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	 Gesture recognition allows distinguishing specific user motions that intend to express 
a message.  The recognized gestures can be used in various applications such as human–
computer interface (HCI), clinical practice including rehabilitation, and personal identification.  
We propose a method of recognizing upper-limb motion gestures for HCI using electronic 
textile sensors, which consist of a double-layered structure with complementary resistance 
characteristics.  For gesture recognition, we apply dynamic time warping (DTW) as it exhibits 
a high performance with simple computations for dynamic signals.  We verified the functional 
feasibility of the proposed method from the data of 10 subjects performing 6 HCI gestures.  The 
gesture classification accuracy for all subjects was 85.4%, although each subject separately 
achieved a higher performance.  In fact, six subjects achieved a perfect recognition performance 
(100% recognition accuracy); three subjects achieved an accuracy of 98.6%, and one achieved 
an accuracy of 97.2%.

1.	 Introduction

	 Gesture recognition allows to distinguish specific user motions that intend to convey 
messages and can be used in a myriad of applications such as human–computer interface (HCI),(1–11) 
medicine applications including rehabilitation,(12–14) and personal identification.(15)  Gesture 
recognition mainly consists of segmenting the acquired signals corresponding to gestures and 
extracting features that allow gesture classification.
	 Various kinds of sensors can be used for gesture recognition, with image and depth sensors 
being the mainstream.(1,2,8,11)  For instance, reliable data can be affordably obtained using 
sensors such as Kinect (Microsoft Co., United States).(2,8)  Lahamy and Lichti recognized 
hand shape and sign language using an approach robust to the user’s direction from a depth 
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camera.(1)  Affordable and small inertial sensors based on MEMS are also widely used for 
gesture recognition.(3–7,9,15)  Kim et al. constructed an inertial measurement unit comprising an 
accelerometer, a gyroscope, and a magnetometer conforming a data glove to identify the flexion 
and extension of fingers.(6)  Lee et al. recognized gestures corresponding to mouse operation by 
attaching a similar inertial sensor to the wrist.(7)

	 Electronic textiles (e-textiles) that can be embedded in clothing are being increasingly 
applied for gesture recognition.(9–15)  The electrical properties (e.g., resistance) of flexible 
e-textiles enable gesture recognition given their variation with bending, stretching, and shape.  
Moreover, e-textiles provide greater wearing comfort and flexibility than sensors implemented 
on solid electronics.  Bobin et al. constructed a sensor using conductive threads to mount it 
on the elbow, and the acquired resistance signals were used to identify five levels of elbow 
flexion and extension with a support vector machine.(9)  Gibbs and Asada estimated the 
angles of knee and hip joints using e-textiles mounted on pants through linear regression.(12)  
Tognetti et al. fabricated a double-layered sensor by attaching two pieces of e-textile to express 
a complementary pattern of resistance during flexion and extension.(13)  Specifically, the pattern 
exhibits an increase in resistance for one sensor layer and a decrease in resistance for the other.  
Then, the angle was estimated using the difference between the signals from the two sensor 
layers.  This sensor conforms a new concept for goniometers, and Santos et al. used a double-
layered goniometer to recognize hand movements for supporting laparoscopic surgery using 
robots.(14)  The authors used rule-based classification to heuristically analyze the sensor patterns 
for recognition.
	 In this paper, we propose a hand gesture recognition method for HCI using e-textiles.  The 
sensor used has a double-layered structure to exhibit the above-mentioned complementary 
resistance patterns.  Although various recognition methods, such as dynamic time warping 
(DTW),(2,4) a genetic algorithm,(11) a hidden Markov model,(14) and rule-based classification,(7,13) 
can be used with this sensor, we selected DTW given its high performance obtained from simple 
computations on dynamic signals.  We validated the functional feasibility of the proposed 
approach from the data of 10 subjects performing six HCI gestures.(7)

