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	 In this paper, an in situ technique is developed to measure the temperature distribution 
during the ultrafast laser scribing (machining) of heterogeneous materials using embedded 
sensors.  The materials investigated in this study are an epoxy molding compound (EMC), 
solder bumps, and a specially designed ultrathin printed circuit board (PCB).  The laser 
machining processes involved in this study are cutting/scribing through EMC and PCB, and 
trenching/scribing through EMC alone.  Small thermocouples have been designed and inserted 
inside the heterogeneous materials to record the in situ temperature distribution during ultrafast 
laser irradiation and the thermal effect is carefully investigated.  The highest temperature 
of 100.94 °C is recorded at the corner scribing position.  For comparison, a forward-looking 
infrared (FLIR) thermal imaging camera was applied to capture the real-time surface 
temperature distributions of PCB and EMC.  Owing to the ambient heat radiation, material 
emissivity, and reflective apparent temperature, the peak surface temperature detected by FLIR 
would be slightly lower than the in situ temperature measured by an embedded sensor.  The 
thermal design in this jam-packed area is then applied to a standard laser manufacturing 
process.

1.	 Introduction

	 The epoxy molding compound (EMC) has been widely applied to the IC packaging material 
in the semiconductor industry for decades.(1–3)  EMC consists of 20 raw materials, such as 
epoxy resin (organic resin), fused silica (inorganic filler), catalysts, mold release material, 
pigment, flame retardants, adhesion promoters, ion traps, and stress relievers.(1)  Usually, epoxy 
and filler dominate the mechanical property of EMC, that is, 12–15 wt% epoxy resin provides 
good machining quality and 70–80 wt% filler increases the strength and thermal conduction, 
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and reduces the coefficient of thermal expansion.  After the components on the printed circuit 
board (PCB) are encapsulated by EMC and singulated as one single unit, the whole package of 
heterogeneous materials undergoes a burn-in test process at the early stage of the mass product 
period.  This test purposely induces certain failures under stringent conditions, such as that of 
the end product, and determines the reliability of the end product.(4,5)

	 Traditionally, saw cutting is the main solution to singulate the integrated circuit unit.  
As new technology innovation emerges, there are new challenges; for example, in cutting 
irregular shapes and rigid and flexible materials, a mechanical saw can no longer meet the 
requirement, and a laser has become a new solution for singulation.(6)  As a mechanical saw 
has to be operated in cutting fluid media, a laser works with air similarly.  However, that is no 
comparison to the heat effect related to product reliability.(7)  For instance, laser scribing creates 
a warmer environment than a normal burn-in temperature, i.e., 250 °C in most cases, and a 
regular burn-in test should be exercised under a more rigorous condition in the cases related to 
the laser process.  There will be more laser applications to come during the assembly of system-
in-package (SiP) products.  More applications need more components in a regular PCB area, 
which would result in the undesired crosstalk of signals.  SiP is a design with high-density 
components on PCB, so high-giga components need to be isolated to prevent the noise effect on 
other components by shielding.(8)  The specific structure of SiP shielding in a compound, which 
is hard to build by molding, can be created by laser scribing.(9)

	 It is interesting to researchers and engineers to investigate how to maintain the performance 
of the components shielded in the package after the laser machining of the shielding structure.  
High temperature causes defects on the cured epoxy, such as material melting, deterioration, 
cracks, and loss of adhesion to copper.(10)  Using a short or ultrashort pulse laser is a solution 
for semiconductor processes.(11)  The main reason for this is that they cause a minimal thermal 
effect during the scribing processes.  Those reasons explain why both researchers and engineers 
are interested in how high the temperature is during laser scribing.  In this study, the authors 
present the design of the in situ temperature measurement of heterogeneous materials during 
ultrafast laser scribing.  A noncontact forward-looking infrared (FLIR) thermal imaging camera 
is capable of scanning and visualizing the temperature distribution of an entire surface in many 
industrial applications.(12,13)  However, there is still some difficulty encountered when FLIR 
is detecting the temperature of the surface during laser machining.  Thus, the use of K-type 
thermocouples inserted inside the material near laser scribing has been demonstrated to be an 
accurate approach to measure the temperature in situ.

