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	 Recent advancements in sensor and wireless communication technologies are creating new 
opportunities to effectively exploit real-time traffic data.  Onboard sensors on vehicles collect 
real-time traffic data and simulate traffic states in a distributed fashion.  A local transportation 
management center coordinates the overall simulation with an optimistic execution technique.  
In this paper, we presents a study of the application of real-time sensor data to the evaluation of 
the performance of ad hoc distributed traffic simulation.  In this study, the real-time field data 
would be replaced with the streaming sensor data in a field implementation.  Two scenarios 
were investigated to evaluate the performance.  The first scenario examined how the system 
adequately captures changes in traffic conditions when the sensor reports a sudden increase 
in traffic volume and decreases under uncongested traffic conditions.  The second scenario 
investigated how well the ad hoc distributed traffic simulation operates when a traffic incident 
occurs.  The proposed ad hoc distributed traffic simulation with real-time sensor data was found 
to be capable of capturing dynamically changing traffic conditions in both the peak traffic 
and incident scenarios.  In both scenarios, the prediction accuracy drops when the traffic state 
changes.  However, the ad hoc approach appears generally capable of capturing dynamically 
changing traffic conditions when the real-time field sensor data are available.

1.	 Introduction

	 Recent advancements in sensor and wireless communication technologies are creating new 
opportunities to effectively exploit real-time traffic data.  Onboard sensors on vehicles collect 
real-time traffic data and simulate traffic states in a distributed fashion.  Such a distributed 
approach can provide more up-to-date and robust estimates with real-time sensor data.(1–3)

	 As roadside and in-vehicle sensors are deployed under connected vehicle and autonomous 
vehicle environments, an increasing variety of traffic data is becoming available in real time.(4,5)  
This real-time sensor data can be shared through wireless communication and utilized for other 
purposes, creating an opportunity for mobile computing and online traffic simulations.(6–8)  
	 However, traffic simulations with real-time data require a speed that is higher than the real-
time running speed with a high simulation resolution, since the purpose of the simulations is to 
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provide immediate future traffic forecast based on real-time sensor data.  Simulating at a high 
resolution is often too computationally intensive to process a large-scale network on a single 
processor in real time.  To mitigate this limitation, ad hoc distributed simulation with optimistic 
execution has been proposed as one of the promising solutions for large network simulations.(9,10)

	 In this paper, we present a study of the application of real-time sensor data to the evaluation 
of the performance of ad hoc distributed traffic simulation.  In this study, the real-time 
field data would be replaced with the streaming sensor data in a field implementation.  It is 
envisioned that, in the proposed distributed traffic simulation framework, each in-vehicle 
simulation models a small portion of the overall network and provides detailed traffic state 
information.  Traffic simulation and data processing are performed in a distributed fashion 
using multiple vehicles.  Each in-vehicle simulation is designed to run in real time and update 
its estimates when necessary.  This integration manages the distributed network to synchronize 
the predictions among logical processes (LPs).  

2.	 Background

	 Parallel and distributed simulation with real-time sensor data has been considered as one 
of the promising solutions to large network simulations.(11–17)  Since traffic simulation has a 
limitation to run fast enough with a large number of real-time sensor data, a traffic simulation 
program is partitioned into multiple processors, and communication middleware is used to 
coordinate between multiple single-processor machines.  Some researchers proposed models 
where a large network is divided into a set of subnetworks, each of which is assigned to a 
different processor so that a large network simulation runs at a much higher speed.  
	 Although parallel and distributed simulation with real-time sensor data increases the 
simulation speed in a large network simulation model, it requires simulation time managing 
processes to synchronize all LPs.(18–20)  This synchronization process often significantly 
reduces efficiency.  Since neither the speed of each LP nor the computational load for each LP 
are the same, the speed of the entire simulation depends on the slowest LP.  For example, faster 
LPs always have to wait for the slowest LP and all LPs should be synchronized with respect to 
simulation time.  This synchronization overhead can take abundant simulation resources and 
degrade the overall simulation performance.  
	 Despite these issues, it is believed that the lack of detailed knowledge of the real-time traffic 
information can be addressed by distributed simulations, which provide current traffic data with 
increased computing capacity and less communication bandwidth requirements.  A distributed 
approach allows the system to operate in close proximity to a real-time sensor, offering the 
potential to use more accurate data with shorter response time than conventional centralized 
simulations within a single large processing machine.  

