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	 In this paper, we present a method that combines an improved dynamic window approach 
(IDWA) and an artificial potential field to avoid obstacles for autonomous wheeled robots with 
HyperOmni Vision.  The experimental environment follows the rule of RoboSot avoidance 
challenge in the Federation of International Robot-soccer Association (FIRA) competition.
There are three parts of this study, namely, (1) image processing, (2) an IDWA, and (3) an 
improved artificial potential field.  In the avoidance challenge in FIRA, the robot must avoid 
eight obstacles that are placed randomly in the playing field.  The results indicate that the three-
wheeled robot can avoid obstacles autonomously by using the method proposed in this paper.  
Our team won the FIRA avoidance challenge championship this year by the method proposed in 
this paper.

1.	 Introduction

	 Designing a robot soccer system involves a combination of many disciplines that require 
various academic theories and techniques.  There are two essential parts in completing the 
avoidance challenge, for example, obstacle detection and path planning.  It is important to 
consider the robot’s path plan to avoid obstacles.  Some researchers used an artificial potential 
field(1,2) to seek targets and obstacles.  The robot regarded a target as an attractive force and an 
obstacle as a repulsive force.  It then combined all the forces to establish the direction of motion.  
This method has been widely used to avoid obstacles and move smoothly.  However, owing 
to local optimization problems, it easily causes a local minima problem before arriving at its 
destination.
	 The method we proposed in this paper is based on the dynamic window approach (DWA), 
which establishes the dynamic window and the predicted trajectories through an OmniHyper 
camera.  After that, the DWA was combined with the artificial potential field to renew the 
predicted trajectories and finish the obstacle avoidance.  
	 This study is carried out to increase the stability of the robot and ensure that the robot avoids 
collision with obstacles so that it can move smoothly.  The experimental environment is an 
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avoidance challenge field in the RoboSot competition.  In this study, the avoidance challenge 
field is used as the experimental environment, and a three-wheeled robot is used as the testing 
platform.  This test platform is equipped with sensors such as an omnidirectional camera, 
an inertial measurement unit (IMU), and a motor encoder.  The omnidirectional camera will 
capture the environmental image of the robot.  The IMU detects the angle of rotation of the 
robot and the acceleration of the movement.  The motor encoder is used to detect the moving 
distance and speed of the robot.  The robot can calculate the better obstacle avoidance path 
through these parameters.

2.	 Background Discussion

	 In this section, our robot and experimental environment are described.  This section is 
divided into the following two parts: (1) image processing system and (2) path planning.  These 
parts are briefly described below.

2.1	 Image processing system

	 In this study, an omnidirectional vision system is used to capture an image.  This 
omnidirectional vision system includes a hyperbolic mirror and a high-speed camera, as shown 
in Fig. 1.  The high-speed camera, Prosilica GC655, is made by Allied Vision.  Moreover, the 
features are shown in Table 1.  Prosilica GC655 is a high-performance vision camera with a 
GigE Vision compliant gigabit ethernet interface.  This camera performs up to 90 FPS (frame 
per second) in the full resolution mode.  The vision system is located at the center of the sixth-
generation robots designed in our laboratory, as shown in Fig. 2.  The computer on the robot can 
obtain a 360° circular image using the camera, as shown in Fig. 3.
	 After obtaining the image, the soccer and goal are identified by using color models, such 
as RGB, HSV, and CMYK color models.  The RGB color model exhibits a nonlinear change 
in color saturation.  Moreover, all colors are composed of the values of the three components 
in RGB, thus resulting in a high correlation between the three components.  When the 

Table 1
Model no. Prosilica GC 655 Interface IEEE 802.3 
Resolution 659 (H) × 493 (V) Sensor Sony ICX414
Sensor type CCD Progressive Sensor size Type 1/2
Max. frame rate 
at full resolution 90 FPS

