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	 Currently, the quality of flue-cured tobacco leaves is evaluated manually, which relies on 
subjective experience and inevitably affected by personal, physical, and environmental factors.  
However, the subjective evaluation fails to meet the automatic and precise requirements of 
tobacco production.  The quality of tobacco leaves is affected by a variety of factors, such as 
color, oil content, maturity, and surface texture, among which color is one of the most important 
factors.  Color evaluation is critical for quality management in the agricultural field.  However, 
there is no specific standard color chart for flue-cured tobacco leaves, and there are few studies 
focusing the development of such a color chart.  In this work, a framework for the development 
of a color chart was established by computer vision techniques and it was applied to flue-cured 
tobacco leaves.  The color chart system (CCS) consisted of data acquisition, color representation 
for a single leaf, and the development of the color chart for flue-cured tobacco leaves.  Firstly, 
an acquisition device was developed to collect digital color images of flue-cured tobacco leaves, 
which was equipped with CCD sensors that detect color information accurately.  Secondly, 
a proportional threshold method was proposed to represent a feature color from the acquired 
images by taking into consideration the overall color information of a single leaf.  Finally, color 
discrimination techniques were used to create digital color charts depicting synthetic, standard-
color tobacco leaves at various degrees.  The color charts established in this work faithfully 
express the flue-cured tobacco leaves color information, and the framework of CCS based 
on computer vision can be applied to other agricultural situations where color estimation is 
required.
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1.	 Introduction

	 Tobacco is a commercial crop in many countries owing to its low-cost, short growth cycle, 
and economic value.  The history and status of the world’s tobacco industry signify that 
tobacco and its products will persist for a long time.(1)  The tobacco industry plays an important 
role, especially in China where it has about 500 billion assets and 60 million employees and 
contributes to 1/10 of the state’s revenue each year.  Furthermore, the national planting area has 
reached 21180000 acres, which has become the main means of increasing peasants’ income.(2)  
As the major material of cigarettes, the features of tobacco leaves such as flavor, aroma, and 
physical characteristics greatly affect the quality of cigarettes.  High-quality cigarettes are 
expected to offer consumers with positive taste experience, optimum smoke yield, and less harm 
to health.  The economic effect of the price of cigarettes is highly determined by the quality of 
the tobacco used.(3)  Thus, the quality of the tobacco leaves is considered as a highly significant 
factor that affects cigarette quality.  The quality of tobacco is also highly affected by climatic 
and cultivation environmental factors, including rainfall, temperature, soil, and geographical 
position.  Therefore, it is important to evaluate its quality to obtain reliable and accurate grading 
results of different tobacco leaves.  However, the quality evaluation of flue-cured tobacco leaves 
is a rigorous task.  
	 The quality evaluation of flue-cured tobacco leaves may vary from one country or even 
one tobacco strain to another, but the general method and the external features of interest for 
tobacco leaves are quite similar.(4,5)  Most of the evaluation standards have been established 
mainly through human vision, which has strong subjectivity and fussiness.  The quality 
evaluation criteria for f lue-cured tobacco leaves usually include color, size, shape, and 
disfigurement of the leaves.  While color is a very common feature of the tobacco leaves, it is 
considered an important element, either for the grouping in the national tobacco classification 
standard or the evaluation of flue-cured tobacco appearance quality.  Despite this important 
role, it has been a difficult task to give it an accurate and universal definition to understand the 
differences between tobacco leaf colors.  The subjectivity and error caused by the involvement 
of human beings have been problems, making the color evaluation of tobacco leaves  
unclear.  Furthermore, it is expensive to train experts to discriminate color.  In view of these 
circumstances, color charts provide a simple, relatively inexpensive, and easily portable means 
of color appraisal of tobacco leaves.  Thus, it is necessary to develop a color chart for the color 
evaluation of tobacco leaves.  Employing a color chart for color evaluation can not only ensure 
the consistency of color evaluation by grass-roots staff but also make the traditional method of 
quality evaluation more objective and credible.