3.	 Experimental Design

	 To evaluate the performance of the ad hoc distributed traffic simulation model, the utilized 
traffic simulation model is required to have the following capabilities: (1) the ability to modify 
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simulation objects at runtime, (2) generate interim simulation data at runtime, (3) produce 
runtime simulation states, and (4) recall the simulation states.  VISSIM®, a widely used off-
the-shelf traffic simulation program, is a commercial simulation package meeting all the 
requirements mentioned above.  VISSIM® is a discrete, stochastic, time-step-based microscopic 
simulation model.(21)  This behavior-based multipurpose traffic simulation program has been 
developed to model a wide range of traffic conditions including freeway, arterial, and public 
transit operations.(22)  In this model, all vehicles are modeled individually on the basis of a 
psycho physical driver behavior model developed by Wiedemann.(21)  The basic assumption of 
this model is that a driver can be in one of the four driving modes: free driving, approaching, 
following, or braking.  
	 Figure 1 illustrates the VISSIM® network utilized for the experiments in this study.  This 
Manhattan-style 3-by-6 grid network consists of a two-way, 8-lane road (Fifth Street) with 
all other roads being 4-lane, two-way facilities.  Each of the eighteen signalized intersections 
operates using a pretimed, 120 s four-phase cycle (10 s protected-only leading lefts and a 50 s 
through/right movement in all approaches) and a 0 s offset.  For this network, each roadway 
link is 400 m in length with a 180 m single-lane left-turn bay, the vehicle fleet is assumed to be 
100% autos, and the desired speed is 48 km/h.  At each intersection approach, 95% of vehicles 
are assumed to pass straight through, 3% turn right, and 2% turn left.  Each LP models a 3-by-3 
grid network, centered at the LP location.  
	 In the experiments, it is assumed that the LPs are preconfigured to model the designated 
scenario area at the start of a run.  Each LP sends the estimated flow rate, speed, travel time, 
and queue length data on all simulated links to the server every 60 s of the simulated time.  The 
60 s predictions are the aggregate flows over the previous 240 s.  At the initialization of each 
LP, a 240 s fill period is completed before rollbacks are allowed.  LPs do not send updates to the 
server during the fill period.  The duration of each experiment is 90 simulated min, including a 
30 min warm-up to allow the system to reach a steady state.  The results presented in this paper 
do not include the warm-up period.  

Fig. 1.	 Experimental setup.
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	 In addition to LP simulations, one large network simulation provides a real-time state 
estimate of the roadway network.  To fully investigate the ability of the ad hoc system to utilize 
real-time sensor data, no LPs are initialized under accurate demand conditions.  Initial rollbacks 
are expected to be instanced on the basis of the real-time field sensor data.  The real-time field 
sensor data is shared and propagated between LPs through the ad hoc algorithms.
	 For these experiments, LPs are uniformly distributed over the network.  The locations of 
the eight LPs used in these experiments are shown in Fig. 1.  Each LP models a 3-by-3 grid 
network, centered at the vehicle location.  For example, LP 8 models a network covering Fourth 
Street, Fifth Street, and Sixth Street with First Avenue, Second Avenue, and Third Avenue.  The 
real-time field sensor data covers the entire 3-by-6 grid network representing real-time traffic 
data.  In a field implementation, this would be replaced with the streaming detector data.
	 Two different traffic conditions are examined: a peak traffic scenario under uncongested 
traffic conditions and an incident scenario.  The first scenario assumes that a sudden increase 
in eastbound traffic on Second Avenue is detected at point A.  This scenario explores how a 
traffic flow change is transferred to downstream LPs.  In the second scenario, a traffic incident 
is assumed to occur eastbound on Second Avenue at point B, reducing the average speed of 
vehicles from 48 to 1 km/h for 900 s.  This reduces the roadway capacity below the demand, 
resulting in significant upstream queueing.  This scenario models congested conditions and 
examines the responsiveness of the system to a downstream bottleneck.  The average speed and 
flow rate are measured every minute for each link.  Details about the scenarios are presented in 
Table 1.  Each scenario with one real-time field sensor data and eight LPs is replicated 10 times 
with different VISSIM® random seed numbers.

