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	 A wireless sensor network (WSN) is a group of spatially dispersed sensors for monitoring 
the physical conditions of the environment and organizing the collected data at a central 
location.  Since WSNs typically have no infrastructure, one of the challenges in WSNs is the 
lack of an appropriate method for an operator to interact with a WSN.  Practical tasks for WSNs 
require sensor nodes adaptive to changes in WSN configuration, user input, and commands; 
hence, monitoring and interaction with a WSN are required.  In this paper, a new scheme for 
configuration dissemination with the monitoring of the sensor state is proposed to control 
dynamically the operation of sensor nodes in real time.  Moreover, a method is provided for the 
operator to observe the state of a sensor node, which helps the operator provide an appropriate 
control input to the WSN.  We prove the stability properties of the proposed algorithm and show 
the simulation results.

1.	 Introduction

	 Wireless sensor networks (WSNs) consist of sink nodes and a large number of sensor nodes 
that coordinate autonomously.  These networks are used to monitor physical or environmental 
conditions such as sound, pressure, and temperature, and propagate data through a network to a 
main location.  However, sensor nodes are not yet capable of autonomously performing various 
tasks, and many tasks require coordination between an operator and a WSN.  Therefore, the 
operator should recognize the state of the WSN and convey parameter adjustments or configurations 
to the WSN.  
	 One of the prominent works regarding the configuration dissemination model involves 
the use of sensor protocols for information via negotiation (SPIN).(1)  The authors focused on 
the efficient dissemination of individual sensor observations to all the sensors and proposed 
data descriptors to eliminate the chance of redundant transmission in WSNs.  Other authors 
proposed a time division multiple access (TDMA)-based data dissemination protocol for WSNs 
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to offer a degree of reliability.(2)  The Firecracker protocol(3) used a combination of routing and 
broadcast principles to rapidly propagate data throughout WSNs.  Trickle(4) was proposed for 
propagating and maintaining code updates as fast as possible from the operator to all nodes in 
the network.  This protocol considered the suppression and dynamic adjustment of the broadcast 
rate to limit transmissions among neighboring nodes.  It only provided a mechanism by which 
a node might decide when to propagate the code.  Deluge(5) added a feature that supports 
the transfer of large data objects based on Trickle principles.  Still other authors proposed a 
gossip-based approach where each node decides to forward a message to another node based 
on some probability.(6)   The problem with this gossip approach is that, if a source has very 
few neighbors, then the nodes will not gossip and the information dies out.  Middle-ware has 
been proposed(7) to provide controlled propagation to tune the process according to the desired 
reliability.  In another case,(8) a multirumor overwriting model was proposed.  The model 
described the propagation and interaction of periodically sensed data, which were distributed by 
gossiping, without increasing the traffic on the network.  Walker and coworkers(9,10) focused on 
two methods of data propagation (flooding and consensus methods) and compared the ability 
of operators to manage the system to reach the desired goals.  In the flooding method, each 
node explicitly matches the value of operator command, and in the consensus method, each 
node matches the average value of operator command of all the neighbors it senses.  The data 
fusion support system(11) provides intelligent capabilities for real-time control access, so that the 
configurable integrated web-based support services are structured in the context of an ad-hoc 
wireless sensor network.  
	 Existing works have focused on conveying the data between the nodes, but the WSN 
requires an operator to be able to observe the WSN states in response to operator commands 
and the effects of control input.  This helps the user provide the next configuration.  However, 
the monitoring of the sensor node state is particularly difficult for the operator, and limited 
research has probed into determining it.  In this paper, an autonomous real-time algorithm for 
the configuration and monitoring of the WSN is proposed.  The proposed method properly 
disseminates the WSN configuration by indirectly setting parameters within the framework of 
local rules in a decentralized manner.  The proposed algorithm also allows the user to observe 
effectively the state of the sensor node by understanding WSN dynamics.