1.1	 Related work

	 In the last few years, image analysis methods have become an important tool for the 
automatic inspection and quality evaluation of agricultural products.  Computer vision has 
several advantages over chroma meters, such as lower cost, and the possibility of being used 
for in-line inspection, and the capability of analyzing a larger area to provide spatial data, thus 
eliminating the subjectivity of human criteria.  Furferi et al.(6) described a method for the rapid, 
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automatic, and objective prediction of the Ripening Index (RI) of an olive lot.  The method 
integrated a machine vision system, capable of performing a color-based raw prediction of 
RI, with an artificial neural network (ANN)-based algorithm to refine it.  In this study, some 
disadvantages of the RI evaluation technique, which are time-consuming, subjective (dependent 
on expert skill), and dependent on environmental conditions, have been solved.  At the same 
time, modern instruments and technologies have been widely applied in the tobacco industry.  
Specifically, image processing and computer vision for tobacco leaves quality control have been 
significantly applied during the past few decades.(7–9)  These applications showed that the use of 
modern methods for the qualitative or quantitative analysis of tobacco leaves color is essential 
for establishing an effective color chart.
	 Color analysis is one of the most effective approaches to the quality inspection of tobacco 
leaves.  This is because leaf color is closely associated with leaf pigments including the green 
pigment (chlorophyll) and yellow pigment (lutein and carotene).(10)  The variation in leaf color 
thus reflects the change in internal leaf components and provides clues for the evaluation of leaf 
quality.  Up to date, many color-related research studies have been reported.  However, most 
of them focused on utilizing color as a technical feature for tobacco leaf classification.  For 
example, a two-dimensional feature space was proposed to express the color feature distribution 
of tobacco leaves, and a ‘nearest-neighbor’ method was employed to classify tobacco leaves.(11)  
Ma and Wu(12) employed fuzzy recognition methods to grade the tobacco by utilizing both color 
and shape features.  Garcia et al.(13) introduced the development of a virtual expert for the color 
classification of tobacco leaves.  Furthermore, some researchers focused on the quantitative 
analysis of surface color for flue-cured tobacco leaves and its relationship with colorimetric 
indices.(14)  A correlation equation between the color value of tobacco leaves and the positions 
of leaf growth was established by analyzing color values and the appearance color variation 
of tobacco leaves.(15)  Many methods have been presented to extract the color features.  For 
example, Jian et al.(16) presented a method whereby color feature values are quantified and 
extracted by employing a color histogram.  There are also some other works that have been 
reported,(17–22) such as the automatic classification of flue-cured tobacco leaves based on 
different algorithms and the feature analysis of different tobacco varieties of tobacco according 
to different influential factors.
	 To the best of our knowledge, only a few research studies were related to the color 
chart development of tobacco leaves.  Although Japanese researchers used the color chart 
for colorimetric comparison to decide the maturity of tobacco leaves,(23) this was still a 
qualitative method.  The color chart is an important tool for the evaluation of tobacco leaf 
color corresponding to a certain level.  The color can be standardized and expressed in a way 
similar to human vision using the color chart, and the color chart can solve the problem of 
color reproducibility.  However, until now, no such systematic method has been developed 
to design a color chart system (CCS) for the tobacco industry.  Therefore, a CCS is urgently 
needed to achieve tobacco color quantification.  In fact, the color chart has been applied in 
other industries; for example, in Japan, fruit color charts were created by skillful craftsmen, 
which were not quantized.(24)  A method of creating digital fruit color charts with shape and 
color analyses was developed.(25)  Singh and Singh(26) presented a method of comparing the 
crop leaf color with the leaf color chart (LCC), but they did not explain how the color charts 
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were designed.  In this paper, we present a framework of CCS for flue-cured tobacco leaves 
developed by employing an original leaf color from digital color images, which has three 
characteristics: standardization, objectification, and quantification.  The framework of CCS 
developed in this paper can be applied to other industrial situations where color estimation is 
required, such as in the food, agriculture, textile, construction, and jewelry industries.

1.2	 Contribution

	 In this paper, a framework of the automatic color chart development system is proposed to 
obtain a quantitative color chart and it is verified with flue-cured tobacco leaves.  The CCS 
is developed mainly to include three major parts, namely, the design of image acquisition 
equipment, the color eigenvalue extraction, and the development of a color chart for tobacco 
leaves.  The design of each part of the CCS has its own characteristics and advantages, which is 
explained in detail.
(1)	The high-precision image acquisition equipment used for flue-cured tobacco leaves is 

designed in this paper, which is different from traditional acquisition equipment.  It was 
equipped with CCD sensors that detect color information accurately.  The acquisition 
equipment improves the color accuracy by analyzing the color characteristics of flue-cured 
tobacco leaves.  The equipment has also been improved in terms of illumination robustness 
and leaf stretch acquisition.  In addition, the desired image can also be flexibly adjusted or 
improved.

