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	 Underwater sensor networks have received extensive attention owing to their promise for 
application to marine exploration, submarine navigation, and pollution monitoring.  In an open 
ocean underwater environment, the targets to be monitored are undefined.  Therefore, it is 
necessary to investigate how sensor nodes adjust their positions autonomously in accordance 
with the changes in the environment and targets to achieve optimal monitoring quality.  We 
propose a fish-swarm-inspired underwater sensor network deployment algorithm using density-
based spatial clustering of applications with noise (DBSCAN).  Firstly, inspired by the operation 
mode of an artificial fish-swarm system, sensor nodes autonomously cover all the events by 
simulating physiological behaviors such as swarm, follow, and prey.  Secondly, considering the 
complexity of the underwater environment and also to reduce the number of nodes participating 
in the movement and to avoid the blind movement of nodes, the DBSCAN model is introduced 
to achieve the sharing of sensed information among the nodes that communicate by the single-
hop or multihop mode, thereby enhancing the global search ability of nodes.  Finally, a large 
number of experiments are carried out to evaluate the performance of the proposed algorithm.  
The results show that the proposed algorithm can effectively solve the problem of underwater 
sensor deployment, and has the advantages of fast convergence and strong scalability.

1.	 Introduction

	 Underwater sensor networks are widely used for marine tactical reconnaissance, early 
warning of disasters, marine exploration, and submarine navigation, and therefore are attracting 
increasing attention.(1,2)  By mounting sensors on an autonomous underwater vehicle or 
underwater mobile device, an underwater mobile sensor node is formulated to perform a task 
underwater.  A reasonable and effective sensor node deployment can significantly reduce the 
time taken to construct a sensor network and quickly cover the target area.  It can also prolong 
the network life and adapt to the changing topology through coordinated control.
	 In an underwater sensor deployment scheme, nodes are deployed in an underwater three-
dimensional space to achieve a stereoscopic perception of the monitored area.  The existing 
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three-dimensional underwater sensor deployment schemes can be divided into two types.  The 
first type is for uniform coverage, that is, sensor nodes are uniformly deployed in the monitored 
area.(3–5)  The second type is for nonuniform coverage, that is, nodes are nonuniformly deployed 
in accordance with the specific distribution of the monitored targets.(6–10)  In the nonuniform 
coverage scheme, the concept of “event” is explicitly proposed.  Thus, the purpose of node 
deployment is no longer to uniformly cover the monitored area, but to cover the events.  Such 
node deployment is more practical and effective, and also conforms to the characteristics of the 
sparseness of underwater sensor networks.  In this paper, we focus on sensor node deployment 
for nonuniform coverage in underwater three-dimensional space and the design of a distributed 
underwater sensor network node deployment algorithm based on an artificial fish swarm.  
Because of the characteristics of adaptive self-deployment and a distributed operation mode, the 
proposed algorithm is suitable for complex and harsh environments, such as mountains, oceans, 
and deep sea trenches.  At the same time, owing to the limited energy of nodes and to avoid the 
blind movement of nodes, we propose a density-based spatial clustering of applications with 
noise (DBSCAN) algorithm to cluster the nodes.  Satisfactory deployment results are achieved 
by combining the DBSCAN algorithm and the intelligent optimization algorithm of an artificial 
fish swarm.
	 The rest of this paper is organized as follows.  In Sect. 2, we describe some related work.  
Problems are described and a model is established in Sect. 3 to help understand the algorithm 
presented in this paper.  A solution for the problem is proposed in Sect. 4.  In Sect. 5, the 
simulation experiments and analysis of results are presented.  Finally, conclusions are given in 
Sect. 6.

