
1589Sensors and Materials, Vol. 31, No. 5 (2019) 1589–1598
MYU Tokyo

S & M 1882

*Corresponding author: e-mail: cclee@saturn.yzu.edu.tw
https://doi.org/10.18494/SAM.2019.2280

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Human Activity Recognition Based on Smart Chair

Chien-Cheng Lee,* Lamin Saidy, and Fitri

Department of Electrical Engineering, Yuan Ze University,
No. 135, Yuandong Rd, Zhongli District, Taoyuan City, 320, Taiwan

(Received April 16, 2018; accepted March 20, 2019)

Keywords:	  smart chair, pressure sensor, random forest, extremely randomized tree

	 We present a smart chair that can detect and classify some common daily activities of 
elderly people.  The chair has the potential to be a huge source of information on the behaviors 
of people since most indoor activities are performed in sedentary positions.  The proposed 
smart chair comprises six pressure sensors mounted in a chair, together with a Raspberry Pi to 
collect raw data.  The mounted pressure sensors collect signals and transmit them to a server for 
processing and analysis while the user sits in the chair.  Five different activities are detected and 
classified by these sensors: working at the desk, eating, napping, coughing, and watching TV.  
In an effort to achieve the best classification of these activities, three different machine learning 
algorithms are employed and their accuracy scores were compared.  These algorithms are the 
random forest (RF), extremely randomized trees (ERTs), and support vector machine (SVM).  
The experimental results have proven the ERT to be the best classifier in this survey, since it 
yielded a classification accuracy above 98% over the testing data.

1.	 Introduction

	 Activity monitoring systems are paramount in giving care to individuals, especially to 
elderly people.(1)  The activities of humans, regardless of their age group, play a huge role 
in determining the kind of therapy they needed to undergo.  Therefore, building systems 
to recognize activities performed by humans can improve the health-care services and the 
conditions of individuals as they age.(2,3) 
	 Camera-based monitoring systems are the most popular activity monitoring systems in 
the modern world.  Although camera surveillance systems are effective in keeping track of 
human activities, they do not offer privacy to individuals.  Wearable devices can also be used 
to monitor daily activities.(4,5)  Thus, several companies provide wearable solutions to protect 
individual privacy.  Nevertheless, these devices usually work on rechargeable batteries, which 
need periodic recharging.  This makes the wearable devices inconvenient for daily use.  
	 A considerable amount of research has been carried out to develop various technologies 
for recognizing the activities performed by elderly people.  As proposed by some researchers, 
monitoring the activities performed by elderly people at home offers a solution in giving them 



1590	 Sensors and Materials, Vol. 31, No. 5 (2019)

indirect care.(1,6)  In the olden days, different sensing modalities were adopted to sense the 
activity of individuals.  One such approach involved sensors and cameras.(1,7,8)  Kang et al. 
developed an automatic human movement classification system for the aged, using a single 
waist-mounted triaxial accelerometer.(6)  The system classifies the daily activities of aged 
individuals, such as sitting, lying down, standing, walking, running, falling, from sitting 
to standing, from standing to sitting, and moving from standing to lying down, from lying 
down to standing, from sitting to lying down, and from lying down to sitting.  An algorithm 
of the hierarchical binary tree is used to classify these activities.  In the same regard, 
Zouba et al. proposed a multisensory activity recognition approach in which video cameras and 
environmental sensors are used to recognize activities of interest performed by aged individuals 
at home.(8)  The same authors used a similar approach to performing behavioral analysis of aged 
individuals using data from sensors.(9) 
	 As privacy issues pose a major concern for activity-recognition camera systems, some 
researchers have turned their attention to static-posture detection instead.  Static posture is 
held for a certain time and the physical exertion of maintaining the same posture or position 
is determined.  Tan et al. reported a method in which an office chair is used to elucidate the 
occupant’s actions and needs.(10)  They mounted sensors on the seat cushion and the backrest of 
a chair to detect sixteen activities.  Principal component analysis was carried out to classify the 
activities.  Along the same line, Fu and Macleod presented a system for predicting the activities 
of individual subjects by feeding posture information to two classifiers, one for back posture and 
the other for leg posture.(11)  The system has many potential applications, such as the analysis 
of subjects sitting or lying down, motion tracking in rehabilitation, interaction assistance, and 
the detection of anomalous activities.  All the sensors they used were mounted on the seat 
cushion and the back of a chair.  In another work, Kumar et al. proposed a Care–Chair system 
to classify nineteen fine-grained and complex sedentary user activities.(12)  The system detects 
static postures and movements.  The activities include napping, sitting still, looking back to the 
left, looking back to the right, tilting the head from side to side, nodding the head up and down, 
waving a hand, talking, sneezing, coughing, drinking, eating, hiccupping, crying, laughing, 
shouting, weeping, yawning, and yelling.
	 There is a need to devise a technology to retrieve information about people while they are 
seated.  Such information helps determine and improve the health of not only elderly people but 
also individuals with poor health.  Elderly people usually spend their time at home performing 
their activities in sedentary positions.  In the previous studies, the common practice was to 
embed sensors in a chair to detect activities performed by individuals in a sedentary position.  
The number of detected activities depends on the number of sensors and their mounting 
positions.  However, detecting too many activities may lead to great confusion in the system, 
especially in terms of detecting and classifying similar activities.  
	 The aim of this work is to develop a low-cost, reliable smart chair to monitor and classify 
daily activities performed by elderly people at home.  Thus, five common activities, that is, 
working at a desk, eating, napping, coughing, and watching TV, are detected using the proposed 
system.  The proposed smart chair will facilitate the monitoring of aged people without human 
intervention.  
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2.	 Materials and Methods