(2)	A proportional threshold method is presented for feature color extraction, which has three 
distinguishing advantages.  Firstly, the measurement accuracy of characterizing digital color 
eigenvalues is improved by reducing the impact of outliers.  Secondly, it can reduce the 
error caused by the uneven color of the tobacco surface, stems, and other factors.  Thirdly, it 
ensures that the real pixels of a flue-cured tobacco leaf are obtained by eliminating the color 
values with less probability of occurrence and the image color is quantified.  

(3)	A digital color chart is created by employing the technology of color discrimination.  In 
this process, color grade analysis is conducted by employing the method of human visual 
perception of the color of flue-cured tobacco leaves.  Then, the difference between two 
similar colors with low-level variations is determined according to the color difference 
equation.  Finally, a quantifiable objective characterization color charts is developed.  The 
color chart can express the color characteristics of tobacco leaves very well and guarantee 
consistency of evaluation.  Moreover, the color can be quantified with the color chart that is 
helpful for a human to understand the tobacco color of different grades.  

	 On the whole, the computer-vision-based CCS development method proposed in this paper 
provides a novel way of designing a color chart, which can be extended to other industries.  
Moreover, the advantages of CCS make it an effective tool for color characterization in research 
fields such as cultivation technology, color classification, and quality evaluation.  Meanwhile, 
the color chart provides a new tool for the quantification of evaluation criteria of the flue-cured 
tobacco leaves to facilitate the formation of an efficient and precise tobacco evaluation system.
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2.	 Materials and Methods

2.1	 Sample and equipment

2.1.1	 Equipment

	 The image acquisition system is an important part of CCS.  It directly affects the 
measurement accuracy.  To reduce the color distortions in the image acquisition process 
for flue-cured tobacco leaves, we proposed a single-chip implementation method based on 
computer vision technology.  The structure is shown in Fig. 1.  Figure 1(a) shows the internal 
structure and Fig. 1(b) shows the external structure of the image collection device.  As shown 
in Fig. 1(a), the scanner uses a CCD as a photosensitive element and the information obtained 
needs to be transmitted to a CCD chip by an optical system consisting of a series of lenses, 
mirrors, and a mobile light source.  The advantage of the CCD is that the quality of the scanned 
image is high, it has a certain depth of field, and it can scan uneven objects.  This allows clear 
scanning of the wrinkled tobacco.  Moreover, the CCD has a low-temperature coefficient, and 
the influence of ambient temperature changes can be neglected in the image collection process 
for tobacco leaves.  At the same time, the flatbed scanner adopts light-emitting diodes (LEDs) 
as even and steady light sources, and it can not only enhance the robustness of the lighting 
but also eliminate the need for special maintenance.  Moreover, the even scanning speed of 
the flatbed scanner ensures the uniformity of image quality.  In addition, the scanner provides 
many powerful, professional-level scanning capabilities through the ScanWizard Pro control 
program.  The Microtek Scanner international color consortium (ICC) Profiler (MSP) program 

Fig. 1.	 (Color online) Structure diagram of image acquisition equipment. (a) Internal and (b) external.

(a) (b)
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allows users to calibrate the scanner and produce appropriate ICC color profiles to ensure color 
consistency and accuracy.  ScanWizard Pro also has a batch scanning feature that can generate 
and manage “up-and-down” batch scanning tasks, which greatly improves the working process.  
	 The image acquisition process mainly consists of five parts: sample rewetting and flattening 
pressure, scanner device connection, scanner parameter setting, image acquisition, and 
picture saving.  To facilitate the smooth operation of the batch work, it is necessary to do some 
preparatory work before the image collection of tobacco samples, such as removing the badly 
damaged samples and returning the samples to their original moisture and flattening pressure.  
Furthermore, the image acquisition was conducted in the laboratory with constant temperature 
and humidity.
	 There are several advantages of flatbed scanner for digital image acquirement are as follows:
(1)	The flatbed scanner adopts LEDs as even and steady light sources, and it can enhance the 

robustness of the lighting without any special maintenance.  At the same time, the even 
scanning speed of the flatbed scanner ensures the uniformity of the image quality.  

(2)	The pedestal device of the flatbed scanner has been used to improve the stretchability 
of the leaves, so that we can collect more useful information.  The scanner with stable 
specifications improves the reproducibility of the image.  