4.	 Results and Discussion

	 The objective of the experiments in this paper is to investigate the performance of the proposed ad 
hoc traffic simulation when real-time field sensor data is available.  Two scenarios are designed.  
The first scenario examines how the system adequately captures changes in traffic conditions 
when the traffic volume experiences short-duration peaking in uncongested traffic conditions.  
The second scenario explores how well the ad hoc distributed traffic simulation operates under 
incident conditions.  As real-time field data represents real-time sensor data, the system’s 
performance can be measured on the basis of the accuracy of the predictions at the current wall-
clock time for future wall-clock times.  Predictions for future traffic states at future wall-clock 
times can be found from the global instance , ,

m
j k lG , which corresponds to aggregated predictions 

on the link j at the simulation time k at the wall-clock time l with the data type m (flow, speed, 
travel time, delay, or queue length).  For example, ,7:30 ,7:20

FlowRate
j AM AMG  refers to aggregated flow rate 

Table 1
Experimental scenarios.
Scenario No. Initial flow rate (veh/h/ln) Note

1 100 Volume increase (500 veh/h/ln) 
20–40 min

2 500 Incident 10–25 min
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predictions on the link j of 7:30 AM simulation time when the current wall-clock time is 7:20 
AM.
	 To quantify the accuracy of the predictions, mean absolute percentage error (MAPE) is 
calculated.  MAPE measures in the analysis of predictive abilities are calculated for each wall-
clock minute, since predictions available at each wall-clock time may differ.  For example, 

min
min

T i
Wall colck TMAPE +

−  is the MAPE for the prediction for T + i min calculated at the wall-clock 
time T min.  It is computed on the basis of the T + i min simulation time predicted at the wall-
clock time T min and the real-time sensor data at the T + i min wall-clock time.  The MAPEs 
of 1–5, 6–10, and 11–15 min future predictions can be computed to examine the system’s 
prediction performance with various near-term horizon lengths.  

4.1	 Peak traffic scenario

	 The first scenario examines how the system adequately captures changes in traffic 
conditions when the traffic volume is suddenly increased or decreased under uncongested 
traffic conditions.  This is achieved by modeling the under capacity 100 veh/h/ln traffic demand 
for 20 min (after initialization) followed by a sudden flow increase to 500 veh/h/ln for 20 min 
on Second Avenue (point A), with traffic then returning to the original 100 veh/h/ln rate.  
	 To model the traffic volume changes over the network, new traffic volume information 
should be transferred from upstream LPs to downstream LPs.  In this scenario, the real-time 
sensor data is expected to reflect the increased traffic volume at 20 min wall-clock time, under 
the assumption that the increased volume has been detected by field detectors.  This traffic 
increase triggers the server to send a rollback message to the upstream LPs (LP 1 and LP 2).  
LP 1 and LP 2 update their predictions with this new information and send their future traffic 
predictions regarding the links they are modeling.  On the basis of the new predictions by LP 
1 and LP 2, global variables , ,

m
j k lG  are updated in the space-time memory and rollbacks are 

triggered on the downstream LPs when necessary.  This process is continued, allowing the 
downstream LPs to receive predictive data regarding the flow increase prior to the increase 
reaching the LPs’ simulation area.
	 The system’s performance will be measured using the following two attributes: (1) the length 
of the prediction horizon—how far in advance the system provides predictions at a specific 
wall-clock time and (2) how accurate the predictions are at a specific wall-clock time.  By 
focusing on these two attributes, a comprehensive quantitative comparison is conducted to 
explore the quality of the available predictions of the ad hoc distributed simulation approach.  
The accuracy of the available predictions is calculated for various near-term horizon lengths (1–5, 
6–10, and 11–15 min future predictions).
	 Mean absolute error (MAE) (flow rate) and MAPE (travel time) analyses are conducted.  
Details of the calculation are as follows.