2.1	 System prototype design

	 The proposed smart chair is built from simple and sophisticated devices yet robust enough 
to detect five activities of individuals in sedentary positions.  These activities include eating, 
working at the desk, watching TV, napping, and coughing.  The smart chair is composed of 
six pressure sensors, an analog-to-digital (A/D) converter (MCP 3008), Raspberry Pi, and a 
conventional office chair.  Four pressure sensors are placed on the seat to collect data while 
the subject is sitting upright and two on the backrest to collect information when the subject 
leans back.  These sensors generate analog signals, and the A/D converter (MCP 3008) is used 
to convert the collected signals to digital signals for the Raspberry PI device.  Raspberry Pi 
transmits the digital signals to a server for preprocessing and analysis.  The setup is illustrated 
in Fig. 1.  
	 The adopted Raspberry Pi 2 Model B is equipped with 512 MB SDRAM, 128 GB micro-
SD storage, 40 GPIO, and four USB 2.0 ports.  Force-sensitive resistors (FSRs) are employed as 
pressure sensors to collect raw signals.  These FSR sensors allow the measurement of static and 
dynamic forces applied to the contact surface.(13)  They are available in two types: circular FSR 
sensors and square FSR sensors.  The square FSR sensors are used in this study because of their 
wider force sensitivity range of ~3 g to ~3 kg and are optimized for use in human touch control 
applications.  The MCP 3008 device is a microchip with a successive approximation 10-bit 
A/D converter.  It is a programmable device that provides four pseudo-differential input pairs.  
Communication with the devices is accomplished using a simple serial interface compatible 
with the SPI protocol.  It is mainly employed in this research to convert analog signals read by 
the FSR sensors to digital signals for Raspberry Pi.  
	 Through the A/D converter, Raspberry Pi collects the digital signals from FSR sensors 
attached to the chair.  While the subject is performing activities, it stores the signals in CSV 
files and transmits them to the server for analysis.  These devices are depicted in Fig. 2.

Fig. 1.	 (Color online) System architecture.
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2.2	 Feature extraction

	 Feature extraction is an essential signal processing step prior to applying a learning 
algorithm.  In an effort to improve the accuracy of the machine learning models, feature vectors 
of 24 dimensions are extracted from the overall collected user data.  For each sensor signal Ai, 
where i = {1, 2, …, 6} indicates the pressure sensor number, we transform signal Ai into the 
frequency domain by fast-Fourier transformation (FFT).  In this way, we obtain for each sensor 
signal, two more time series Aij with j ={t, f}, where t and f represent the time domain signal 
and the frequency domain signal, respectively.  The feature vectors are extracted from a sliding 
window of size 30 with 50% overlap, which corresponds to one second of sensor time.  For each 
window, the mean and variance are extracted from time series Aij in both the time domain and 
the frequency domain.  In other words, four-dimensional feature vectors are extracted for each 
sensor.  Since in this experiment, we use six pressure sensors, the total feature dimensionality 
for each subject is 6 × 4, which results in 24-dimensional feature vectors.  Thus, the training 
data consist of feature vectors of 24 dimensions, which is the columnwise combination of all the 
selected features from each sensor.