Fig. 1.	 (Color online) Omnidirectional vision system.
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contrast, brightness, or color saturation in the image is changed, the effects among these three 
components must be considered.  The RGB color model is easily affected by shadows or light, 
thus reducing the rate of color recognition.  In contrast, the HSV color model(3) is more resistant 
to the aforementioned effects.  In this study, the HSV color model shown in Fig. 4 is used.  The 
HSV color model consists of the following three components: hue (H), saturation (S), and value (V).
	 Image noise is a common issue in image processing.  Therefore, we binarized the image to 
filter the noise.  In this study, the HSV color model is used to separate obstacles.  However, the 
shadows of obstacles have negative effects on binarization, misleading image noise between 
different color models.  Therefore, breadth-first search(4) is used to filter image noise.
	 The breadth-first search is an uninformed search, so we need to use queues to record the 
order of visits.  We assume that the gray area is an obstacle.  In the breadth-first search, we 
initially set queue-containing vertex 1 and search for its surrounding adjacent vertices.  We 
then dequeue vertex 1 and enqueue vertices 2, 3, and 4.  The queue now contains vertices 2, 3, 
and 4, as shown in Fig. 5(a)  Assume that we first visit vertex 2 and search for its surrounding 
adjacent vertices and then dequeue vertex 2 and enqueue vertices 5 and 6, as shown in Fig. 5(b)  
Moreover, the breadth-first search terminates until the queue is empty.

Fig. 2.	 (Color online) Sixth-generation robot. Fig. 3.	 (Color online) Image of an omnidirectional 
vision.

Fig. 4.	 (Color online) HSV color model.
Fig. 5.	 (Color online) (a) Breadth-first search. (b) 
Breadth-first search.

(a) (b)
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	 In this study, we defined a specific size of the black area in this image.  Objects under the 
size of the definition will be considered as image noise; otherwise, objects will be considered as 
obstacles (Fig. 6).

2.2	 Path planning

2.2.1	 Dynamic window approach

	 Path planning is the ability of an autonomous robot to move to a destination.  The DWA was 
proposed by Fox et al. in 1997.(5)  It is a collision avoidance algorithm that is efficient and robust.(6,7)  
The DWA is an algorithm that takes a variety of velocity samples from the speed space. 
These velocity samples are used to simulate the trajectories of the robot to the target within a 
certain time.  Pick the best trajectory from these trajectories.  There are two parts in the DWA 
algorithm, namely, (1) search space and (2) optimization, which will be described below.
	 In the search space, there are three parts, namely, (1) circular trajectories, (2) admissible 
velocities, and (3) dynamic window.  In the circular trajectory section, there are linear moving 
speed and angular velocity (v, ω) in the velocity space.  In the next n time interval, the velocity 
sample is selected from the velocity space as the moving path of the robot to the target point.  
In the admissible velocity section, when obstacles are placed around the robot, the translation 
and rotation speeds of the robot are limited.  Assume the sample speed is (v, ω) and dist(v, ω) is 
the length of the curve trajectory generated by the movement that will collide with the nearest 
obstacle based on the sample speed.  The length can be obtained from the radius “r” of the 
curved path and the angle “γ” between the collision point and the robot, so the arc length can be 
obtained from “r”, as shown in Fig. 7.  Let bv�  and bω�  be accelerations for breakage.  According 
to the above conditions, the suitable speed sample  can be defined as

	   {( , ) |   2 ( , ) ^ 2 ( , ) }aV v v dist v vb dist v bω ω ω ω ω= ≤ ⋅ ⋅ ≤ ⋅ ⋅ �� .	 (1)

	 In the dynamic window section, according to the acceleration limit of the motor, the entire 
speed space can be reduced to the speed space that can be reached in the next moment.  The 
reduced speed space is the dynamic window.  Suppose t is the acceleration v� and angular 

Fig. 6.	 (Color online) (a) Binarized image and (b) breadth-first search.

(a) (b)
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acceleration ω�  that the motor can provide at each moment, and (va, ω) is the actual speed.  The 
velocity space Vd of the dynamic window can be defined as

	   {( , ) | [ , ] [ , ]}d a aV v v V v t V v t a t a tω ω ω ω ω ω= ∈ − ⋅ + ⋅ ∧ ∈ − ⋅ + ⋅� �� � .	 (2)

The dynamic window is a speed space centered on the actual speed.  In the next moment, all the 
curved tracks are expected not to exceed this speed space and not collide with the obstacles in 
the space.  According to the above three parts, Vr denotes the velocity sample contained in the 
final search space and Vs denotes the speed space that the robot can provide, as shown in Fig. 8, 
and Vr can be defined as

	        r s a dV V V V= ∩ ∩ .	 (3)

	 After determining the resulting search space Vr, a velocity is selected from Vr.  The algorithm 
scores the curve trajectory generated by the velocity sample through an evaluation function and 
selects the curve trajectory with the highest score as the path of the next robot movement.  The 
evaluation function is

	 ( , ) ( ( , ) ( , ) ( , ))g g gG v heading v dist v velocity vω σ α ω β ω γ ω= ⋅ + ⋅ + ⋅ .	 (4)

	 The target heading (v, ω) measures the alignment of the robot with the target direction.  It is 
given by 180 − θ, where θ is the angle of the target point relative to the robot’s heading direction, 
as shown in Fig. 9.

