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	 This paper presents a predictive model for machine failure analysis, aiming to accurately 
analyze various causes of machine failure.  The predictive model was developed in the following 
three steps: 1) dataset classification, 2) attribute selection, and 3) centroid calculation.  In the 
first step, the dataset is classified into multiple subdatasets according to the cause of machine 
failure.  Each subdataset is denoted by a cluster.  In the second step, the mean of each attribute 
measured at the same time is calculated and compared with that of the normal case.  Then, 
the attribute that changes most after the machine failure is selected.  In the last step, the mean 
and variance of the selected attribute are calculated to create the elements of each cluster, and 
then the centroid of each cluster that maximizes the cohesion of the cluster is calculated.  The 
causes of machine failure are determined by comparing the distance between the data of the 
new machine failure with the centroid of each cluster.  To verify the feasibility of the predictive 
model, we conducted an experimental implementation.  The results show that the implemented 
predictive model is feasible for analyzing the causes of machine failure.

1.	 Introduction

	 Recently, the industrial Internet of things (IIoT) has received a great deal of attention from 
both industry and academia, since it makes the manufacturing process more reliable, efficient, 
and safe.(1–3)  In IIoT, a number of sensors are typically employed to monitor their surrounding 
environments.(4)  Particularly, in the manufacturing environment, multiple sensors are attached 
to machines to detect whether the machines are operating successfully.  The sensors periodically 
generate a large amount of data and forward it to a central monitoring server via a wireless link.  
The central monitoring server extracts the meaningful information from the collected data 
using big data analysis technologies.  The use of big data analysis technologies enables a user to 
make better decisions by predicting the occurrence of problems such as malfunction, long delay, 
and failure.  Therefore, in recent years, many manufacturing enterprises have been attempting 
to apply such technologies to their manufacturing process.
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	 Machine failure analysis is one of the most challenging issues faced by manufacturing 
enterprises, since machine failure may lead to disastrous consequences such as an increase 
in maintenance cost and defective products.(5)  In the manufacturing environment, machine 
failure can occur owing to different causes.  For example, machine failure can occur owing to 
collision with physical objects in the vicinity (e.g., workers, machines, and other manufacturing 
equipment).  To cope with machine failures efficiently, it is necessary to accurately analyze 
various causes of machine failure using the data collected from sensors.  For an accurate 
analysis, the relationship between the cause and type of machine failure should be determined 
precisely.  To achieve this, most existing studies proposed predictive models using various big 
data analysis technologies such as association analysis, regression analysis, and neural network.(6–8)  
However, such predictive models suffer from high complexity and high computational burden 
for data analysis.  Therefore, their application in real manufacturing environments is difficult.
	 In this paper, we propose a predictive model for machine failure analysis, aiming to analyze 
various causes of machine failure.  The predictive model is developed using the dataset 
consisting of the data collected from the various sensors attached to the machine.  Each sensor 
collects data multiple times when the event (i.e., machine failure) occurs.  To develop the 
predictive model, we conduct the following three steps: 1) dataset classification, 2) attribute 
selection, and 3) centroid calculation.  The first step is to classify the dataset into multiple 
subdatasets according to the cause of machine failure.  Each subdataset is represented by a 
cluster.  In the second step, the attribute that changes most after the machine failure is selected.  
For this, we calculate the mean of each attribute measured at the same time and compare it 
with that of the normal case.  Finally, the last step is to calculate the centroid of each cluster 
that maximizes the cohesion of the cluster.  In this step, the mean and variance of the selected 
attribute are calculated to create the elements of each cluster, expressed as two-dimensional 
points.  To verify the feasibility of the predictive model, we conducted an experimental 
implementation using R Studio version 1.0.153.  In the implementation, we used the dataset 
containing the force and torque measurements collected after detecting the failure of robot 
execution, provided by the University of California Irvine (UCI) machine learning repository.(9)  
The results show that the implemented predictive model is feasible for analyzing the causes of 
machine failure.
	 The rest of this paper is organized as follows.  In Sect. 2, the predictive model for machine 
failure analysis is described in detail.  The implementation results are presented in Sect. 3.  
Finally, we conclude this paper in Sect. 4.

2.	 Predictive Model for Machine Failure Analysis

	 To develop the predictive model for machine failure analysis, we conduct the 1) dataset 
classification, 2) attribute selection, and 3) centroid calculation steps sequentially.  All the steps 
are separately conducted for each cause of machine failure.  For the development, we use a 
dataset containing the data collected from the various sensors attached to the machine, which 
consists of various attributes determined depending on the type of sensor.  Each attribute is 
collected a certain number of times after the event (i.e., machine failure).