2.3	 Activity recognition

	 Machine learning algorithms are utilized in this study to recognize the activities.  There exist 
different machine learning and deep learning models in this field.  However, this study is aimed 
at developing a low-cost, reliable smart chair that can recognize and classify five activities using 
the 24 selected features from the raw sensor readings.  Therefore, three classification algorithms 
are employed to achieve this goal.  These include random forest (RF), extremely randomized 
tree (ERT), and support vector machine (SVM).
	 RF assembles a number of decision tree classifiers and averages their predictions to improve 
the accuracy and control overfitting.(14,15)  Each tree in the ensemble is built from a subsample 
drawn with replacement (i.e., a bootstrap sample) from the original dataset or training set that 
contains a collection of features.(16)  In a classifier concept, the random vector X = (X1, …, Xp)T 
represents the real-valued input or features and the random feature Y represents the real-valued 
response, assuming an unknown joint distribution P(X, Y).  The aim is to find a prediction 
function f(X) for predicting Y.(17) 

Fig. 2.	 (Color online) System devices. (a) Pressure sensor, (b) Raspberry Pi, and (c) MCP 3008 ADC.

(a) (b) (c)
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	 In the ERT algorithm, randomness goes one step further in the way splits are computed.  
As in RFs, a random subset of candidate features is used, but instead of looking for the most 
discriminative thresholds, thresholds are drawn at random for each candidate feature and the 
best of these randomly generated thresholds is selected as the splitting rule.  This usually allows 
a slightly greater reduction in the variance of the model, at the expense of a slightly greater 
increase in bias.  The extra-trees algorithm builds an ensemble of the unpruned decision or 
regression trees following the classical top-down procedure.  It has two main differences with 
other tree-based ensemble methods.  It splits nodes by choosing cut-points fully at random and 
it uses the whole learning sample (rather than a bootstrap replica) to grow the trees.(18)

	 If the training dataset is also used as a test dataset during the testing of a classification 
function, the model will fail to classify anything useful on yet-unseen data resulting in 
overfitting.  A common solution to it is to hold out part of the available data as a test set.  In 
Scikit-learn, a random split into training and test sets can be quickly computed with the train_
test_split helper function.(15)  However, by doing this, valuable information that the learning 
algorithm could benefit from is withheld.  
	 On the other hand, a smaller test set generates a more inaccurate estimation of the 
generalization error.  Then, splitting a dataset into training and test sets is all about balancing 
this trade-off.  The most commonly used splits are 60:40, 70:30, and 80:20, depending on the 
size of the initial dataset.(19) 
	 Another way to split the dataset into training and testing sets is to use a cross-validation 
method called Leave One Out (LOO), in which one sample is used for testing and the remaining 
samples are used to train the model.  The testing sample changes per iteration until all available 
samples in the dataset have been tested.  However, this approach is time-consuming.  In this 
study, 80% of the data for each user are used for training and 20% for testing.
	 The extracted features from each of the sensor data are processed with a RF classifier for 
classification.  This classifier uses an ensemble learning method for classification.  It forms an 
ensemble by building multiple decision trees during training and outputting the class that is the 
mode of the classes.  This algorithm has many hyperparameters that have an effect on the model 
performance depending on how they are tuned.  The parameters used in this research are listed 
in Table 1.
	 The algorithm of growing ERTs is similar to the RF, but there are still some differences.  
ERTs do not apply the bagging procedure to construct a set of training samples for each tree.  
The same input training set is used to train all the trees.  Unlike RF, which finds the best 
among a random subset of variables, ERTs pick a node and split in the extreme case.  The ERT 

Table 1
Parameters of RF. 
Parameter Value Meaning
Bootstrap True Bootstrap samples are used when building trees
Max features Square root The number of features to consider when looking for the best split
n estimators 20 The number of trees in the forest

Max depth None Nodes are expanded until all leaves are pure or until all leaves contain 
less than min_samples_split samples.
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algorithm builds totally randomized trees whose structures are independent of the output values 
of the learning sample.  The parameters used in this classifier are depicted in Table 2.  