2.	 Proposed Algorithm

2.1	 Model

	 We consider a WSN system consisting of (N − 1) sensor nodes, a sink node (N-th node), 
and an operator.  Let N = {1, 2, ..., N} denote the set of sensor nodes in the WSN.  The set of 
neighboring nodes of sensor node i (1 ≤ i ≤ N) is denoted as Ni and its cardinality is Ni.  We 
propose a control model of the WSN system, where for the forward control loop, the operator 
controls the WSN by directly controlling the sink node, which affects dissemination to the rest 
of the sensor nodes based on the control law of each sensor node.  For the backward control 
loop, the operator observes the state of the sensor nodes through the sink node that provides 
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feedback regarding the node state.  No control can be exerted over individual sensor nodes, only 
over the WSN as a whole.  To this end, we define the state of the WSN system as x(t) and denote 
u(t) as the desired configuration set that the operator wants to achieve with the WSN system at 
time t.  Specifically, x(t) represents the vector of the states of all sensor nodes at time t, which 
can be indicated as vector x(t) = [x1(t) x2(t) … xN(t)]T, where xi(t) = [xi

1(t) xi
2(t) … xi

n(t)]T is the 
state vector of node i at time t and an individual node has n-dimensional state space.  The state 
dynamics of the WSN can be defined as

	 ( ) ( ) ( )( ) , . t f x t u t=x� 	 (1)

	 The operator interacts with the WSN by applying the control input to the sink node, while 
the other nodes interact with each other following the local control law of each node in the 
WSN: 

	 ( ) ( ) ( )( )  , ,  .
i

i j i
j N

t x t x t i i N
∈

= − ∀ ≠∑x� 	 (2)

	 The operator gives commands or informs the sink node of parameter change with u(t), after 
which information propagates according to the underlying control law of sensor node members.  
Let xN be the state of a sink node and the user input is directly applied to the sink node by 
letting xN(t) = u(t).  Then, the dynamic for the sink node is 

	 ( ) 0.t =Nx� 	 (3)

According to Eqs. (2) and (3), the operator directly controls the state of the single sink node and 
the interactions between the sensor nodes are handled autonomously.  That is, the operator’s 
intended command is directly conveyed to the sink node and each sensor node averages the 
states of all neighbors it can sense, and then sets its state vector based on that average state.  In 
this manner, the operator takes actions independent of the number of nodes and supervises the 
WSN as a single entity, resulting in a control complexity of O(1).

2.2	 Stability analysis

	 In this section, we will analyze the feasibility of the proposed algorithm for an operator to 
achieve desired WSN configurations.  We denote a steady state xs, which is the state where the 
proposed system under the local control law can asymptotically converge.  Let us denote xs = 
[x1s x2s … xNs]T as a steady state vector x(t), where xis is the steady state of sensor node i.  We 
consider that the desired WSN configuration set u(t) is piecewise constant such that u(t) ≈ u.
	 From Eq. (2), xis is expressed as

	 ( ) ( ) ( )( )1 2,1 ,2 ,
1  1 1 1 ,  ,  ,s s Nsi i i N

i
x x x i i NN= + + + ∀ ∈ ≠isx N� 	 (4)
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where 1(i,j) is the indication function: 1(i,j) = 1 indicating ij N∈ , otherwise, 1(i,j) = 0, therefore 

( ),
,

.  ii j
j

N
∈

=∑
iN
1   Let ( )

T
1 2 1      . s s s N sx x x −

 = … x�   Then, Eq. (4) is rewritten as 
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	 Let L be a Laplacian matrix L = D – A, where D is the diagonal matrix and

	 ( ),1 if  1

0 otherwise
i j ==




=ijA
1

.	 (6)

	 Therefore, the elements of L are given by

	 ( ),

1        if  
1     if  1

0       otherwise

i j
i

i j

N

 ==
= − ==



ijL 1 .	 (7)

	 Consider a vector v = [x1, x2, …, xN]T, then we will have the action of L as

	 [ ]
, 

1  . 
i

i i j j iN
∈ ≠

= − ∑i j
N

Lv x x 	 (8)

	 We observe that 1 = [1, …, 1]T is an eigenvector of L with eigenvalue 0, since xi always 
equals the average of its neighbors’ values for this vector.
	 According to Eq. (5), A has a Laplacian matrix such as L and the constant xs are eigenvectors 
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of eigenvalue 0.  In the proposed algorithm, the user input is directly applied to the N-th agent, 
and then we divide the following two cases: 1(i,j) = 1 and 1(i,j) = 0.  In the case of 1(i,j) = 1, 
obviously xNs = u.  From Eq. (4), we obtain

	 ( )1 . i iN N= − +is isx x u 	 (9)

It shows that xis = u, for all i.  That is,

	 [ ]T  .u u u= …sx 	 (10)

In the case of 1(i,j) = 0,

	
, i

i
j j N

N
∈ ≠

=∑ js is
N

x x .	 (11)