Sensors and Materials, Vol. 31, No. 5 (2019)	 1753

	 In the dataset classification step, the dataset is classified into multiple subdatasets according 
to the cause of machine failure.  Each of the classified subdatasets is used as a cluster.  The 
sensors periodically collect the data a specific number of times when the event occurs.  
Therefore, each subdataset differentiates the data according to the event.  For example, if the 
sensor generates fifteen data whenever an event occurs, each subdataset differentiates the 
fifteen data into a set.
	 In the attribute selection step, one of the attributes that change most after the machine failure 
is selected.  To this end, we calculate the mean of each attribute measured at the same time 
and compare it with that of the normal case.  Then, we select the attribute that has the largest 
difference from the normal case.
	 Upon selecting the attribute, the centroid calculation step starts.  In this step, the mean and 
variance of the selected attribute are calculated to create the elements of each cluster.  The 
elements of each cluster are generated for each event.  The mean and variance of the selected 
attribute for the i-th cluster can be given as
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respectively, xi,j,k is the attribute of the k-th measurement for the j-th event in the i-th cluster, and 
n is the number of measurements.  To create the elements of each cluster, we use the mean and 
variance calculated previously.  Each element of each cluster is expressed as a two-dimensional 
point as
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where ei,j is the element of the j-th event for the i-th cluster.  Afterward, the centroid of each 
cluster, which maximizes the cohesion of the cluster is calculated as
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where ci is the centroid of the i-th cluster, r is the two-dimensional random point, and d(•) is the 
distance function between two points.  This step is performed separately for each subdataset 
to create the elements and centroid of each cluster.  When a new event occurs, the distance 
between the centroid of each cluster and the point of the event (i.e., the mean and variance of the 
event) is calculated using the Euclidean distance.(10)  Then, the obtained distances for all clusters 
are compared, and the cluster with the shortest distance is selected.
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3.	 Implementation Results

	 The experimental implementation was conducted using R Studio version 1.0.153 to verify 
the feasibility of the model.  We used a dataset including the force and torque measurements 
collected after detecting the failure of robot execution, provided by the UCI machine learning 
repository.  In the dataset, two causes are considered for machine failure.  The dataset also 
contains normal-case data.  Thus, we generated the subdataset for each of the normal, collision, 
and obstruction cases.  Note that the subdataset of the normal case is compared with those of 
the other cases.  Each subdataset commonly contains the following six attributes: forces for the 
x-axis (Fx), y-axis (Fy), and z-axis (Fz), and torques for the x-axis (Tx), y-axis (Ty), and z-axis (Tz).  
Each attribute is measured every 315 ms fifteen times after machine failure.
	 Tables 1–3 show the mean of each attribute measured at the same time in the normal, 
collision, and obstruction cases, respectively.  In the tables, the attribute Fz in the normal case 
changes greater than the other attributes after failure of robot execution caused by collision and 
obstruction.  Therefore, Fz is selected as the attribute for data analysis.	 Figures 1–3 show the 
scatter plots for elements of each cluster.  In each figure, the x- and y-axes of the plot indicate 
the mean and variance of the attribute Fz, respectively.  Each circle indicates an element of a 
cluster.  In the normal case, all the points are concentrated at a certain point.  This is because the 
Fz used in the normal case is almost the same as 15.5.  On the other hand, Fz varies dynamically 
when machine failure occurs.  In particular, Fz is more dispersed in the obstruction case than in 
the collision case since its variation is larger in the collision case.  Each figure shows the mean 
and variance in the normal, collision, or obstruction case.  From the figures, we can extract the 
centroid of a cluster.  Specifically, the centroids of the clusters are (15.6, 39.5), (–29.2, 155944.1), 
and (–804.2, 1086131.5), respectively.  By using these centroids, the causes of machine failure 
can be analyzed.  For example, if the mean and variance of a new event are –31.7 and 260.0, the 
machine failure is caused by collision.