2.	 Related Work

	 For node deployment with nonuniform coverages, many achievements have been made at 
home and abroad.  Wang et al.(11) proposed an optimized artificial fish swarm algorithm (OAFSA), 
where the maximum coverage rate is obtained by simulating the prey and follow behaviors in 
artificial fish.  The optimized OAFSA effectively improved the coverage performance compared 
with the traditional artificial fish algorithms, but the deployment in complex environments 
(such as those with obstacles) was not considered in this research.  Lian et al.(12) introduced 
four weighting indices (i.e., effective coverage rate, high monitoring probability range ratio, 
spatial overlap ratio, and resource utilization) to adjust the fitness function to improve the 
effective coverage rate of the sensor network.  However, the algorithm had slow convergence, 
and as the population size increased, the computational complexity of the algorithm increased 
exponentially.  Aitsaadi et al.(13) considered the difference in the distribution density of events in 
the monitored waters and proposed an algorithm for nonuniform node deployment by the mesh 
representation method.  This algorithm could help the network achieve effective monitoring for 
events, but it was difficult to obtain a higher network connectivity rate.  To effectively cover 
the events in the monitored waters, Du et al.(14) proposed particle-swarm-inspired underwater 
sensor self-deployment (PSSD), in which particle swarm optimization and congestion degree 
control are combined to effectively solve the network coverage problem.  The complexity was 
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low, the convergence speed was high, and an effective node distribution could be realized.  
However, this PSSD algorithm only considered the coverage of the network for events, and it 
was also difficult to obtain a high network connectivity rate.  In addition, this kind of algorithm 
has some disadvantages, for example, too many nodes participate in the movement and nodes 
may move blindly.  Because of the limited energy of nodes and high energy consumption in an 
underwater environment, the nodes will fail owing to the rapid consumption of energy, which 
shortens the life of the sensor network.
	 The above methods have achieved good results in different aspects of underwater sensor 
node deployment, but cannot completely meet the needs of underwater sensor network 
applications.  The main problems are as follows.  Most of the methods are centralized 
optimization methods, making them difficult to implement with distributed nodes; the nodes are 
deployed for certain events, and it is difficult to adaptively adjust node deployment to ensure a 
satisfactory monitoring quality for uncertain events in an open-ocean underwater environment 
or for events that dynamically change depending on external factors such as ocean currents.  
For the above problems, inspired by the operation mode of the fish swarm system, a distributed 
and achievable underwater sensor node deployment algorithm is proposed in this paper.  By 
simulating fish swarm behaviors such as prey, the sensor nodes autonomously cover events.  
The combination of the proposed algorithm and the DBSCAN algorithm greatly improves the 
convergence speed, avoids the blind movement of nodes, and prolongs the life of the underwater 
sensor networks.

3.	 Background

3.1	 Problem description

	 Assuming that N sensor nodes are deployed in the monitored area A and si represents the ith 
node in the network, then the set of underwater sensor nodes is S = {s1, s2, ..., sN}.  Assuming 

that a node, si, has the ability to sense, communicate, and move, then , ,s c
i i i iB r r l= , where 

0s
ir ≥  is the sensing radius of si, 0c

ir ≥  is the communication radius of si, and li ≥ 0 is the 
maximum moving step length of the node.  It can be seen that, in a homogeneous network, all 
nodes have the same attributes, namely, s s

ir r= , c c
ir r= , and li ≥ l (1 ≤ i ≤ N).  The dynamic 

point of interest e is referred to as an event, and the sensor node can detect the event and 
communicate with the neighbor node to obtain state information (the number of covered events) 
of the neighbor node.  The task of a node is to cover the event and collect information about the 
event.

3.2	 Coverage probability model

	 It is assumed that the monitored area A is a three-dimensional cuboid space (m × n × p), 
and that the coverage model of each node is a sphere with a sensing radius of 0s

ir ≥ .  The 
communication range is a sphere with a radius of 0c

ir ≥ .  To ensure network connectivity, the 
communication radius is set to be greater than or equal to twice the sensing radius,(15) i.e., 
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c s
i ir r≥ .  In the monitored area A, for ie A∀ ∈ , if the Euclidean distance between the node sj and 

the event ei represented by d(ei, sj) satisfies s
jr≤ , that is, d(ei, sj) ( ), s

i j jd e s r≤ , then the event sj is covered 
by the node sj.  d(ei, sj) is given by

	 ( ) ( ) ( ) ( )2 2 2
,i j i j i j i jd e s x x y y z z= − + − + − ,	 (1)

where (xi, yi, zi) is the coordinate of the event ei and (xj, yj, zj) is the coordinate of the node sj.  In 
the monitored area A, for ie A∀ ∈ , the probability of the node sj covering the event ei is given 
by(16)
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where r� is the radius of the self-confidence circle of the node; λ is the attenuation factor of 
sensing and is the physical property of the node.  Then, in the monitored area A, the number of 
events covered by the node sj is expressed as