If there exists any j ( ij N∈ ) with N ij N∈ Nj, we obtain xis = xjs.  Finally, we obtain the following 

conclusion:
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	 Therefore, we conclude that the operator can achieve some configuration described by u(t) 
with the proposed system.
	 Next, we need to prove that the proposed system ensures stability.  If the system is 
asymptotically stable, then the trajectory will converge to the steady state, described in Eqs. (10) 
and (12), as time goes to infinity.  To derive the system stability, we define the following change 
of coordinates:

	 ( ) ( ) .t t= −i i ise x x 	 (13)

Then, we obtain the following representation of the system
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Defining e(t) = [e1(t) e2(t) … eN−1(t)]T, our system can be represented in a matrix form as

	 ( ) ( ) , t t=i se A e� 	 (15)
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where 
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We use the Lyapunov theory to claim that the system defined by Eq. (15) will be convergent.  
The stability of solutions near a point of equilibrium is discussed by the Lyapunov theory.  In 
simple terms, if the solutions that start out near an equilibrium point xe remain near xe forever, 
then xe is Lyapunov stable.  More strongly, if xe is Lyapunov stable and all solutions that start 
out near xe converge to xe, then xe is asymptotically stable.  From this theory, we can find a 
Lyapunov function V(e) that satisfies the following conditions:
•	 V(e) is positive definite;
•	 V

.
(e) is negative definite.

We assume that there exist positive definite matrices P and Q, P = PT, such that

	 T  . + =−s sPA A P Q 	 (16)

Consider the Lyapunov function in the form

	 ( ) T1 . 2=V e e Pe 	 (17)

Then, obviously V(e) ≥ 0 and we can obtain the time derivative V
.
(e) as  

	

( )

( )

T T

T T

T

1 ( )2
1  2

1          0.2

= +

= +

= − ≤

s s

V e e Pe e Pe

e A P PA e

e Qe

� � �

	

 
	 On the basis of the above analysis, both conditions of the Lyapunov function V(e) have been 
satisfied; thus, we can consider that the system is stable and the error dynamics will converge 
to zero exponentially.  This result guarantees the autonomous adaptation of the sensor node 
state according to the operator-defined WSN configuration, resulting in the asynchronous 
convergence of the WSN to the desired global behavior.  For state monitoring, the sink node 
determines the difference between the states of its neighbors and the control input.  The sink 
node feedbacks the difference to the operator.  The closer the difference is to 0, the nearer the 
configuration of the entire network to completion.  Therefore, the following command can be 
issued to the gateway node.  According to the above stability analysis, we know that the states 
of all sensor nodes converge to the control input in the steady state.  Therefore, the operator can 
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learn to understand node states and estimate the timing to give the next configuration inputs, 
given the feedback from the sink node only.

3.	 Simulation Results

3.1	 Configuration

	 To evaluate the performance of our proposed system, we develop a simulation environment 
using MATLAB.  The simulation area is 100 × 100 m2, where the entire network is divided 
into equally shaped grids, and the sensor nodes are uniformly deployed.  We set N = 50, and 
the sensor nodes are arbitrarily connected.  The sink node is denoted as R50, which is chosen 
randomly by the operator.  The channel capacity is set to 200 kbps, and the transmission and 
carrier sense ranges are set to 20 and 40 m, respectively.

3.2	 Results

	 We compared the performance of the proposed method with that of the consensus method.(9)  
The consensus algorithm is an asynchronous distributed protocol for distributed averaging, 

which aims to compute the average 1 .N i
i

x
N=

=∑x   The consensus algorithm is used to achieve 

agreement on a single state among the distributed nodes and designed to achieve reliability in a 
network with multiple unreliable nodes.  Each member in a system averages the values of all of 
its neighbors and adapts its own value toward that average.  
	 Figures 1 and 2 illustrate the time trajectories of node states when the command input 
remains constant during runtime.  The input is given by the operator, such as u = 4.  Simulations 
are conducted over the interval from 0 to 5 s in 100 ms increments.  Randomly chosen are 
3 out of 49 nodes, namely, R1, R2, and R3.  To show the performance of controlling the state 

Fig. 1.	 Time trajectories of R1, R2, and R3 without error: (a) consensus and (b) proposed methods.