3.	 Experimental Results

	 Eight different subjects participated in the data collection phase of this research.  Each 
activity was performed by a subject for a duration of 10 min except for coughing.  The activities 
were performed in the following sequence without taking a break: eating, working at the desk, 
napping, and watching TV.  The subjects immediately switched to the next activity after 10 min.  
Considering that coughing is not a regular activity and it is spontaneous, it was performed 
separately for a 20 min duration.  The subject does not cough continuously during this period; 
rather, they coughed freely at any time within the 20 min period.  A video recording is taken of 
the participants performing the activities for reference.  This makes it easy to trace the sensor 
data that correspond to the coughing activity instead of using all the redundant data.  The 
resulting data from coughing are combined with the data from other activities for analysis.  
	 The collected data are simultaneously stored along with the timestamp for ease of assigning 
labels to the data.  These data are stored in CSV files and transmitted to the server to be 
processed separately.  Each data file consists of six pressure sensor values, as depicted in Fig. 3.  
The column names ch_0 to ch_5 represent signal values from the six pressure sensors, where 
each column name corresponds to a pressure sensor.  The label column is manually assigned 
with reference to the timestamp and the video stream of the activity.  The pressure sensors are 
very sensitive and their values depend on the pressure applied.  The pressures from 0 to 1024.  
	 Figure 4 illustrates the proposed smart chair built from simple and sophisticated devices.  
Eight different subjects participated in this undertaking, performing the aforementioned 
activities.  Each subject is seated on the chair in front of a desk with a computer and asked to 
perform the activities as they would do under normal circumstances.  

Table 2
Parameters of ERT. 
Parameter Value Meaning
n estimators 20 The number of trees in the forest

Max depth None Nodes are expanded until all leaves are pure or
until all leaves contain less than min_samples_split samples.

Fig. 3.	 Pressure sensor data.
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	 In order to effectively assess the performance of our smart chair, two phases of experiments 
were conducted, the user-dependent phase and the user-independent phase.  In the user-
dependent phase, 80% of each subject’s data are included in the training dataset, and the 
remaining 20% are used for testing models.  On the other hand, the user data for training and 
testing are different for the user-independent phase, meaning that the user data involved in 
training are not included in the testing data and vice versa.  

3.1	 User-dependent phase

	 The features extracted for all the participants consist of 45687 feature vectors.  On applying 
the 80:20 split of datasets as mentioned above, the training and testing datasets consist of 34265 
and 11422 feature vectors, respectively.  The number of extracted features for each activity in 
the user-dependent phrase are outlined in Tables 3 and 4.  The testing accuracy scores of RF, 
ERT, and SVM classifiers on each of the user data are depicted in Fig. 5.  Both of RF and ERT 
attained accuracy scores above 95% on the individual activities.  In terms of the classification 
accuracy scores, ERT outperformed the other models in this survey.  Furthermore, the testing 
accuracy scores are diverse among the subjects because different subjects performed these 
activities in distinct styles and with various body orientations.  The confusion matrix of ERT is 
illustrated in Table 5.  
	 As portrayed in Table 5, we note that some activities were misclassified owing to contextual 
similarity.  For example, working at the desk was misclassified as eating, napping, or watching, 
while napping was misclassified as eating or working at the desk.  

3.2	 User-independent phase

	 For the user-independent phase, the feature sizes for the activities included in training and 
testing are shown in Table 6.  The total extracted features for the training and testing datasets 
consist of 8405 and 2909 feature vectors, respectively.  

Fig. 4.	 (Color online) Prototype of the smart chair.

"Force-sensitive 
resistors"
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Table 5
Confusion matrix of ERT.