	 ( ) ( ),
i

e j i j
e A

N s p e s
∈

= ∑ .	 (3)

	 When the event ei is not within the sensing range of any node in the node set S, the event ei 
can be considered to be uncovered for the entire node set S.  Therefore, by using multiple sensor 
nodes to simultaneously detect the event ei, the joint coverage probability of points is given by

	 ( ) ( )( )
1

, 1 1 ,
N

i i j
i

P pe S e s
=

= − −∏ .	 (4)

4.	 Design of Fish-swarm-inspired Underwater Sensor Deployment Algorithm 
Based on DBSCAN

4.1	 Basic fish swarm algorithm

	 An artificial fish swarm algorithm (AFSA) is an optimization algorithm that simulates the 
behavior of a fish swarm.  Using the behaviors of a fish swarm, such as prey, cluster, and follow, 
the global optimal solution can be found rapidly.  The AFSA is a kind of swarm intelligence 
stochastic optimization algorithm.  Similarly to the particle swarm and ant colony algorithms, 
the AFSA also has a strong global search ability and is insensitive to initial value parameter 
selection, robust, and easy to operate.
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	 Assuming that, in an n-dimension search space, there are N artificial fish that make up a 
swarm.  The state of each artificial fish can be expressed as X = (X1, X2, ..., XN), where Xi (i = 
1, 2, ..., N) is the variable to be optimized.  The food concentration for the artificial fish at the 
current position is expressed as Y = f(X), where Y is the objective function; the distance between 
two artificial fish is expressed as ij i jd X X= − ; Visual represents the sensing range of one 
artificial fish; Step is the step length of artificial fish movement; δ is the congestion degree 
factor; tryNum represents the maximum number of trials of an artificial fish for each prey.
	 The artificial fish uses its vision to sense the external environment, as shown in Fig. 1.  Xi is 
the current position of the artificial fish; Visual (equivalent to the communication radius) is the 
visual distance; Xh is the visual position at a certain moment.  If a position within the field of 
view is better than the current position, the artificFial fish will go further in this direction to the 
next position Xnext; otherwise, it continues to wander within the field of view.
	 The process of a mobile node in a sensor network aimed at greater network coverage is 
similar to the follow and prey behaviors of artificial fish.  The food concentration at the location 
of an artificial fish can be regarded as the network coverage under the current state.  Usually, 
fish will stay in a place rich in food, so the global optimal behavior can be found by simulating 
the characteristics of fish, which is the basic idea of the AFSA.  The basic behaviors of artificial 
fish are as follows
(1) Prey behavior: Fish swim randomly to search for food.  Assuming that Xi is the current state 
of an artificial fish, a state Xj is randomly selected within its visual range and Y is the food 
concentration (objective function).  The larger the value of Visual, the easier it is to find the 
convergent global extremum.

	 ( )j iX X Visual Rand= + × 	 (5)

	 If Yi < Yj, the artificial fish will go further in this direction; otherwise, it randomly selects a 
state Xj and determines whether the condition is met.  If the condition is still not satisfied after 
repeating it tryNum times, it moves one step at random.  When the value of tryNum is small, the 
artificial fish can swim randomly so that it can escape the local extremum.

Fig. 1.	 Schematic diagram of the visual range of artificial fish.
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	 ( ) ( ) ( )1t t
i iX X Visual Rand+ = + × 	 (6)

(2) Cluster behavior: Fish naturally gather together during movement.  Assume that Xi is 
the current state of artificial fish, Xc is the location of the swarm center, nf is the number of 
companions in the current neighborhood (dij < Visual), and N is the total number of fish.  The 
conditions Yc > Yi and nf/N < δ indicate that the swarm center has more food (high fitness 
function value) and is not very congested, then fish Xi will go further toward the center.

	 ( ) ( )
( )

( ) ( )1
t

t t c i
i i t

c i

X XX X Step Rand
X X

+ −
= + × ×

−
	 (7)

Otherwise, prey behavior is performed.
(3) Follow behavior: When one fish finds that food is abundant in the current place, other fish 
will quickly follow.  Assuming that Xi is the current state of the artificial fish, it finds that a 
companion Xj is nearby (dij < Visual) where Yj is large.  If Yj > Yi and nf/N < δ, it means that 
companion Xj has a higher food concentration (high fitness function value) and the surrounding 
environment is not very congested, so fish Xi will go further toward companion Xj.