Fig. 7.	 (Color online) Calculation of “dist(v, ω)”.
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2.2.2	 Artificial potential field

	 The artificial potential field algorithm is a robot path planning algorithm proposed by 
Khatib in 1986 at Stanford University.(8)  It regards the target and obstacle as objects that are 
gravitational and repulsive to the robot, and the robot moves along the combined force of gravity 
and repulsive force, as shown in Fig. 10.
	 The artificial potential field has the advantages of simple mathematical description, low 
computation speed, high response speed, and smooth trajectory planning.  In recent years, the 
artificial potential field has been widely used as a method in the robot path planning,(9,10)  This 
method has become one of the most mature and effective traditional calculation methods.
	 There are problems associated with the characteristic of the artificial potential field.  
According to Eqs. (5.1)–(5.3), we learned that Fatt decreases when the robot is close to the target 
and Frep increases rapidly when the robot is close to the obstacle.(11)  Therefore, the artificial 
potential field is a non-optimal path solution and has a local minima problem,(12) as shown in 
Figs. 11(a) and 11(b).
	 The equations used in the artificial potential field method are as follows:

	 Fatt = α × v,	 (5.1)

	 ( )2 ,   
 0,

ob ss ob
rep

ob s

d dd d vF
d d

β ≤ × ×=  >
−


	 (5.2)

	 F = Fatt + Frep,	 (5.3)

where Fatt is the attractive force, Frep is the repulsive force, F is the composition of forces, α is 
the parameter of the attractive force, β is the parameter of the repulsive force, v is the vector of 
the robot velocity, dob is the distance between the robot and the closest obstacle, and ds is the 
safe distance between the robot and the obstacle, as shown in Fig. 12.

Fig. 8.	 Dynamic window. Fig. 9.	 Illustration of angle θ.
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	 In the omnidirectional mobile platform, the equations for the concept of the artificial 
potential field are as follows:

	  att newF vα= × ,	 (6)

	 ( ) ( )( )cos sinrep ob s R ob s RF d d d d vθ θ β= + ×− ×− ,	 (7)

	 F = Fatt + Frep ,	 (8)

Fig. 11.	 (a) Non-optimal path. (b) Local minima 
problem.

Fig. 10.	 (Color online) Path planning th rough 
Artificial Potential Field.

(a)

(b)

Fig. 12.	 (Color online) Artificial potential field.



1028	 Sensors and Materials, Vol. 31, No. 3 (2019)

where vnew is the new velocity vector of the robot calculated by DWA, and v is the vector of 
the robot velocity, which is set by the user interface.  The schematic diagram of the artificial 
potential field method of the omnidirectional mobile platform is shown in Fig. 13.

3.	 Research Methods

	 The flow chart of the wheeled robot obstacle avoidance method proposed in this paper is 
shown in Fig. 14.  The industrial personal computer placed on the robot first takes the image 
captured by the camera for image processing.  Then, the improved DWA method proposed in 
this chapter is used to determine the most suitable path of motion.(13)  Subsequently, the path 
is recorrected by the artificial potential field algorithm to avoid nearby obstacles.  Finally, a 
motion vector is produced to make the robot move.
	 Take the movement of differential robots as an example.  The velocity space in the DWA 
contains v and ω.  The robot determines whether the trajectory will hit the obstacle, and the 
algorithm searches for a velocity space over time and calculates the new robot’s trajectory, as 
shown in Fig. 15.
	 Compared with the differential mobile platform, the omnidirectional wheeled platform 
moves in a 360 degree linear motion.(14)  Therefore, the study only considersand v when moving, 
and then θ and v are respectively converted into an X vector and a Y vector, as shown in Fig. 
16.  We set the x-axis for the front direction.  We calculated the angle using the front direction.  
Moreover, we considered that counterclockwise is positive and clockwise is negative.  The 
equations are as follows:

	   | | cosx v θ= ,	 (9.1)

Fig. 13.	 (Color online) APF of the omnidirectional mobile platform.