	 , , ,
min

,_
1

b

k l i l k l i
a b i a
k l

Ad Hoc FlowRate RealTimeField FlowRate
MAE FlowRate
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Here, min
,_ a b

k lMAE FlowRate − : mean absolute error of ad hoc simulation (run number k) flow 
rate predictions for the next a − b min simulation time at the wall-clock time l;

min
,_ a b

k lMAPE TT − : MAPE of ad hoc simulation (run number k) travel time predictions for the 
next a − b min simulation time at the wall-clock time l;

, 1,k l lAd Hoc TT + : average of travel time predictions (run number k) produced by LPs for the next 
i min simulation time at the wall-clock time l; 

,k l iRealTimeField FlowRate + : flow rate from real-time field sensor data (run number k) at the 
wall-clock time l + i; 

,k l iRealTimeField TT + : travel time from real-time field sensor data (run number k) at the wall-
clock time l + i; 
	 m:	 total number of replicate trial runs;
	 k:	 number of replicate trial runs; 
	 n:	 number of intervals. 
	 For example, 1 5min

,_ k lMAE FlowRate −  represents the mean absolute error of the ad hoc 
simulation (run number k) flow rate predictions for the next 1–5 min simulation time at the 
wall-clock time l.
	 Figures 2 and 3 show that the ad hoc distributed simulations present a high degree of 
agreement with the field sensor data for the immediate near-term future (1–5 min future 
predictions).  As expected, it is readily seen that the accuracy of predicting the flow rate and 
travel time decreases with a change in traffic state at 20 min (when the increase begins) and 
40 min (when the decrease begins).  However, the ad hoc distributed simulations rapidly adapt 
to the new traffic state and the overall accuracy of the ad hoc approach improves.  In the 
replicated trials, the increased arrival demand on average reaches point B approximately 8 min 
after the initial increase at point A.  Since the upstream LPs (LP 1 and LP 2) reflect the new 
traffic state immediately after the increase, they are expected to demonstrate results similar to 
the field sensor data.  However, the new traffic information is not available to the downstream 
LPs (LP 7 and LP 8 containing point B) from the field sensors up to 8 min after crossing point A.  
Although the downstream LPs in the ad hoc distributed simulations, coupled with the upstream 
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LPs, rolled back and predicted the increased/decreased traffic flow before the new traffic 
reached the field detectors, exchanging predicted flow rate information between LPs in an ad 
hoc distributed simulation allows the downstream LPs to reflect the oncoming traffic changes.
	 Table 2 and Figs. 2 and 3 also demonstrate that the agreement between the ad hoc distributed 
simulations and the real-time field sensor data is significantly reduced as the prediction horizon 
increases to 6–10 and 11–15 min.  It is not possible to have any updated prediction until the 
event occurs in a certain area modeled by any LPs (point A in this scenario) and is reflected 
on any LPs.  Additionally, the propagation time is approximately 5 min from Second Street 
and Fifth Street.  Therefore, the ad hoc distributed simulations cannot further make accurate 
predictions over 6 min.  Thus, all of the predictions over the 6 min can be erroneous.  The 
larger horizons will thus have more errors and the length of the prediction horizon is believed to 
correlate with the propagation time, which is a function of the network size, vehicle propagation 
speed, and LP simulation speed.  For example, the ad hoc distributed simulations could further 
make accurate 30 min future predictions, if the traffic propagation time is 30 min or more.  This 
will be revisited later in this paper.

4.2	 Incident scenario

	 This scenario is intended to investigate the responsiveness of ad hoc distributed simulations 
when under traffic incident conditions.  Traffic information transfer in this scenario is not 
as straightforward as that under uncongested traffic conditions.  Although upstream traffic 
information (flow rates) propagates from upstream LPs to downstream LPs in the volume 
increase scenario, downstream traffic information (speed reduction) is transmitted to upstream 
LPs from downstream LPs, as congestion builds from downstream to upstream.  To investigate 
how the ad hoc distributed traffic simulations perform during before-incident, during-incident, 
and after-incident periods, this scenario is constructed.  A traffic incident is set to create 
congested conditions by reducing the vehicle speed from 48 to 1 km/h at point B for 15 min.  
The incident starts 10 min after the 20 min warm-up period.  After an additional 10 min, the 

Fig. 2.	 (Color online) Ad hoc simulation with real-
time field data (segment 1 flow rate).