	 ( ) ( )
( )

( ) ( )1
t

t t j i
i i t

j i

X X
X X Step Rand

X X

+ −
= + × ×

−
	 (8)

Otherwise, prey behavior is performed.
	 It should be noted that the application of the cluster and follow behaviors of a fish swarm can 
make the node move closer to the fish with high food concentration.  At the same time, in order 
to maximize the coverage rate, the fish swarm should maintain good formation, which can be 
controlled by the congestion degree factor δ and fish spacing.

4.2	 Description of DBSCAN algorithm

	 The DBSCAN clustering algorithm can find clusters of arbitrary size and arbitrary shape, 
and effectively identify outliers,(17) and is insensitive to the order of input objects.  Because of 
these advantages, the DBSCAN algorithm is widely used in many fields.  For a d-dimensional 
data set Ω (i = 1, 2, ..., d), the definition in DBSCAN is as follows.(18)

	 Definition 1 Eps neighborhood of data point ρ: a circular area with radius Eps and 
centered on point ρ in the data set.  The set of points contained in the area is denoted as 

( ) ( ){ },
psE psN q d q Eρ ρ= ∈Ω ≤ .

	 Definition 2 Density of data point ρ: the number of data points in the Eps neighborhood of 
data point ρ in data set Ω.
	 Definition 3 Core point: If the density of data point ρ is greater than or equal to MinPts, it is 
called the core point, where MinPts is a threshold specified by the user.
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	 Definition 4 Boundary point: Data point q is not the core point, but it is in the Eps 
neighborhood of another core point ρ; thus, it is called a boundary point.
	 Definition 5 Noise point: Other points in the data set that are neither core points nor 
boundary points are called noise points.
	 Definition 6 Directly density-reachable: Let data point q be the core point.  As long as 
data point ρ belongs to the Eps neighborhood of data point q, data point ρ is said to be directly 
density-reachable from data point q.

	 ( )
psEN qρ ∈ 	 (9)

	 ( )
psEN q MinPts≥ 	 (10)

	 Definition 7 Density-reachable: If there is a data point chain ρ1, ρ2, ..., ρn, where ρ1 = ρ, ρn = q, 
ρi iρ ∈Ω Ω, 1 ≤ i ≤ n, and it is direct arrived density from ρi to ρi+1, then data point ρ is said to be 
density-reachable from data point q.
	 Definition 8 Density-connectable: In data set ρ, for a given Eps and MinPts, if there is a point 
o capable of making data points ρ and q density-reachable from data point o, data point ρ and 
data point q are said to be density-connectable.
	 To facilitate the understanding of the above concepts, Fig. 2 shows the schematic diagram of 
the DBSCAN algorithm when MinPts = 4.  The D point and other red points in the figure are the 
core points, because the area around these points within the Eps radius contains at least 4 points 
(including the point itself).  Because they are mutually reachable, they form a cluster.  Point B 
and point C are not core points but can be reachable from point D (through other core points) 
and therefore belong to the cluster.  Point G is neither a core point nor a directly reachable noise 
point.
	 For the given Eps and MinPts, a summary of the flow of the DBSCAN algorithm is as 
follows.  Select any undivided data object to determine whether it is a core data object, and 
if so, find all data objects that are density-reachable from it and mark these data objects as a 

Fig. 2.	 (Color online) Schematic diagram of the DBSCAN algorithm when MinPts = 4.



852	 Sensors and Materials, Vol. 31, No. 3 (2019)

cluster; if not, the noise judgment is performed on the data.  If it is a noise point, it is marked.  If 
not, the object is not processed.  The above steps are repeated until all data objects are divided.  
According to repeated experiments, the parameter Eps is equal to rc in this research, and its 
role is to cluster the nodes that can realize data transmission by single or multiple hops in the 
underwater sensor networks.  At the same time, MinPts is set to 2, indicating that the cluster 
should contain at least 2 nodes.  Figure 3 shows the clustering results of 30 randomly deployed 
nodes when Eps = 50 and MinPts = 2.  As can be seen from the figure, 30 nodes are clustered 
into 6 categories, where the black nodes are noise points, i.e., isolated states.  In addition, from 
Cluster #1 to Cluster #5, the data transmission between the nodes in each cluster can be realized 
in the single-hop or multihop mode.