2.	 Materials and Methods

	 A nanosecond UV laser (355 nm wavelength, 20 W power, <1.3 M2 beam quality, 200 μJ 
pulse energy, and 90–110 kHz base frequency) was used, and the optimal machining parameters 
for the cutting and trenching of the molding compound and PCB of SiP were explored.  In laser 
scribing, the target material is a mixture of heterogeneous materials of EMC and PCB.  The 
epoxy compound with a thickness of 0.8 mm in an ultrafine filler size range of 15–35 μm and 
PCB with a thickness of 0.36 mm were tested to investigate thermal behaviors during laser 
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scribing.  There are four copper layers in PCB, where three copper layers are in the cutting 
street and the one copper layer is solder-printed for trenching.  Each copper layer is 0.5 oz, and 
between EMC and PCB, there is a solder of about 45 μm height printed on the copper pad for 
the trenching dump, as shown in Fig. 1.  Note that a solder microball has been deformed by laser 
trenching.

2.1	 Optics system 

	 The original laser beam is insufficient for cutting through a SiP structure and needs optics to 
support the scribing process.  A galvo-scanner head was used for high-feed-rate scribing, and a 
telecentric lens was used for a more vertical wall side, which was installed with a laser.  Figure 
2(a) schematically illustrates an innovated optical installation developed in this study.(14)  A 
focal shifter helps in the installation, which easily makes the beam focus on the material bottom 
and is fixed during scribing.  The theoretical spot size is designed to be 13.7 μm for this system.

Fig. 1.	 (Color online) Cross section of SiP material.

Fig. 2.	 (Color online) (a) Schematic illustration of optics design system.  (b) Actual installation inside the laser 
machine.

(a) (b)
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	 Figure 2(b) shows the actual optics system used in this study.  First, a laser beam is generated 
by the laser resonator.  The beam was manipulated by a focal shifter and a galvo to scribe on 
the position designed on the material, which will be described in Sect. 2.3.  The telecentric lens 
makes the beam a small spot with a machine ability on the material.
 
2.2	 Laser trench/cutting in scribing process

	 For trenching, the parameters are as follows: a feed speed of 800 mm/s, a repetition rate of 
100 kHz, and an output average power of 17.5 W measured under the lens.  The scribing process 
used 146 passes to create the trench, which is shown in Fig. 3.  
	 For the cutting process, the parameters measured under the lens are as follows: a feed speed 
of 800 mm/s, a repetition rate of 100 kHz, and an output average power of 17.5 W.  The scribing 
process was repeated 100 times to cut through the material.
	 After trenching and removing the material, the top view of the test sample is shown in Fig. 4.  
The cutting shape is a rectangle and the trenching shape is a turned L shape from the top view 
of the SiP.  The total cutting length is 108 mm with four corners, and the total trenching length 
is 14 mm with one corner.  Note again that there are three copper layers in the cutting street and 
one more copper layer in the trenching position for solder-printed trenching.

2.3	 In situ temperature measurement

	 K-type thermocouples were used for in situ measurement in this study.  The SiP was drilled 
with some 1-mm-diameter holes and then thermocouples were inserted into the holes.  All 
the holes were drilled from PCB side with different depths as shown in Fig. 5, i.e., (a) a sensor 
inserted into the middle of EMC, (b) a sensor inserted into the middle of PCB, and (c) a sensor 
inserted into the middle of a solder bump.
	 Note that the K-type thermocouple is the most common sensor calibration type providing the 
widest operating temperature range and generally works in most applications.  A thermocouple 

Fig. 3.	 (Color online) Cross section of trenching 
structure designed in SiP.