Fig. 3.	 (Color online) Ad hoc simulation with real-
time field data (segment 1 travel time).
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vehicle queue extends to Second Street.  The queue does not begin to clear from this link until 
after the incident is removed from point B.  This experiment allows for an investigation of 
how the system represents both the congestion and the periods before, during, and after the 
congestion.  Similarly to the first scenario, ten replicated runs with one real-time sensor data 
and eight LPs are conducted.  After the runs, a comprehensive quantitative comparison is 
performed to examine how accurate the predictions are at specific prediction horizons.
	 First, the progress of the incident traffic conditions in the real-time sensor data is described 
and how ad hoc distributed simulations successfully model the incident is explained later.  
Owing to the incident at point B, the capacity on Second Avenue is reduced significantly, 
reducing the average speed of vehicles from 48 to 1 km/h for 600 s and resulting in significant 
upstream queueing toward point A.  The average speed drops as the impact of the incident 
reaches the upstream links.  It requires approximately about 15 min for the impact to reach 
Second Street.  At the same time, only limited traffic flow (far less than 500 veh/h/ln input flow 
rate—approximately 50–100 veh/h/ln) can be served.  After the incident is cleared at 25 min, 
vehicles can pass point B at a free flow speed.  However, more than 15 min is required for all 
the unserved vehicles to pass the queue and for the traffic to return to the preincident state.  The 
flow rate and travel time of the real-time field sensor data are depicted in Fig. 4.  Also, a three-
dimensional plot of the travel time of the real-time field data is presented in Fig. 5 at 5 min 
intervals.  It is shown that the segment 1 travel time reaches approximately 700 s during the 
congestions, while the uncongested travel time is approximately 350 s.
	 This traffic condition is reproduced in the ad hoc distributed simulations as follows.  Each 
LP is running its simulation based on the initial flow rate.  No LP has information about the 
incident until the server receives the low speed and low flow rate from the real-time field sensor 
data and sends rollback messages to the corresponding LPs.  The incident starts at point B, 
reducing the average speed of vehicles from 48 to 1 km/h for 900 s.  It results in significant 
upstream queueing on Second Avenue such that the measured traffic flow and speed of the 
real-time sensor data are significantly reduced.  Right after the incident starts at 10 min wall-
clock time, the real-time field sensor data starts to show a lower speed and a lower flow rate 

Table 2
MAEs and MAPEs (segment 1).

Prediction MAE/MAPE

Flow rate
1–5 min prediction

6–10 min prediction
11–15 min prediction

31.6 veh/h/ln
82.5 veh/h/ln

138.7 veh/h/ln

Travel time
1–5 min prediction

6–10 min prediction
11–15 min prediction

6.6%
11.5%
16.3%

Fig. 4.	 Real-time sensor data (segment 1 flow rate 
and travel time).
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on the link at point B.  The server receives the low speed and low flow rate from the real-
time sensor data, and finds a rollback threshold violation between the data from the real-time 
sensor data and the already received estimates from LP 7 and LP 8.  The server then issues a 
rollback to LP 7 and LP 8.  They begin to update their future traffic predictions assuming that 
newly received traffic conditions continue.  Reproducing congested conditions on LP 7 and 
LP 8 is accomplished by controlling the outflow rate by altering the ‘desired speed’ of each 
vehicle on the link.  When LP 7 and LP 8 update their predictions and the difference between 
their predictions and the flow rates already predicted by LP 5 and LP 6 (which did not have the 
incident information) violates the rollback threshold, and the average speed predicted by LP 7 
and LP 8 is below the speed threshold, rollbacks are triggered on the upstream LPs (LP 5 and LP 6).  
In a similar fashion, LP 3 and LP 4 (and LP 1 and LP 2 later) make a rollback as the queueing 
continues to build up toward point A.  This allows congested traffic information to be passed to 
the upstream LPs, even before the impact of the incident actually reaches the area modeled by 
the upstream LPs.  Once there is another threshold violation (i.e., incident is removed), updated 
information is again transmitted from the real-time field data to LP 7 and LP 8 and from LP 7 
and LP 8 to other LPs in the same manner.  
	 Using the same method with the first scenario, MAE and MAPE are calculated (Table 3).  
Table 3 shows that MAEs/MAPEs are considerably higher than those of the first scenario.  
This implies that the ability of the ad hoc distributed simulations to reflect congested 
traffic conditions due to incidents is reduced.  This is an expected outcome.  The simulation 
performance worsens in the incident scenario as the outflow constraint by speed does not 
provide highly accurate flow control.  In addition, more randomness is involved in modeling 
congested networks.  However, it is revealed that the ad hoc distributed simulations offer 
reasonable replicates of the real-time sensor data for immediate future travel time predictions (1–5 
min) and are capable of providing reasonable predictions for longer horizons, although delay 
exists in updating predictions.