(3)	The flatbed scanner is specially developed with high resolution.  It is not only good for 
capturing the true-color image of the leaf but can also better preserve the leaf information.  

2.1.2	 Sample Information

	 The samples were collected from five regions of Yunnan province of China in 2016,  namely, 
Xundian, Shilin, Yiliang, Luquan, and Anning as marked in Fig. 2.  There were several 
subregions in a certain area with diverse planting environments, and detailed information is 

Fig. 2.	 Locations of the tobacco planting regions in Yunnan Province of China.
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shown in Table 1.  In addition, according to the Chinese grading criteria for flue-cured tobacco 
leaves,(27) the tobacco leaves were graded on the basis of the position at which they grew on 
stalks and their hue.  Three position categories were identified, namely, lugs (X), cutters (C), 
and leaf (B1), corresponding to the lower, middle, and upper portions of a stalk, respectively.  
[The subscript 1 is used here to distinguish B1 from B (blue).]  Three hue categories, i.e., lemon 
(L), orange (F), and red-brown (R), were specified.  The groups were formed by combining the 
position and color categories as below: lugs lemon (XL), lugs orange (XF); cutters lemon (CL), 
cutters orange (CF); leaf lemon (B1L), leaf orange (B1F), and leaf red-brown (B1R).  Each group 
was further divided into three, four, or more grades on the basis of the chroma, hue uniformity, 
and other characteristics.  However, owing to the lack of red-brown tobacco leaves, we only 
employed tobacco leaves of two color gamut, namely, lemon and orange, which included one to 
five grades based on the chroma with five samples of tobacco leaves in each of grades.

2.2	 Image preprocessing of flue-cured tobacco leaf

	 To eliminate irrelevant information and retrieve essential information, we need an efficient 
and effective image segmentation method, which is the initial but important step in image 
analysis to gather more necessary information.  In this paper, the median filter was used to 
eliminate slight fluctuations caused by noise and made the detection more robust.  Then, 
the region of interest of the image was determined by using the threshold method in order to 
obtain the key part of a flue-cured tobacco leaf for further color analysis, and it was necessary 
to remove interference of the image background.  Image segmentation was used to break up 
an image into some meaningful portions.  In this section, the well-applied threshold-based 
segmentation was introduced to turn a gray-scale image into background/foreground for 
background segmentation.  
	 A threshold segmentation method based on RGB monochromatic channel was adopted 
for background segmentation.  First, the original RGB color image was transformed into the 
corresponding red (R), green (G), and blue (B) channel grayscale image, and the histograms of the R, 

Table 1
Sample information of each region.
Subregion Region Soil type Elevation (m) Subregion Region Soil type Elevation (m)
01 Xundian Red soil ≥2000 13 Shilin Red soil ≥2000
02 Xundian Red soil 1850–2000 14 Yiliang Red soil 1650–1850
03 Xundian Red soil 1850–2000 15 Yiliang Red soil 1650–1850
04 Xundian Red soil 1850–2000 16 Yiliang Paddy soil 1850–2000
05 Xundian Red soil ≥2000 17 Yiliang Red soil 1850–2000
06 Xundian Red soil ≥2000 18 Luquan Paddy soil 1650–1850
07 Xundian Paddy soil ≥2000 19 Luquan Purple soil ≥2000
08 Shilin Paddy soil 1650–1850 20 Luquan Purple soil ≥2000
09 Shilin Purple soil 1650–1850 21 Luquan Red soil 1850–2000
10 Shilin Paddy soil 1650–1850 22 Luquan Red soil 1850–2000
11 Shilin Red soil 1850–2000 23 Anning Paddy soil 1850–2000
12 Shilin Purple soil ≥2000
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G, and B channels of the tobacco leaf were calculated separately [Fig. 3(a) shows the histogram 
of each monochromatic channel].  Then, the peak-valley method was utilized to determine 
the best threshold value of each channel, and background segmentation was conducted for 
each monochrome channel.  Figure 3(b) shows the results of background segmentation of 
the R, G, and B images.  From the figure, the best experimental results were obtained from 
the B monochrome channel.  Therefore, we employed background segmentation based on B 
monochrome for all images.  Figure 3(c) shows the result of the background segmentation of a 
leaf image based on the B monochrome channel.