Fig. 4.	 (Color online) Top view of test sample for 
scribing (trenching and cutting).
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circuit contains two alloy junctions, such as wire sand connectors and a voltage-measuring 
device.  When two different temperatures were detected, measurable current flows through 
the circuit.  The current is related to the temperature differential, which presents the detected 
temperature.  Normally, the output signals from the K-type thermocouple are very small 
and need to be carefully calibrated before use.  Owing to its reliability and accuracy, the 
K-type thermocouple is used extensively at temperatures up to 1260 °C.  However, the K-type 
thermocouple with a temperature range of 0–275 °C was used in this study.
	 For EMC and PCB temperature measurements, the in situ temperature was assessed for 
both cutting and trench processes, respectively.  For solder temperature measurement, the in 
situ temperature was assessed only for the trench process.  The thermocouples’ positions were 
gauged, as shown in Fig. 6, and designed 200 μm away from the scribing area, which is a 
normal position where an electronic component is located.  For the temperature measured in a 
printed solder bump, Fig. 6(c) illustrates the thermocouples measured for the trenching process 
only, which were only inserted at the trenching position.
	 There would be four thermocouples inserted in four different holes, labeled T1 to T4 
in Fig. 6(a), to collect temperature data at the same time in one cutting process, and three 
thermocouples in three different holes, labeled T1 to T3 in Fig. 6(b), to collect temperature data 
at the same time in one trenching process.  The positions of three thermocouples used to collect 
the in situ temperature data of the solder in the trenching process are labeled T1 to T3, as shown 
in Fig. 6(c).

2.4	 Design of experiment (DOE)

	 Three materials (EMC, PCB, and solder), in situ temperature measurement (positions labeled 
T1 to T5), and two scribing processes (cutting and trenching) were used to create five DOEs, 
which are summarized in Table 1.  Note that there is no temperature measured in the solder 
bump for the cutting process.
	 Each DOE was carried out individually, namely, DOE1 to DOE3 show one trench process to 
obtain three temperatures from three thermocouples for one material, and DOE4 to DOE5 show 
one cutting process to obtain four temperatures from four thermocouples for one material.

Fig. 5.	 (Color online) Cross sections of drilling holes with different depths for a thermocouple to measure (a) EMC, (b) 
PCB, and (c) solder bump.

(a) (b) (c)
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2.5	 Surface temperature real-time detection

	 An alternative real-time temperature detected using a FLIR thermal imaging camera was 
used for comparison.  The FLIR thermal imaging camera can distinguish fixed forward-looking 
thermal images from sideways-tracking infrared systems, which can very easily generate a 
real-time high-resolution image.  A noncontact FLIR thermal imaging camera can scan and 
visualize the temperature distribution of an entire surface.  However, the system requires 
material emissivity and reflective apparent temperature to precisely detect the temperatures of 
the target materials.  
	 Figure 7 shows the material emissivity calibration scheme used in this study.  The object 
under test (PCB) was inserted with a K-type thermocouple and placed on a heating plate.  The 
FLIR thermal imaging camera was aimed toward the target PCB with the thermocouple.  The 
real-time temperature was recorded as the heating plate was continuously heating.  Once 
the temperature in the thermal image was exactly the same as that detected by the K-type 
thermocouple, the material emissivity was then determined using the FLIR thermal imaging 
camera system.  The calibrated material emissivity for PCB is 0.96.  Figure 8 shows the real-
time temperature detection equipment used in this study.

Table 1
DOEs used in this study.

DOE No. Process Material Position label of in situ 
temperature measurement

DOE1 Trench EMC T1 T2 T3 —
DOE2 Trench PCB T1 T2 T3 —
DOE3 Trench Solder T1 T2 T3 —
DOE4 Cutting EMC T1 T2 T3 T4
DOE5 Cutting PCB T1 T2 T3 T4

Fig. 6.	 (Color online) Schematic diagrams of thermocouples’ positions of (a) cutting, (b) trenching, and (c) solder 
bump in trenching.

(a) (b) (c)
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3.	 Results and Discussion