Fig. 5.	 (Color online) Real-time sensor data 3D plot (segment 1 travel time).



1486	 Sensors and Materials, Vol. 31, No. 5 (2019)

	 Figure 6 illustrates a three-dimensional plot of travel time predictions and the real-time 
sensor data with wall-clock time on the y-axis.  Initial (at 0, 5, and 10 min wall-clock time) 
predictions are available until 80 min of simulation time (area A in Fig. 6).  These predictions 
were made during the 20 min warm-up time period.  The travel time is predicted to be 
approximately 350 s, as these predictions are constructed without knowledge of the incident 
(as the incident has not yet occurred).  Once a rollback is triggered by the incident, existing 
predictions on the rolled back clients are removed from the space-time memory and updated 
with new predictions based on updated rollback information.  Until the ad hoc simulation 
receives new traffic information, the travel time is predicted to continue to increase (area B) 
since the current traffic condition is assumed to continue.  Therefore, it is anticipated that 
the ad hoc simulations make predictions with high accuracy if the estimated incident clear-
up time information is provided.  Empty cells in area C show that the predictions beyond the 
50 min simulation time are not available at 25, 30, and 35 min wall-clock times, as the earlier 
predictions have been removed and sufficient computational time has not yet passed to allow 
updated predictions at this point in the time horizon.  Finally, it is seen that, when the impact 
from the incident disappears at approximately 40 min wall-clock time, the ad hoc simulation 
can adjust predictions to reflect this new data (area D).  

Table 3
MAEs and MAPEs.

Prediction MAE/MAPE

Flow rate
1–5 min prediction 

6–10 min prediction
11–15 min prediction

20.0 veh/h/ln
27.3 veh/h/ln
40.1 veh/h/ln

Travel time
1–5 min prediction 

6–10 min prediction
11–15 min prediction

25.5%
45.5%
63.1%

Fig. 6.	 (Color online) Ad hoc simulation prediction based on real-time sensor data (segment 1 travel time).
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5.	 Conclusions and Limitations

	 As more sensor data becomes available, it opens new opportunities for various transportation 
analysis techniques including traffic data acquisition using image recognition technology,(23–25) 

real-time travel time data collection,(26–30) and monitoring infrastructure or workers in 
construction areas.(31,32)  
	 In this paper, we present the application of real-time sensor data to the evaluation of the 
performance of ad hoc distributed traffic simulation.  The real-time field data would be replaced 
with the streaming sensor data in a field implementation.  The first scenario examined how 
the system adequately captures changes in traffic conditions when the sensor reports a sudden 
increase in traffic volume and decreases under uncongested traffic conditions.  The second 
scenario investigated how well the ad hoc distributed traffic simulation operates when a traffic 
incident occurs.  
	 It was found that the proposed ad hoc distributed traffic simulation with real-time sensor 
data is capable of capturing dynamically changing traffic conditions in both the peak traffic 
and incident scenarios.  In both scenarios, the prediction accuracy drops when the traffic 
state changes.  Additional performance degradation is seen in the incident scenario, since the 
predictions are produced on the basis of the assumption that current traffic conditions continue, 
i.e., potential incident clearing is not assumed.  However, for immediate future predictions, the 
proposed simulation presents a relatively good prediction capability.
	 All steps described above are expected to have a positive contribution to the robustness of 
the model.  However, the output of the model should be validated with the field data.  From 
the validation results, the model can be calibrated more to increase the performance.  Various 
statistical tests should be employed to compare the field data and the predictions from the 
model.
	 In the algorithmic approach, predictions are made on the basis of the assumption that current 
traffic conditions will continue.  For example, in the incident scenario, when the congestion 
from the incident builds up, the predicted delay will continue to increase the entire prediction 
horizon length, regardless of the potential future clearing of the incident.  Incorporating outside 
source information, such as the expected incident clear-up time and planned event information, 
may improve the prediction accuracy.
	 Additionally, the proposed model is developed on the basis of a perfect communication 
environment assumption between sensors and the data management center.  Communication 
error including communication message loss from a sensor, messages in reverse order, and 
messages over a buffer limit should be examined for a successful field implementation of the 
model.
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