4.3	 Proposed algorithm

	 In underwater node deployment, a sensor node is equivalent to the artificial fish in AFSA 
inspired by the operation mode of an artificial fish swarm, and an event is equivalent to food.  
The process of sensor nodes going forward to events is equivalent to the process of artificial fish 
searching for food.  However, considering that the single use of the fish swarming algorithm 
will cause too many nodes to participate in the movement and that the nodes are moving blindly, 
the nodes will fail rapidly owing to the rapid exhaustion of energy, which will shorten the life of 
the network.  Therefore, faced with the complexity of an underwater environment, we propose 
a fish-swarm-inspired underwater sensor deployment algorithm based on DBSCAN, where the 
nodes are clustered in the process of artificial fish updating their states to realize the sharing of 
sensed information within the fish swarm.  Therefore, the artificial fish are guided to migrate to 
a better state, thus speeding up the convergence of the optimized deployment of artificial fish.
	 Definition 9 Congestion degree factor: In the monitored area A, the allowed congestion 
degree at node si (1 ≤ i ≤ n) is defined as

	 ( ) ( )i e is N sσ ψ= × ,	 (11)

Fig. 3.	 (Color online) Clustering results of 30 randomly deployed nodes when Eps = 50 and MinPts = 2.
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where ψ is a constant indicating the expected coverage of a single event and Ne(si) indicates the 
number of events covered by node si.
	 Initialization: n nodes are randomly scattered in the underwater monitored area A.  The 
DBSCAN clustering algorithm is performed as described in Sect 4.2.  Then, node si (1 ≤ i ≤ n) 
belongs to cluster Cz(si), where card(Cz(si)) indicates that cluster Cz(si) contains n nodes.  Next, 
node si performs the following actions in accordance with its own state and those of neighbor 
nodes.
	 (1) Prey behavior: If card(Cz(si)) = 0, node si is in an isolated state, and prey behavior is 
performed.  Assuming that the current position of the node is Xi, and within its maximum 
moving step length l, it randomly moves to a new position Xnext.

	 ( )next iX X rand l T= + ⋅ 	 (12)

rand(l) is a random number between 0 and l, and T is an arbitrary unit vector.  If the number of 
events covered by node si increases, prey behavior is successful; otherwise, a new location is 
again randomly selected.
	 (2) Follow behavior: If card(Cz(si)) > 1, the optimal node sopt is selected in the cluster Cz(si).  
If node sopt covers more events and is less congested, i.e., Ne(sopt) ≥ Ne(si) and s

coN (sopt) < σ(sopt), 
then node si goes further in the direction to the position of sopt, i.e.,

	 opt i

opt i
next i

X X
X X l

X X
′= +

−
×

−
,	 (13)

where Xi and Xopt represent the position vectors of si and sopt, respectively.  l′ is the moving step 
length expressed as

	 ( ) ( )1 1, , ,
2 2
. otherwise

i opt i optd s s d s s l
l

l

 <′ = 


	 (14)

	 If Ne(si) increases, the follow is successful; otherwise, it fails.
	 (3) Cluster behavior: If card(Cz(si)) > 2, cluster behavior is performed.  Firstly, determine the 
center locations sc of the nodes in cluster Cz(si).

	
( )( ) ( )

1

k z i

c k
z i s C s

X X
card C s ∈

= ∑ 	 (15)

At the same time, the average number of covered events of sc is given by

	 ( )
( )( ) ( )

( )

1

k z i

e c e k
z i s C s

N s N s
card C s ∈

= ∑ ,	 (16)
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and the number of neighbor nodes is given by

	 ( )
( )( ) ( )

( )

1

k z i

s s
co c co k

z i s C s
N s N s

card C s ∈
= ∑ .	 (17)

	 If there are more covered events and less congestion at sc, i.e., Ne(sc) ≥ Ne(si) and 
( ) ( )c c

s
co sN sσ<(sc) < σ(sc), then the node si goes further in the direction toward the position of sc, i.e.,

	 c i

c i
next i

X XX X l
X X

+
−′= ×
−

,	 (18)

where Xi and Xopt represent the position vectors of si and sopt, respectively.  l′ is the moving step 
length expressed as