	 Figure 2(b) shows the main devices for laser machining.  The test samples (workpiece) 
were mounted on an XY table and exposed to the atmosphere (air).  At the upper right corner, 
there is an air blower (nozzle) to remove ash, dust, and residues from the machined surface.  
The temperature of the laser’s front end is assumed to be high enough to melt the workpiece.  
However, the temperature of the machined surface will be easily transferred to the operating 
ambient.  Hence, the real-time surface temperature measured using the FLIR thermal imaging 
camera would be relatively lower than the actual laser machining temperature.  Therefore, the 
embedded K-type thermocouple would be appropriate for measuring the in situ temperature 
along the cut depth.
	 The thermocouples were connected to a monitor and recorded the accumulated temperature 
in the sample during laser scribing.  It was one cycle with four steps, i.e., start of thermocouple 
sampling, start of laser scribing, end of laser scribing, and finally, end of thermocouple 
sampling.  The temperature-time chart for each DOE was then automatically graphed.  When 
laser scribing started, the temperature also rose at the same time.  The temperature immediately 
fell after laser scribing.  The measured peak temperature for every positioned thermocouple was 
also reported for the five DOEs.  The temperatures measured in situ are shown in Figs. 9–13.
	 After the 5 DOEs were carried out, the maximum temperature from the thermocouple 
sampled in one cycle received for all 25 graphs.  Results were collected and are listed in Table 2.  
The obtained temperature variances were as follows: DOE1, 23.62 ℃; DOE2, 19.65 ℃; DOE3, 
32.45 ℃; DOE4, 12.60 ℃; DOE5, 19.38 ℃.  This implies that the area near the solder bump 
would cause a large thermally induced warpage owing to the mismatch of the coefficient of 
thermal expansion among heterogeneous materials.
	 For comparison in the cutting process, the FLIR thermal imaging camera system with a 
thermal imaging system was used to detect the surface real-time temperature distributions 
of PCB and EMC, which are depicted in Figs. 14(a) and 14(b), respectively.  PCB is a typical 
multilayer material consisting of copper foil, resin matrix, reinforcement, prepreg, and fillings.  
The temperature captured on PCB may vary owing to laser cutting on a metal or resin.  Also, 

Fig. 7.	 (Color online) Emissivity calibration for 
PCB material.

Fig. 8.	 (Color online) Real-time surface temperature 
detection using FLIR 440 cameras.
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Fig. 11.	 (Color online) DOE3: temperatures of solder measured in situ during trenching (℃).

Fig. 12.	 (Color online) DOE4: temperatures of EMC measured in situ during cutting (℃).

Fig. 9.	 (Color online) DOE1: temperatures of EMC measured in situ during trenching (℃).

Fig. 10.	 (Color online) DOE2: temperatures of PCB measured in situ during trenching (℃).
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the in-depth temperature of PCB was difficult to reflect on the surface owing to the various 
conductivities of the materials.  The temperature of EMC is slightly higher than the temperature 
measured by the thermocouple.  This may be caused by the ambient radiation effects on direct 
laser cutting.

Fig. 13.	 (Color online) DOE5: temperatures of PBC measured in situ during cutting (℃).

Fig. 14.	 (Color online) Cutting temperature distributions captured using FLIR camera system: (a) PCB and (b) 
EMC.

Table 2
In situ temperature of laser scribing (unit: ℃).

DOE No. Process Material Position label
T1 T2 T3 T4 T5

DOE1 Trench EMC 62.56 	 72.37 63.98 53.21 64.89
DOE2 Trench PCB 67.63 	 78.77 87.28 77.66 69.37
DOE3 Trench Solder 68.49 	 100.94 91.99 79.30 75.32
DOE4 Cutting EMC 71.21 	 81.63 76.36 69.03 72.22
DOE5 Cutting PCB 72.8 	 91.18 86.82 82.28 75.45

(a) (b)
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4.	 Conclusions

	 In this paper, the authors describe the temperature response of a material and how it was 
detected by sensors.  Engineers would very much like to have more space to mount more 
components and ICs in a very limited space in PCB.
	 During cutting, the highest temperature T2 was observed by T2 on a trench pad, i.e., 
81.63 ℃ for EMC and 91.18 ℃ for PCB.  During the trenching, the highest temperature was 
obseved at T2 in the corner, i.e., 72.37 ℃ for EMC, 78.77 ℃ for PCB, and 100.94 ℃ for a solder 
bump.
	 During laser cutting, the solder on the trench pad would be the key medium to dissipate more 
heat to the T2 position shown in Fig. 6(a).  During trenchire, heat was spread from two sides to 
the T2 position shown in Fig. 6(b).
	 All the temperatures measured in situ during the laser process are lower than the burn-in 
test temperature and even lower than the curing temperature of EMC.  Thermal effects from 
laser irradiation will not cause any damage to the electronic components under the parameter 
provided in Sect. 2, i.e., 0.2 mm.  
	 The FLIR thermal imaging camera system is capable of measuring the real-time temperature 
distributions near the laser cutting surface.  However, the system highly depends on the ambient 
radiation, material emissivity, and reflective apparent temperature.  The in situ temperature 
measurement with embedded thermocouples inside the material developed in this research is 
much more feasible and reliable.
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