2.	 Materials and Methods

2.1	 E-textile sensor and data acquisition

	 A conductive e-textile (0.80 mm thickness, EeonTex™ NW170-PI-20, Eeonyx Corp., United 
States) was cut into squares of 20 × 120 mm2, with the cut along the weft for the shortest side.  
Two conductive stainless-steel threads (28 Ω/ft, DEV-11791, Sparkfun Electronics, United 
States) were sewn 10 mm from the long end at 2 mm intervals to connect the wires, as shown 
in Fig. 1.  The stitched parts were heated and pressed using an impulse heat sealer for contact 
improvement between the e-textile and the conductive thread.  We prepared the two sensor 
layers using this procedure.  Then, a double-coated foam tape (cat. #2240, 24 mm width, 2 mm 
thickness, 3 M, United States) was cut according to the length of the sensor size to attach one 
layer on each side of the tape, resulting in the double-layered sensor (Fig. 1).  We prepared three 
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doubled-layered sensors for experiments and attached the sensors to the shoulder (two sensors) 
and elbow (one sensor) of each participant, as detailed in Sect. 2.3.
	 The proposed data acquisition system is illustrated in Fig. 2 and consists of the double-
layered e-textile sensor, a constant current source supplying the sensor, a buffer (voltage 
follower) to obtain a low-impedance sensor output, an analog-to-digital converter (ADC) to 
obtain digital measurement signals, and a microcontroller for expressing the sensor voltage as 
resistance and transmitting it to a PC for real-time data acquisition and processing (Fig. 2).  
	 The constant current source allows the resistance variation of the sensor to be converted into 
corresponding voltage signals.  This source was implemented using an adjustable current source 
IC (LM334, Texas Instruments, Inc., United States).  The output resistance of the e-textile sensor 
can affect the input impedance of the ADC by about 200 kΩ.  Hence, we inserted a buffer (TLV2462, 
Texas Instruments, Inc.) to reduce the impedance at the ADC input for accurate voltage 
measurements.  A 16-bit delta–sigma ADC (ADS1115, Texas Instruments, Inc.) quantized the 
measured voltage from each sensor to calculate the resistance in the microcontroller, which 
wirelessly transmitted the resistance signals to a PC through a Bluetooth module at a rate of 
50 Hz.

2.2	 Gesture recognition using DTW

	 Figure 3 shows the output signal from a measured sensor resistance according to various 
gestures, where the rows and columns correspond to different gestures and sensor outputs, 
respectively.  The sensor mounting and evaluated gestures are detailed in Sect. 2.3.  The output 
of the first sensor (first column in Fig. 3) shows the difference among patterns for the six 
gestures.  Specifically, in the first row (‘up’ gesture), the signal increases and then decreases.  In 

Fig. 1.	 (Color online) E-textile sensor with double-layered structure.

Fig. 2.	 (Color online) Data acquisition system.
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the second row (‘down’ gesture), the signal decreases and then increases, showing an opposite 
pattern to the up gesture.  In the fifth row (‘click’ gesture), two up and down patterns appear, 
and in the sixth row (‘double-click’ gesture), the pattern from the fifth row is repeated twice.  
Although the third row (‘left’ gesture) pattern is similar to the first row (‘up’ gesture) pattern in 
the first sensor signal, these patterns can be distinguished using data from the second sensor (second 
column in Fig. 3), suggesting the usefulness of using patterns from multiple complementary 
sensors.
	 As mentioned above, the gesture types can be better classified by considering the 
complementary sensor signals.  However, several issues should be addressed.  First, the extent 
of different trials from a gesture can vary.  Therefore, the signals should be appropriately scaled 
for pattern comparison.  Likewise, the speed and gesture patterns may vary among subjects and 
even for the same subject over different executions.
	 We use DTW to handle these variations of gesture data by warping two time series of data 
with respect to time.  Specifically, two signals are nonlinearly extended or shortened in the 
time domain, with the warping aiming to minimize the sum of distances between the signals.  
Then, the sum of distances can be used to quantify the similarity between the two signals at an 
equal warped data length.  Furthermore, DTW is a dynamic programming technique that uses 
recursive calculations and has been reported to provide a computational efficiency superior to 
those of other statistical classification techniques.(2,4)