	 ( ) ( )1 1, , ,
2 2
. otherwise

i opt i optd s s d s s l
l

l

 <′ = 


	 (19)

	 If Ne(si) increases, the cluster behavior is successful; otherwise, it fails.
	 On the basis of the above discussion, a complete fish-swarm-inspired underwater sensor 
deployment algorithm based on DBSCAN is presented, as shown in Algorithm 1.
Algorithm 1: Fish-swarm-inspired underwater sensor deployment algorithm based on DBSCAN
1:	 Initialize the maximum number of iterations Nmax and the number of trials in the prey 
behavior Ntry;
2:	 Initialize the nodes S = s1, s2, ..., sn;
3:	 while not (Nmax) do
4:	 	 for all si is S∈ S do
5:	 		  Obtain the node cluster: Ci ← dbscan(S, ε, λ);
6:	 		  The number of events covered by node si: Ne(si)
7:	 		  if Ne(si) > 0 then
8:	 			   Move to the center of the covered event
9:	 		  end if
10:	 		  if card(Ci(si)) > 2 then
11:	 			   Find optimal neighbor node sopt in cluster Cz(si) where node si is located;
12:	 			   Find the center positions of all nodes in cluster Cz(si) where node si is located;
13:	 			   if Ne(sopt) ≥ Ne(si) and ( ) ( )c c

s
co sN sσ<(sopt) < σ(sopt) then

14:	 				    Node si moves to  node sopt and the follow behavior is performed;
15:	 			   else if Ne(sc) ≥ Ne(si) and ( ) ( )c c

s
co sN sσ<(sc) < σ(sc) then

16:	 				    Node si moves to node sc and the cluster behavior is performed;
17:	 		  else
18:	 			   for k ← 1 to Ntry do



Sensors and Materials, Vol. 31, No. 3 (2019)	 855

19:	 				    Prey behavior is performed;
20:	 				    if Ne(( ) ( )ie eiN s N s′ >) > Ne(si) then break;
21:	 				    end if
22:	 			   end for
23:	 	 else
24:	 		  for k ← 1 to Ntry do
25:	 			   Prey behavior is performed;
26:	 			   if Ne(( ) ( )ie eiN s N s′ >) > Ne(si) then break;
27:	 			   end if
28:	 		  end for
29:	 end while

5.	 Simulation Experiment and Analysis

	 The PSSD algorithm is a typical nonuniform deployment algorithm for an underwater 
wireless sensor node network.  To evaluate the performance of the proposed algorithm, the 
PSSD algorithm was used for comparison, in terms of network coverage rate, total moving 
distance of nodes, and running time.  To eliminate the random effects of the experiment, 30 
experiments were conducted and their averaged data were used.  The parameter settings of the 
proposed algorithm are shown in Table 1.
	 The three-dimensional monitored area was 200 × 200 × 200 m3; 40 target events were 
randomly distributed in the water, and the size and position were randomly configured; six 
sensor nodes were randomly deployed.  The self-organized deployment of sensor nodes was 
achieved by the algorithm proposed in this paper.  The results of running the algorithm are 
shown in Fig. 4, where (a) shows the initial state of node deployment and (b) shows the result 
of running the proposed algorithm.  The blue stars indicate the event distribution, the red 
dots indicate node positions, and the sphere indicates the three-dimensional sensing range of 
the node.  It can be seen that the proposed algorithm can track the event distribution well and 
achieve effective coverage of all events.
	 Figure 5 shows the average coverage rates of the proposed and PSSD algorithms with the 
number of iterations.  In the figure, the abscissa represents the number of iterations and the 
ordinate represents the average coverage rate of 30 experiments.  It can be seen that, under 
the same initial state, the proposed algorithm achieves not only a higher network coverage 
rate, but also a full coverage of events after a few iterations.  Furthermore, the convergence is 
faster.  Compared with the PSSD algorithm, the clustering of nodes by DBSCAN enables the 
proposed algorithm to overcome the disadvantage of the blindness of the random search by 
the traditional fish-swarm-inspired algorithm.  Figure 6 shows the total moving distances of 

Table 1 
Parameter settings.