Eating Working Napping Coughing Watching
Eating 0.9774 0.0226 0.0000 0.0000 0.0000
Working 0.0429 0.9539 0.0032 0.0000 0.0004
Napping 0.0003 0.0049 0.9921 0.0000 0.0000
Coughing 0.0000 0.0080 0.0000 0.9680 0.0240
Watching 0.0003 0.0000 0.0000 0.0004 0.9993
The rows represent the ground truth of the five activities and the columns represent the predictions.

Table 6
Feature sizes for all the activities included in training and testing data.
Activity Training Testing
Eating 	 2154 	 742
Working 	 2080 	 679
Napping 	 2085 	 685
Coughing 	 98 	 32
Watching 	 1988 	 771

Fig. 5.	 Accuracy of models for each user.

Table 3 
Number of extracted features for each subject (training data).
Activity Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8
Eating 	 1093 	 1052 	 1032 	 1114 	 1092 	 1089 	 1011 	 1121
Working 	 1023 	 1090 	 1109 	 960 	 1004 	 1046 	 1064 	 1007
Napping 	 946 	 1072 	 1110 	 1097 	 1069 	 1042 	 1106 	 973
Coughing 	 42 	 49 	 68 	 42 	 44 	 63 	 70 	 60
Watching 	 413 	 1054 	 1013 	 1426 	 1150 	 1041 	 1226 	 1169
Sub. means subject.

Table 4
Number of extracted features for each subject (testing data).
Activity Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8
Eating 	 385 	 381 	 374 	 376 	 404 	 398 	 354 	 405
Working 	 327 	 400 	 388 	 348 	 354 	 348 	 388 	 359
Napping 	 307 	 306 	 329 	 335 	 298 	 295 	 339 	 298
Coughing 	 19 	 16 	 19 	 20 	 12 	 23 	 16 	 16
Watching 	 135 	 337 	 335 	 468 	 385 	 364 	 396 	 366
Sub. means subject.
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Table 7
Confusion matrix of ERT.

Eating Working Napping Coughing Watching
Eating 0.9559 0.0427 0.0000 0.0000 0.0014
Working 0.0316 0.9638 0.0045 0.0000 0.0004
Napping 0.0043 0.0028 0.9929 0.0000 0.0000
Coughing 0.0000 0.0000 0.0000 0.1000 0.0000
Watching 0.0000 0.000 0.0000 0.0000 0.1000
The rows represent the ground truth of the five activities and the columns represent the predictions.

	 The classification performances of the three models, RF, ERT, and SVM, in the user-
independent phase are 0.978, 0.979, and 0.962, respectively.  ERT also achieved a higher 
classification accuracy than RF and SVM; its corresponding confusion matrix is depicted in 
Table 7.  This is quite reasonable considering that the data from each participant are included in 
both training and testing on the 80:20 split basis.  Nonetheless, the results attained in the user-
independent phase are promising as they show a better generalization attribute since the user 
data included in training are separate from those contained in testing.

4.	 Conclusions

	 We developed a smart chair that can detect and classify five common activities performed 
in a sedentary position.  The system was composed of six pressure sensors, Raspberry Pi, and 
an office chair.  Four pressure sensors were mounted on the seat cushion to detect information 
of the participants while seated and two on the backrest to capture the details when the user 
leans back.  The data collected via Raspberry Pi were sent to the server for preprocessing and 
analysis.  
	 Two phases of experiments were conducted on the collected data upon submission to 
the server, namely, user-dependent and user-independent experiments.  In the two phases of 
experiments, for each sensor reading of data from each participant, the mean and the variance 
are extracted from a window size of 30 with 50% overlap.  These features are extracted from 
both the frequency and time domains, resulting in four features per sensor.  Since we employed 
six sensors, 24-dimensionality feature vectors are extracted for each user.
	 The RF and ERT classifiers demonstrated a very high classification performance during the 
experiments, the highest being attained by ERT.  ERT obtained up to 98% in the user-dependent 
phase and 97% in user-independent phase.  The results obtained by the classifiers on the five 
activities showed that the proposed algorithm outperformed all the others mentioned in the 
literature.

Acknowledgments

	 This work was supported by the Ministry of Science and Technology (Grant number: MOST 
105-2622-E-155-015-CC3).