	 To distinguish gestures using DTW, we perform template matching using previously 
prepared gesture patterns.  The motion data to be classified is compared with these patterns 
to determine the class with the best fitting.  Template matching is applied by comparing the 

Fig. 3.	 (Color online) Sensor data (columns) for six gestures (rows). Each pair of columns shows the 
complementary sensors in the double-layered structure.
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similarity distances using DTW.  The pattern retrieving the smallest sum of distances from 
DTW is considered as the classification result.  Particularly, in this study, the gesture templates 
are obtained from each subject independently.  Therefore, gesture classification results can vary 
over subjects.  Figure 4 shows the gesture patterns used for template matching and generated by 
averaging multiple time-warped motion data of the same gestures.

2.3	 Experimental protocol

	 Three double-layered e-textile sensors were attached at the positions shown in Fig. 5 
to efficiently track joint angles during the execution of upper-limb gestures.  Specifically, 
the sensors registered motions from the elbow and shoulder of subjects during flexion and 
extension, arm raising and falling, and forward and sideways motions.  Sensor 1 was mounted 
such that its center was placed over the olecranon and along the arm length.  Sensor 2 was 
mounted longitudinally at the deltoid-medial center and humerus center so that the shoulder 
joint laid at the center of the sensor.  Sensor 3 was mounted along the dorsal boundary of the 
posterior deltoid, with one end positioned on the longitudinal centerline of the humerus.  The 
sensors we fabricated did not elongate enough to comply with the joint flexion.(10)  Hence, we 
attached one side of the sensor to the garment using a rubber band.
	 Ten healthy right-handed subjects (five females and five males) around twenty years old 
participated in the study.  The subjects used their own clothing during the experiments and wore 
a rash guard with two of the double-layered sensors and an elbow brace with the remaining 
double-layered sensor.  Each subject sequentially performed motions corresponding to six 
gestures with the right hand, namely, ‘up’, ‘down’, ‘left’, ‘right’, ‘click’, and ‘double-click’.  A 

Fig. 4.	 (Color online) Multiple warped sensor signals (cyan) and gesture patterns (black).
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trial consisted of performing the six gestures twice.  Before measurements, we confirmed that 
every subject understood the experimental procedure and performed the gestures correctly.
	 Before the first and third trials of experiments, the sensors were calibrated by performing 
three times the flexion and extension of the forearm joint, the abduction and adduction of the 
shoulder, and horizontal adduction and horizontal abduction.  The sensor positioning was 
verified at the end of each set of experiments to correct the position of any sensor that might be 
displaced during gesture execution.
	 The execution of each gesture took approximately 1.5 s.  The subjects grabbed a switch 
with their right hand and maintained the switch pressed just before the gesture onset until 
completing the gesture.  The switch signal was synchronously stored with the e-textile sensor 
signals to enable the segmentation of the whole motion sequence into separate gestures.  There 
was a resting period of approximately 1 s between gestures.  Also, there was a longer period of 
approximately 5 s before the execution of the second gesture sequence.  Each subject performed 
six experiment trials, and 12 gesture motions were obtained for each of the six gestures.
	 The resistance time series of the six sensor layers and the switch signal were transmitted 
to a PC and saved as text files for posterior processing on implementation using MATLAB 
9.4 (MathWorks, United States).  The gesture motions segmented with the switch signal were 
identified subjectively considering the sequence of gesture motions.  Then, we lowpass-
filtered the sensor signals using a 4th-order Butterworth filter with a cutoff frequency of 
2 Hz to suppress information not related to motion and high-frequency noise.  In addition, we 
normalized the six sensor-layer signals from each gesture between zero and one to magnify the 
signal variation.  Then, we employed the DTW function available in MATLAB.  