(a) (b)
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of each node, we set the initial state for each node differently.  Figures 1(a) and 1(b) illustrate 
the state changes with the consensus and proposed methods in the absence of error.  Both the 
consensus and proposed methods converge the states of all sensor nodes to the desired state u 
despite the difference in the initial state of each node.  As for the time taken to converge to the 
configuration by the operator, the consensus method is slightly faster, but both methods show 
similar performance characteristics for the error-free condition.
	 Figures 2(a) and 2(b) illustrate the state changes of the nodes under an error condition.  The 
error condition is implemented so that the state value of R2 is not updated between 0.5 and 2 
s owing to the malfunction of R2.  During [0.5, 2] s, R2 exchanges the last updated state value 
with that of its neighbor sensor nodes.  Both methods show that the state values of all nodes 
converge to the desired state after 3 s.  However, for the consensus method, the malfunction of 
R2 directly affects the state values of the neighboring nodes during [0.5, 2] s.
	 That is, in the consensus method, the state value of each node is sensitive to changes in its 
neighbor nodes’ states; thus, a large difference in state value is observed between the nodes.  
On the other hand, the proposed method shows that the wrong behavior of R2 does not have a 
significant effect on the state control of other nodes.  As can be seen from Eq. (2), each node 
indirectly uses the state of the neighboring nodes in adjusting its state value, which makes it less 
susceptible to error conditions and have more robust performance.
	 Next, we examine the trajectories of states corresponding to control input changes during 
runtime.  Simulations are conducted over the interval from 0 to 20 s in 100 ms increments.  The 
configuration input is initially set to u = 2 and changed to u = 4 at 10 s.  The error condition 
is implemented so that the state value of R2 is not updated during [0.5, 2] s and [10.5, 12] s.  
Figures 3(a) and 3(b) respectively show the state adaptation behavior for the consensus and  
proposed methods according to control input changes.  As shown in Fig. 3(a), the consensus 
method shows that the state values of R1 and R3 are largely affected by the state value of R2 
during the malfunction period, and the difference in state value between the nodes remains 

Fig. 2.	 Time trajectories of R1, R2, and R3 with error: (a) consensus and (b) proposed methods.

(a) (b)
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large.  For the proposed method, the state change between the nodes is not large despite the 
malfunction of R2 and is adopted successfully according to the desired configuration.  In Fig. 
3(b), the dashed trajectory belongs to R50 controlled by the operator.  The operator can estimate 
the state of the WSN through the value of R50, which helps appropriately determine the timing 
for the next configuration input.  The fact that e50 is close to 0 reflects the convergence of the 
WSN configuration to the control input.  Therefore, the operator obtains the appropriate timing 
to tune the next configuration command to the WSN system by observing the e50 of the sink 
node.
	 Figure 4 illustrates the steady states of R1, R2, and R3 under variable control input u = [u1(t), 
u2(t)]T.  For simplicity, u1(t) is varied within the range of [0.1, 2.0] with 0.1 increments and u2(t) 

Fig. 3.	 State adaptation behavior according to user input change during runtime: (a) consensus and (b) proposed 
methods.

Fig. 4.	 State adaptation under the time-sequential control input: (a) consensus and (b) proposed methods.

(a) (b)

(a) (b)
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is determined as u2(t) = 2e−u1 (t).  The input commands are sequentially sent from the user to the 
WSNs.  In the case of the consensus method, there is no appropriate feedback for timing to issue 
the next command; thus, the user command is sent periodically.  The period is set to 10 s.  From 
Fig. 4(a), the consensus method shows that the state values of the agents are changed differently 
and do not follow the user input exactly.  The proposed method shown in Fig. 4(b) successfully 
controls the states of the agents as the change of the user command and the states of all agents 
are matched correctly by varying the user command.  Also, the proposed method can estimate 
the time to issue the next command, which makes the control of the WSN configuration more 
effective when a sequential command is required by the operator.

4.	 Conclusions

	 This paper presents a scheme of parameter configuration and monitoring for WSN systems.  
The operator interacts with sensor nodes by applying the configuration input to a single sink 
node while the other nodes interact with each other according to the proposed dynamics.  The 
proposed scheme appropriately affects the WSN operation by disseminating the operator 
input to the rest of the sensor nodes based on the control law of each node.  The operator can 
effectively observe the state of the WSN by understanding dynamics and estimate the timing 
for the next control inputs, which is based on the feedback of the sink node only.  The main 
contributions of the proposed algorithm over the existing schemes include the following:  First, 
the distributed behaviors of each node, defined by the proposed scheme, automatically drive 
the system parameters to the desired configuration.  Second, the operator can effectively 
observe the state of the WSN through the feedback from a single node.  Finally, insights into 
the theoretic analysis of the proposed scheme are provided by deriving the steady states and 
stability of the systems.
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