1598	 Sensors and Materials, Vol. 31, No. 5 (2019)

References

	 1	 T. Kasteren, G. Englebienne, and B. Kröse: Pers. Ubiquitous Comput. 14 (2010) 489. 
	 2	 T. S. Barger, D. E. Brown, and M. Alwan: IEEE Trans. Syst. Man Cybern. Part A Syst. Humans  35 (2005) 22. 
	 3	 M. Nambu, K. Nakajima, A. Kawarada, and T. Tamura: Proc. 2000 IEEE Conf. EMBS  (2000) 79. 
	 4	 N. Noury, A. Dittmar, C. Corroy, R. Baghai, J. Weber, D. Blanc, F. Klefstat, A. Blinovska, S. Vaysse, and B. 

Comet: Proc. 2004. IEEE Conf. EMBS 2 (2004) 3266. 
	 5	 C.-C. Yang and Y.-L. Hsu: Sensors 10 (2010) 7772. 
	 6	 D. W. Kang, J. S. Choi, J. W. Lee, S. C. Chung, S. J. Park, and G. R. Tack: Disability and Rehabil.: Assistive 

Technol. 5 (2010) 247. 
	 7	 Y. Charlon, W. Bourennane, F. Bettahar, and E. Campo: IRBM 34 (2013) 60. 
	 8	 N. Zouba, F. Bremond, and M. Thonnat: Proc. 2010 IEEE Conf. AVSS  (2010) 278. 
	 9	 N. Zouba, F. Bremond, and M. Thonnat: Proc. 2009 IEEE Conf. AVSS  (2009) 98. 
	10	 H. Z. Tan, L. A. Slivovsky, and A. Pentland: IEEE/ASME Trans. Mechatron. 6 (2001) 261. 
	11	 T. Fu and A. Macleod: Proc. 2014 Int. Conf. Intell. Environments (2014) 211. 
	12	 R. Kumar, A. Bayliff, D. De, A. Evans, S. K. Das, and M. Makos: Proc. 2016 IEEE Conf. SMARTCOMP (2016) 1. 
	13	 A. Sadun, J. Jalani, and J. Sukor: Proc. 2016 First Int. Workshop on Pattern Recognit. 10011 (2016) 1001112. 
	14	 L. Breiman: Mach. Learn. 45 (2001) 5. 
	15	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. 

Weiss, and V. Dubourg: J. Mach. Learn. Res. 12 (2011) 2825. 
	16	 P. Geurts, A. Irrthum, and L. Wehenkel: Mol. Biosyst.  5 (2009) 1593. 
	17	 A. Cutler, D. R. Cutler, and J. R. Stevens: Random Forests: Ensemble Machine Learning (Springer, 

Heidelberg, 2012) p. 157.
	18	 P. Geurts, D. Ernst, and L. Wehenkel: Mach. Learn. 63 (2006) 3. 
	19	 S. Raschka: Python Machine Learning (Packt Publishing Ltd., Birmingham, 2015). 

About the Authors

	 Chien-Cheng Lee received his Ph.D. degree in electrical engineering from 
National Cheng Kung University, Tainan, Taiwan, in 2003.  Dr. Lee is 
currently an assistant professor in the Department of Electrical Engineering, 
Yuan Ze University, Taoyuan, Taiwan.  He was a research visitor at Telcordia 
Inc. (formerly Bellcore), NJ, USA, from Oct. 2007 to Jan. 2008.  He is one of 
the guest editors for a special issue on Signal Processing for Applications in 
Healthcare Systems for EURASIP Journal on Advances in Signal Processing, 
2008.  His research interests include image processing, pattern recognition, 
and machine learning.

	 Lamin Saidy received his B.S. degree from the University of The Gambia, 
Gambia, in 2014 and his M.S. degree from Yuan Ze University, Taiwan, in 
2018.  From 2015 to 2016, he was a teaching assistant at University of The 
Gambia, Gambia.  Since 2016, he has been a master’s student at Yuan Ze 
University.  His research interests are in machine learning, deep learning, and 
IoT.

	 Fitri received her B.S. degree from Polytechnic of Caltex Riau, Indonesia, in 
2015 and her M.S. degree from Yuan Ze University, Taiwan, in 2018.  Since 
2016, she has been a master student at Yuan Ze University.  Her research 
interests are in machine learning, IoT, and data analysis.