2.3	 Digital feature color representation of flue-cured tobacco leaf

	 The color of the tobacco leaves depends on the color of each pixel in the blade area, and 
each pixel of the image is represented by R, G, and B color channels.  Furthermore, the feature 
color representation will directly affect the correctness and reliability of subsequent analysis.  
Thus, how to extract the digital feature color that can reflect the overall color characteristics 
of a tobacco leaf has great significance.  At present, the methods available for feature color 
extraction of flue-cured tobacco mainly included the method of using a color measurement 
instrument and the method of averaging the values of all pixels.  However, color measurement 
was only for a specific part of the flue-cured tobacco leaf and lacked consideration of overall 

Fig. 3.	 (Color online) (a) Monochrome histogram for R, G, and B channels. (b) RGB threshold segmentation. (c) 
Segmentation result based on B channel on leaf image.

(a)

(b) (c)
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color information.  The method of averaging was susceptible to outliers and reduced the 
representativeness of extracting color parameters.(28) 
	 In this paper, an efficient method called proportional threshold algorithm was proposed for 
the feature color representation of a single flue-cured tobacco leaf.  Firstly, the probability of 
each gray level appearing in each monochromatic channel in an image was calculated.  The 
horizontal coordinate was the gray level of each pixel point in the image, and the ordinate was 
the probability of the occurrence of this gray level (Fig. 4).  The characteristic colors were 
selected on the basis of the accumulated contribution rate, which was computed on the basis 
of the monotonic decrease in the histogram by thresholding (e.g., 2/3), and the average of the 
corresponding color value was utilized to represent the feature color of the leaf.  The feature 
color representation for a single leaf was equivalent to the average of the color values in the red 
box (Fig. 4).  Figure 4(a) shows the histogram distribution of colors in a leaf image without the 
background and Fig. 4(b) shows the histogram sorted in monotonically decreasing order.
	 The origin of the proportional threshold method is explained as follows.  Let the gray value 
of the monochrome channel be defined as            

 	 ( ) ( )0 1, , ,    0 255ig g g g i= ≤ ≤� .	 (1)
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Fig. 4.	 (Color online) Histogram of color distribution.
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where g_i represents the gray value, and pi is the probability of the gray value g_i, for 
0,  1,  2,  ,   (0 255)i n n= ≤ ≤� .

	 The cumulative contribution rate formula is as follows:

	 1max max ip p p δ−+ + + ≥� ,	 (3)

where δ is the threshold ranging from 0 to 1.  The smaller the δ value is, the less color 
information is retained; when δ = 1, all the color values are kept for feature color calculation.  
In this paper, the threshold δ is set to 2/3 by considering two aspects: (1) convenient for noise 
reduction and (2) consistent with the human visual assessment criterion.  The vein and damaged 
part of the leaf were not necessary for feature color representation, and they can be mostly 
eliminated by threshold setting.  As the color of a leaf sample is not uniform, human experts 
assess the color according to the major leaf color, which is usually more than half of a leaf.
	 Then, the feature color of the leaf G is calculated as 

	 _ 0 _1 _( )iG mean g g g= + + +� .	 (4)

	 In the formula, g_0, g_1, ..., g_i are determined by Eq. (3), representing the color values 
corresponding to the probability.  In this paper, the digital feature color of a flue-cured tobacco 
leaf is extracted by this method.  Details of the experiment are given in Sect. 3.1.

2.4	 Digital color chart development

	 The color representation of a tobacco leaf is expressed through the common characteristics of 
a large number of samples of homologous tobacco leaves, and the benchmark of the color chart 
is the color range of the batch tobacco samples.  It is important to extract the representative 
color for color groups in CCS development.

2.4.1	 Color value sorting

	 In the digital image, the well-known colorimetric psychology can reflect the depth of color 
to a certain extent.  In the same color system, the smaller the gray value is, the darker the color 
is.  The expression is defined as

	 0.299 0.587 0.114Gray R G B= × + × + × ,	 (5)

where R, G, and B are the pixel grays in three components (red, green, and blue), respectively.  
In this paper, the color values based on the HSV color space were extracted.  To obtain the 
colorimetric psychology formula based on the HSV color space, we need to achieve the 
conversion formula between the RGB color and the HSV color.  The HSV coordinates can be 
transformed from the RGB space easily.  The formulas for hue (H), saturation (S), and value (V) 
are
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where max(R,G,B) is the maximum value of R, G, and B and min(R,G,B) is the minimum value of R, 
G, and B.
	 The colorimetric psychology based on HSV color space is obtained by combining Eqs. (5) 
and (6):

	 ( )* 255 1 0.701 3.522Gray V S H S= × × − × − × × .	 (7)

	 According to the color characteristics of the sample of flue-cured tobacco leaf, the color was 
mainly limited to the range of lemon and orange.  Therefore, the synthetic color blocks derived 
from the flue-cured tobacco samples were sorted in order from light to dark according to the 
colorimetric psychology formula [Eq. (7)].