rs rc ε λ Ntry l ψ
50 m 100 m 100 m 2 5 15 0.1
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nodes for the proposed and PSSD algorithms with the number of iterations.  It can be seen that, 
when the number of iterations is the same, the proposed algorithm can greatly reduce the total 
moving distance of nodes compared with the PSSD algorithm, thereby saving node energy 
and prolonging the network life.  The main reason behind this phenomenon is that information 
sharing between nodes that can realize data transmission in the single or multihop mode is 
achieved with the help of the DBSCAN algorithm, thus improving the global sensing ability 
of the distributed fish swarm algorithm, avoiding blind movement, and reducing energy loss 
during node movement.
	 Above, the deployment of 40 target events and 6 sensor nodes was analyzed.  However, 
to obtain accurate information, a large number of sensor nodes (far more than 6) are usually 
deployed in the monitored area.  Therefore, below, we will consider the effect of the change in 
the number of nodes on the performance of the proposed algorithm.

(a) (b)

Fig. 4.	 (Color online) Result display of self-organized deployment.  (a) Initial state and (b) result of running the 
proposed algorithm.

Fig. 5	 (Color online) Comparison of average 
coverage rates.

Fig. 6	 (Color online) Comparison of total moving 
distances of nodes.
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	 Table 2 shows the average moving distance of nodes for the number of nodes from 6 to 
30.  It can be seen from Table 2 that, as the number of nodes increases, the average moving 
distance of nodes decreases to varying extents, but compared with the PSSD algorithm, the 
proposed algorithm shows a clearer decreasing trend.  This is because as the number of nodes 
increases, the number of nodes participating in the sharing of sensed information through the 
single or multihop mode also increases, whereas the PSSD algorithm mainly makes decisions 
by sensing the information of nodes within the communication range.  In other words, the 
proposed algorithm is better at sensing global information and then finding the location of the 
target event.  As a result, fewer nodes participate in the movement, and the nodes are no longer 
moving blindly.  Therefore, the total moving distance of the nodes is reduced.
	 Table 3 shows the average running time for the number of nodes from 6 to 30.  It can be seen 
from the table that, as the number of nodes increases, the running times of the two algorithms 
are extended to varying extents.  Compared with the PSSD algorithm, the proposed algorithm 
has a longer running time when the number of nodes is the same.  This is mainly because each 
node must analyze the sensing state of the nodes in its cluster before making a decision and the 
processing time will increase as the number of nodes in the cluster increases.  Therefore, in 
terms of energy consumption, the energy consumed by node movement is much greater than 
that by data transmission.  Moreover, the running time of the proposed algorithm is within the 
allowable range.  Therefore, the effectiveness of the algorithm proposed in this paper is verified.

6.	 Conclusions

	 We proposed a fish-swarm-inspired underwater sensor deployment algorithm based on 
DBSCAN.  By simulating the three behaviors of a fish swarm (prey, follow, and cluster), nodes 
autonomously tend to the area where events are located to achieve the full coverage of all 
events.  At the same time, to reduce the number of nodes participating in the movement and 
avoid the blind movement of nodes, DBSCAN clustering analysis is performed to achieve the 
sharing of sensed information among the nodes that can realize data transmission through the 
single-hop or multihop mode, thereby enhancing the global search ability of nodes.

Table 2 
Average moving distance of nodes for the number of nodes from 6 to 30.

Number of nodes
6 10 14 22 30

PSSD 75.2975 68.0178 59.5518 47.7318 27.9360
Proposed algorithm 56.7577 49.2103 47.3806 25.4953 13.4761

Table 3 
Average running time for the number of nodes from 6 to 30.

Number of nodes
6 10 14 22 30

PSSD 0.0996 0.1083 0.1279 0.1534 0.2147
Proposed algorithm 0.1634 0.2091 0.2788 0.3408 0.3706



858	 Sensors and Materials, Vol. 31, No. 3 (2019)

	 A large number of experiments were carried out.  The results showed that the proposed 
algorithm has strong tracking ability and can achieve a high network coverage rate.  In 
addition, compared with the PSSD algorithm, the proposed algorithm has the following three 
advantages:(1) the node has strong global sensing ability and can track target events rapidly;(2) 
the disadvantages of too many nodes participating in the movement and the blind movement 
of nodes are avoided, which effectively solves the energy consumption problem caused by the 
excessive movement of the nodes;(3) it exhibits distributed deployment and strong scalability.  
Further efforts are expected to be made on solving the problem associated with the fully 
connected network.
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