Fig. 14.	 Flow chart of obstacle avoidance.
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	   | | cosy v θ= .	 (9.2)

	 Since the experimental environment in this study follows the rule of the Federation of 
International Robot-soccer Association (FIRA)(15) obstacle avoidance challenge, the scan line 
of image recognition was used to determine obstacles.  The robot determines the free area 
according to the position of the obstacle, as shown in Fig. 17.
	 The robot prioritizes the active areas, and the area closer to the target point takes precedence.  
Therefore, the robot first determines that area 2 is the priority path, then it is area 1, and the 
final is area 3.  After completing the above steps, the robot will calculate the width of area 2 
and determine if the width can accommodate it to ensure that it does not hit obstacles.  Take 
two obstacles as the identification of three scan lines.  The distance between the robot and 
the obstacle is calculated using the distance information obtained from the known scan line.  
The robot uses R1 as the baseline to operate with all the scan lines L1, L2, and L3 of another 
obstacle.  Then, it can calculate the distances D1, D2, and D3 as θ1, θ2, and θ3, respectively, 
as shown in Fig. 18.  The calculation of R2 and R3 is the same as that of R1.  There will be i*j 
distance information in total, and finally, the shortest distance is found to be smaller than the 
fuselage.  The equations are as follows:

	 2{  : }, , , 1, 2, 3, ,k kV D D IR i j k n= = …∣ ,	 (10)

	 2 2{min 2 cos },k k i j i j k kW D D R L R L D Vθ−= = + ∀ ∈∣ .	 (11)

	 The moving speed vector vnew is first obtained by Eqs. (10) and (11).  Then Eq. (12) can 
obtain the minimum angle between the robot and the obstacle.  From this angle, the obstacle 
distance DR can be calculated as shown in Fig. 19.

	
newmin V Rθ θ θ= − 	 (12)

Fig. 15.	 (Color online) Trajectory of the differential 
robot.

Fig. 16.	 (Color online) Vector conversion.
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	 In addition to changing the original differential mobile platform into an omnidirectional 
mobile platform, two layers of dynamic windows called dynamic windows I and II are used, 
which is considered an improved DWA method, as shown in Fig. 20.
	 When the robot moves, it uses V to predict the robot’s trajectory.  In addition, it plans the 
trajectory of obstacle avoidance when there are obstacles in the track.  The equations are as 
follows.

	 1  cosV
X T
X T

θ −  
=   



⋅



��� �
	 (13)

Fig. 17.	 Active area of the robot. Fig. 18.	 (Color online) Calculation of the distance 
between two obstacles.

Fig. 19.	 (Color online) DWA to avoid the trajectory 
of obstacles.

Fig. 20.	 (Color online) Improved dynamic window 
approach.
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	 (14)

Here, T
�
 is a target vector and θmin is the angle of the obstacle closest to the target.

	 The detection range of dynamic window I is expanded so that the robot can detect relatively 
far obstacles to select a better path and plan the trajectory, as shown in Fig. 21(a).  Then, the 
robot sets the target in Dynamic Window II and detects relatively close obstacles to replan the 
trajectory, as shown in Fig. 21(b).  In addition, the artificial potential field is used to ensure that 
the robot will not touch the obstacles.  In this manner, the robot filters out the better path, as 
shown in Fig. 21(c).

4.	 Research Results

	 The method proposed in this paper was used to combine and improve the DWA and 
artificial potential field methods, and the authors named it space-perception approach (SPA).  
In this study, the experimental results are divided into two parts, namely, simulation and 
implementation.  
	 In the simulation part, the advantages and disadvantages of the three algorithms, namely, 
DWA, artificial potential field, and SPA, are compared.  The simulation results in the MATLAB 
program are shown in Fig. 22–25 below.
	 It can be seen from the results that, when the DWA encounters obstacles around it, it reduces 
its moving speed and leads to a narrower measurement range.  In the artificial potential field, 
when there are more than two obstacles around the robot, the movement trajectory causes 
oscillation, making the robot hit the obstacles.  In the SPA method, the robot’s movement path is 
the smoothest and fastest, as shown in Fig. 24.