2.4.2	 Color difference discrimination

	 Evidence supports that the color discrimination ability of the human visual system is 
different among individuals, owing to the different cognitions of different color gamuts.(29)  
Therefore, it is necessary to determine the color difference threshold that can be resolved 
visually for human vision between two adjacent patches in the color range of lemon and orange.  
To quantitatively evaluate the difference in color perception, a color difference formula was 
designed to calculate the difference between similar colors with low-level variations, which had 
strong agreement with human perception.  The Lab color space was utilized for color difference 
measurement.  Lab color space can describe existing colors well and achieve uniform color 
distribution.  The color differences can be measured on the basis of distance.  The total color 
difference between two samples can be calculated as

	 Brightness difference: * * *
1 2L L L∆ = − ,	

	 Chromaticity difference: * * *
1 2a a a∆ = − ,	 (8)

	 * * *
1 2b b b∆ = − ,
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	 Total color difference: ( ) ( ) ( )2 2 2* * * *
abE L a b∆ = ∆ + ∆ + ∆ ,	 (9)

where L⁎
1 and L⁎

2 represent the brightness values of two flue-cured tobacco samples.  a⁎
1 and 

a⁎
2 represent the chroma values ranging from red to green of two flue-cured tobacco samples.  

Similarly, b⁎
1 and b⁎

2 represent the chroma values ranging from yellow to blue of two flue-
cured tobacco samples.
	 It can be found from Eq. (9) that the total color difference varies with the changes in ∆a⁎, 
∆b⁎, and ∆L⁎.  Since the color range of flue-cured tobacco in this paper had been limited to 
lemon and orange, it was less affected by ∆a⁎ and ∆b⁎, while ∆L⁎ has greater influence.  We 
will confirm the color threshold from two aspects of the simultaneous changes in ∆a⁎ and ∆b⁎, 
or the change in ∆L⁎ alone.  More importantly, in this process, we need to obtain the L, a, and 
b values from the H, S, and V values by using the conversion of color space.  Then, the color 
threshold was determined according to Eq. (9).  The color difference threshold was the basis of 
color discrimination, and it was applied to the sorted color blocks obtained in Sect. 2.4.1.  

3.	 Results and Discussion

3.1	 Tobacco leaf color synthesis

	 The HSV system is a perception-oriented nonlinear color space.  Color information is 
represented by hue and saturation values in the HSV color space.  The extent of the color 
brightness of an image is determined by the amount of light.  Hue represents basic colors and is 
determined by the dominant wavelength in the spectral distribution of light wavelengths.  It is 
the location of the peak in the spectral distribution.  Saturation refers to the color depth, which is 
indicated by a fraction, ranging from 0 to 1, and signifies the amount of white light mixed with 
the hue.  It is the height of the peak relative to the entire spectral distribution.  Color brightness 
is also indicated by a fraction, ranging from 0 to 1.  The human vision system can distinguish 
different hues easily, whereas the perception of different intensities or saturation does not mean 
the recognition of different colors.  The HSV color space is more intuitive to the human vision 
owing to its good capability of representing the colors of human perception.  HSV can sense 
the change in color channel independently, and more information can be retrieved from the 
HSV color space.  Therefore, the color of the HSV color space is adopted in the experiments.  
Moreover, the color synthesis results of different subregions, different positions of the leaf, and 
different color grades were evaluated.
	 In this part, samples of the leaf (B1) were collected from six subregions in Shilin.  The 
original images and the color of the synthesis results are shown in Table 2.  The last row in 
the table is represented by the hexadecimal color code.  It is generally prescribed that each 
color intensity in RGB has a minimum of 0 and a maximum of 255, and it is expressed in the 
form of six hexadecimal digits; each pair represents a color channel.  255 corresponds to the 
hexadecimal FF and puts the values of three color channels at the beginning of “#”, which is 
the hexadecimal color code.  For example, the color value “#FF0000” is red, because red has 
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reached the highest “FF” value (255 in decimal), and the remaining two color intensities are 
zero.  The results showed that the color of the synthesis in the HSV color space was similar 
to the physical color of the tobacco leaves in each subregion (as shown in Table 2), and the 
subregion played a significant role in the color change of tobacco.
	 To gain insight into the reliability of the color values, samples from different positions were 
selected and the color synthesis was conducted.  Table 3 indicates the color synthesis results 
of different positions of tobacco leaves.  It can be seen from Table 3 that the color synthesis 
of tobacco leaves in different positions also obtained good results.  Each position of the color 
synthesis effects can be a genuine and reliable reflection of the physical color of the original 
sample.
	 Different grades of flue-cured tobacco leaves reflect the degree of color depth.  In this 
section of the experiment, the samples of flue-cured tobacco leaves that are consistent with all 
factors other than the color grade varied from light to dark.  The comparison results are given 
in Table 4.  Obviously, as grade changes from one to four, the corresponding colors also varied 
from light to dark.  The synthesis results of feature color also reflected the gradual change in 
color and the grades had a comparatively weak impact on the color of tobacco.
	 The observed results are summarized in three points: (1) The scanned leaf images are 
represented quantitatively by certain color values, which made color analysis more convenient.  
(2) It was practical to apply the 2/3 proportional threshold method in the HSV color space for 
feature color extraction, which can improve the accuracy and the authenticity.  (3) The results of 
the color synthesis also truly expressed the color of the original samples, and the effect of each 
factor on the color change can also be well reflected in the color synthesis.