3.	 Results and Discussion

	 The gesture classification results for the 10 subjects are shown as a confusion matrix in Fig. 6, 
where the rows and columns correspond to the classified and real gesture classes, respectively.  
Therefore, the cells along the diagonal correspond to correctly recognized gestures.  The 
additional seventh row shows the true positive rate, or recall (top), and false negative rate (bottom) 

Fig. 5.	 (Color online) Sensor positioning for gesture measurements.
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for each gesture class, and the bottom-right cell shows the total accuracy (top) and overall error 
(bottom).  
	 Gesture 5 (‘click’) shows the highest accuracy of 95.8% from the total of 120 executed 
gestures.  Four ‘click’ gestures were recognized as ‘down’ gestures and one as ‘right’ gesture.  
In contrast, gesture 1 (‘up’) shows the lowest accuracy of 64.2%, with 4, 18, 2, and 19 gestures 
incorrectly recognized as ‘down’, ‘left’, ‘right’, and ‘click’, respectively.  The overall accuracy 
across subjects and gestures is 85.4%.
	 Although the classification performance of all the subjects was not satisfactory, the results 
for each subject show a higher performance, as seen in the classification accuracy listed in 
Table 1.  For six subjects, all the gestures were correctly recognized (100% accuracy).  For 
three subjects, the accuracy was 98.6%, indicating the misidentification of only one gesture, 
and the lowest accuracy of 97.2% was obtained from subject 2.  For subject 2, whose confusion 
matrix is shown in Fig. 7, one up gesture was recognized as ‘down’, and one ‘click’ gesture was 
recognized as ‘up’.

Table 1
Gesture recognition accuracy for each subject.
Subject Up Down Left Right Click DoubleClick Average

1 100.0 100.0 100.0 91.7 100.0 100.0 98.6
2 91.7 100.0 100.0 100.0 91.7 100.0 97.2
3 100.0 100.0 100.0 100.0 100.0 100.0 100.0
4 100.0 91.7 100.0 100.0 100.0 100.0 98.6
5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6 100.0 100.0 100.0 100.0 100.0 100.0 100.0
7 100.0 100.0 100.0 100.0 100.0 100.0 100.0
8 100.0 100.0 100.0 100.0 100.0 100.0 100.0
9 100.0 100.0 100.0 91.7 100.0 100.0 98.6

10 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Average 99.2 99.2 100.0 98.3 99.2 100.0 99.3

Fig. 6.	 (Color online) Confusion matrix of general 
gesture classification.

Fig. 7.	 (Color online) Confusion matrix of gesture 
classification for subject 2.
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4.	 Conclusions

	 We propose a method of recognizing hand gestures for HCI using e-textile sensors 
resembling a goniometer.  Each sensor consists of a double-layered structure with 
complementary resistance characteristics.  For gesture classification, template matching was 
applied to DTW results, which provide a high performance with inexpensive computations for 
dynamic signals.  The functional feasibility of the proposed method was verified from the data 
of 10 subjects performing six gestures.
	 The overall gesture recognition accuracy for all subjects was 85.4%, with the click gesture 
showing the highest accuracy (95.8%) and the up gesture the lowest accuracy (64.2%).  As these 
results may be related to the interindividual variation in anatomical shape, future studies will be 
devoted to mitigate this variation through a calibration process.
	 Unlike the overall performance, the accuracy for each subject was high, with six subjects 
achieving perfect classification (100% accuracy), whereas gestures from three subjects retrieved 
98.6% accuracy, and those from one subject retrieved 97.2% accuracy.  In future studies, we 
intend to further improve the method performance by using more sophisticated, albeit complex, 
classifiers such as statistical classifiers and artificial neural networks.
	 In this study, the hand gesture recognition method was tried on healthy subjects.  However, 
the recognition of various gestures would be possible based on other joints including finger, 
knee, and hip joints.  Also, the gesture recognition method is expected to be used not only for 
HCI but also for various applications such as upper limb rehabilitation and gait analysis.  For 
example, it can be used for the daily life support and rehabilitation exercise by classifying daily 
activities such as drinking and reaching tasks.
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