert users in case the heart rate goes over 
the limit.  The thresholds are prespecified per person, and the system can learn over time to 
adjust these thresholds.

4.3.4 Min–Max activity recognition

 It is always helpful for users to know their limits for various activities.  The system provides 
radar graphs with healthy borderlines to track and monitor health risk levels for each of the 
seven activities (sitting, standing, lying down, walking, jogging, typing, and holding/reading).  
 The system provides four radar graphs that show recommended minimum and maximum 
values of the total daily minutes (blue border) for each activity.  Health status is color-coded 
as shown in Fig. 21.  The color for the radar graph represents the health status: healthy (green 
color), as shown in Fig. 21(a), and unhealthy (red color), as shown in Fig. 21(b).  
 Thresholds typically depend on the individual and must be set by healthcare professionals 
according to health status, habits, and personal fitness level.  One individual may need to be 
sedentary owing to recovery from a recent surgical operation, while another individual may 
need to adopt a more active lifestyle.
 The system maintains historical data to help diagnose future conditions/incidents (e.g., 
falling) and assist health care providers to make data-driven decisions.  For example, historical 
heart rate data are of paramount importance to evaluate the patient’s health risk while 
performing activities as shown in Fig. 21(b).
 In the event of falling down, the SOS button will be shown immediately on the smartwatch 
screen, and the user can press the button to request for emergency assistance.  The user may 
choose to wave a hand instead.  In both cases, the system automatically places an emergency 
call within 10 s of the user falling and provides the user’s current location.
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5. Conclusion and Future Work

 In this paper, we propose a practical, affordable fall and daily activity recognition system 
using a smartwatch and a smartphone in order to track and monitor the indoor activities of a 
user.  The system provides an unintrusive and convenient way to serve elderly users.  
 Machine learning techniques were effectively applied to create the best activity classification 
models for a smartwatch and a smartphone.  The data were gathered from a smartwatch for 
ten activities and from a smartphone for four additional activities.  The fall and all-activity 
recognitions achieved an overall accuracy of 99.19%, a precision of 0.985, and a recall of 0.986 
for a smartwatch, and an overall accuracy of 100% and a precision and recall of both 1.00 for a 
smartphone.
 The system can provide a real-time feedback via a tracking and monitoring dashboard screen 
and introduce several visualizations showing the subject’s heart rate, activity summary, and 
transition activity before and after falling down.  Furthermore, the system can warn the user 
when the health risk level or heart rate exceeds preset limits.
 This system is intended for people living alone, such as the elderly or outpatients, in order 
to track and monitor their daily life activities and behaviors so that we could monitor them for 
their own safety.  Since the system continually tracks daily life activities, in the case of high 
health risk levels or falls, it will send a warning to those who provide care for them to provide 
timely assistance.
 The system also records and provides useful information from smartwatch, smartphone, 
and environment data to doctors or caregivers such as the events leading to a fall, heart rate, 
brightness, temperature, and humidity.  Our system can assist people who live alone by 
improving their quality of life, an important consideration in an ageing society.
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