Table 1
Mean of each attribute in normal case.
No Fx Fy Fz Tx Ty Tz
1 –1.91 1.08 15.33 3.70 –4.79 0.37
2 –2.12 1.00 15.33 3.66 –5.20 0.58
3 –1.87 1.04 15.95 3.58 –4.87 0.37
4 –2.00 0.95 15.79 4.08 –4.91 0.37
5 –1.91 0.95 15.79 3.50 –4.75 0.41
6 –1.91 0.87 16.08 3.83 –4.62 0.20
7 –2.00 1.04 16.04 3.58 –4.87 0.25
8 –1.83 1.04 16.75 3.62 –4.58 0.33
9 –1.87 1.04 14.79 2.75 –4.70 0.29
10 –1.79 0.70 14.29 3.16 –4.41 0.04
11 –1.58 0.58 16.08 3.41 –3.91 –0.20
12 –2.04 0.79 13.75 3.41 –4.58 0.04
13 –2.04 0.83 16.62 3.00 –4.95 –0.20
14 –1.62 0.58 14.50 3.79 –4.45 0.04
15 –1.37 1.00 15.25 2.41 –4.45 –0.20
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Table 2
Mean of each attribute in collision case.
No Fx Fy Fz Tx Ty Tz
1 2.86 –0.15 –14.79 –9.09 –3.95 –1.45
2 1.77 0.29 –20.11 –8.65 –3.77 –0.31
3 0.27 –4.34 –40.47 –9.77 1.13 –0.75
4 0.63 –2.56 –11.13 –3.77 –6.11 –0.40
5 –0.90 0.36 –13.77 –10.09 –5.93 –2.15
6 1.86 –1.95 –18.54 –3.84 –1.31 –1.77
7 2.70 –2.75 –28.31 –3.38 –2.72 –0.59
8 4.54 –3.09 –51.88 4.70 11.59 –4.90
9 –0.81 –0.86 –9.77 0.61 7.06 –1.09
10 –0.29 –1.95 –31.65 1.50 9.43 –1.81
11 0.02 –1.79 –51.22 0.43 13.75 –1.52
12 2.50 –5.38 –44.50 27.93 27.47 –7.47
13 0.22 0.13 –28.11 4.13 1.09 –3.25
14 –1.54 –1.40 –31.86 3.75 –0.18 –2.52
15 –1.52 –1.13 –48.95 3.70 4.97 –4.09

Table 3
Mean of each attribute in obstruction case.
No Fx Fy Fz Tx Ty Tz
1 40.30 –25.65 –510.80 70.25 –17.15 5.10
2 42.45 –24.45 –568.95 77.60 –25.10 5.90
3 38.45 –14.80 –566.65 52.95 29.45 5.25
4 34.40 –19.40 –740.05 55.55 39.05 1.95
5 15.65 –9.75 –881.40 12.40 –11.30 –0.05
6 5.80 –24.40 –687.45 64.35 45.70 3.10
7 –22.40 –41.70 –705.35 26.55 –16.30 –11.80
8 –0.45 –31.25 –594.35 –23.90 –9.00 –7.55
9 1.55 –34.00 –714.50 –2.20 –29.85 –5.90
10 21.35 –33.05 –522.40 –18.00 –5.95 –7.30
11 9.25 –90.60 –1147.95 2.75 –38.70 –23.00
12 –28.05 –99.70 –1377.40 –3.10 –47.45 –14.10
13 –36.35 –97.30 –1450.90 12.05 –54.00 –11.75
14 11.00 –70.10 –1373.50 5.65 –29.10 –10.35
15 –6.55 –49.10 –975.15 –19.85 –59.10 –1.00

Fig. 1.	 (Color online) Scatter plot for elements of 
normal case.

Fig. 2.	 (Color online) Scatter plot for elements of 
collision case.
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4.	 Conclusions

	 In this paper, we propose a predictive model for machine failure analysis, aiming to analyze 
various causes of machine failure.  To develop the predictive model, we conducted the following 
three steps: 1) dataset classification, 2) attribute selection, and 3) centroid calculation.  The 
dataset classification step classifies the dataset into multiple subdatasets according to the cause 
of machine failure, and the attribute selection step selects one of the attributes that change 
most after the machine failure.  The centroid calculation step calculates the centroid of each 
cluster that maximizes cluster cohesion.  To verify the feasibility of the predictive model, an 
experimental implementation was conducted using R Studio 1.0.153.  We used the dataset 
containing the force and torque measurements collected after detecting the failure of robot 
execution, provided by the UCI machine learning repository.  In the experiment, the clusters 
in the normal, collision, and obstruction cases were created, with the centroids (15.6, 39.5), 
(–29.2, 155944.1), and (–804.2, 1086131.5), respectively.  The results show that the implemented 
predictive model is feasible for analyzing various causes of machine failure.
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