(a) (b) (c)

Fig. 21. (a) Path planning of dynamic window I. (b) Path planning of dynamic window II. (c) Path planning of 
improved DWA.
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	 In the implementation part, the proposed method is compared with the other three methods 
and verified in the FIRA avoidance challenge, as shown in Fig. 25.  The avoidance challenge 
rule sets the yellow goal as the destination.  A robot must move from a blue goal to a yellow 
goal without touching any obstacles.  The referee randomly places eight obstacles on the path.  
The size of each obstacle is similar to that of a black box with a length of 45 mm, a width of 45 
mm, and a height of 70 mm.  The distance between the obstacles is at least 60 cm.  The robot 
is 45 cm in length and width, so it has an error range of only 15 cm when crossing an obstacle.  
The speed of the wheeled robot is set to 25 cm/s.  The distance between the starting point and 
the destination is 4.2 m.  We tested each method 20 times and took the average data, as shown 
in Table 2.  The method proposed in this paper has the highest success rate and is also the 
fastest.
	 A piece of pink paper was stuck on top of the robot and the movement trajectory of the robot 
is recorded according to the fisheye set on the ceiling.  The trajectory is drawn after image 
processing, as shown in Fig. 26.
	 The first method uses the SPA as the obstacle avoidance algorithm.  This method not only 
makes the trajectory smooth but also plans a better path.  When the robot moves to the midfield, 
owing to the dynamic window I, it senses an obstacle farther to the right and passes through a 
wider path on the left side.  In this manner, path planning is more efficient and more stable, as 
shown in Fig. 27.

Fig. 25.	 (Color online) Three different methods of 
robot trajectory.

Fig. 24.	 (Color online) Space-perception approach.

Fig. 22.	 (Color online) Dynamic window approach. Fig. 23.	 (Color online) Artificial potential field.
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	 The second method uses the original dynamic window approach with the artificial potential 
field as obstacle avoidance protection.  Its trajectory is also smooth, but the path selection is 
much worse than the SPA.  When the robot moves to half of the field, since the detection range 
of the DWA window is small, it selects a poor path on the right side.  Although the stability is 
excellent, the path planning efficiency is worse, as shown in Fig. 28.
	 The third method only uses the artificial potential field.  The path selection is uninformed 
and very inefficient.  This is because the presence of repulsive forces makes the trajectory 
produce many shocks.  In this approach, the stability is not sufficient, probably producing local 
minima problems.  Moreover, the robot touches the obstacles easily when the distance between 
the obstacles is decreased, as shown in Fig. 29.

Fig. 26.	 (Color online) Comparison of four different 
methods.

Fig. 27.	 (Color online) Space-perception approach.

Fig. 29.	 (Color online) Artif icial potential f ield 
without DWA.

Fig. 28.	 (Color online) Original DWA with artificial 
potential field.

Table 2
Comparison of four different methods.

Fig. 27 Fig. 28 Fig. 29 Fig. 30
Time (s) 19 21 24 Fail
Distance (m) 4.75 5.25 6.00 Fail
Stability Excellent Great Bad Worst
Efficiency Excellent Great Good Worst
Success rate 95% 90% 40% 0%
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	 The fourth method uses only the DWA without the artificial potential field.  The result is the 
worst; the robot can only plan the path.  The robot touches the obstacles to produce numerous 
collisions without the artificial potential field when it goes through the half field.  Thus, the test 
shows us the importance of the artificial potential field as the obstacle avoidance protection, as 
shown in Fig. 30.

5.	 Conclusions

	 In this study, an effective obstacle avoidance method is proposed to achieve an 
omnidirectional mobile platform with an omnidirectional vision system.  Moreover, winning 
the championship in the 2017 FIRA avoidance challenge proves that the method is robust.  In 
future developments, as long as obstacles can be identified through an imaging system, the 
method can be applied to various experimental environments.  The method that we proposed in 
this paper improves these two algorithms and combines them.  It uses the breadth-first search 
to filter image noise, which makes the image recognition more stable and accurate.  Moreover, 
the success rate applied in the competition approaches 100%.  Therefore, this not only avoids a 
collision to reduce the loss of the robot equipment but also has a higher efficiency to accomplish 
the mission.
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