3.2	 Color threshold setting

	 In this section, the minimum chromatic aberration of human visual discrimination between 
adjacent leaves in the color gamut of flue-cured tobacco leaves was embedded from two aspects 
of the simultaneous changes in ∆a⁎ and ∆b⁎ or the change in ∆L⁎ alone.(29)  In order to conform 
to the acceptable color difference of most people, the color difference threshold of human 

Table 2
(Color online) Color synthesis of HSV color space for different subregions.
Sample source Subregion 8 Subregion 9 Subregion 10 Subregion 11 Subregion 12 Subregion 13

Original image

Color synthesis

Color value #BD9145 #CFAF55 #D2AC4C #C39545 #DDB756 #D3A949
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vision was determined to be four when ∆a⁎ and ∆b⁎ were simultaneously changed and the color 
difference threshold of human vision was determined to be two when ∆L⁎ alone was changed.  
The experimental results are shown in Fig. 5.  Figure 5(a) shows the changes in ∆L⁎ and Fig. 
5(b) shows the changes in ∆a⁎ and ∆b⁎.  Clearly, the color change between two color blocks was 
perceptible, which indicated that the color threshold was acceptable.  The reason why the result 
in Fig. 5(b) was not sufficiently clear was that the color range in this paper has been limited to 
lemon and orange,  which were less affected by ∆a⁎ and ∆b⁎.

3.3	 Development of tobacco digital color chart

	 Color charts provide a simple, relatively inexpensive, easily portable means of color 
appraisal.  Color charts can be used as the standard of the color group classification, which can 
improve the ability of color perception, and the directionality of industrial formula of different 
colors of tobacco leaves in each producing area can be clarified.  Therefore, to overcome the 
error caused by different levels of mobility classification, a series of color charts for flue-cured 

Table 3
(Color online) Color synthesis of HSV color space for different positions.
Sample source Leaf (B1) Cutters (C) Lugs (X)

Original image     

Color synthesis

Color value #BD9145 #D2AE50 #D5B25B

Table 4
(Color online) Color synthesis of HSV color space for different grades.
Sample source Grade 1 Grade 2 Grade 3 Grade 4

Original image    

Color synthesis     

Color value #D7B352 #D2AC4C #D0A850 #C89E4B
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Fig. 5	 (Color online) Results of color threshold setting. (a) L changes alone and (b) a and b simultaneously change.

(a) (b)

tobacco was developed in this study.  In this section, the colorimetric psychology method and 
color difference methods (Sect. 2.4) were employed to analyze the tobacco leaf samples from 
different regions of Kunming and synthesize corresponding digital color charts, so as to verify 
the feasibility of the method.  According to the color gamut of flue-cured tobacco leaf samples, 
we developed the corresponding color chart of flue-cured tobacco leaves for lemon and orange.

3.3.1	 Color sorting

	 The flue-cured tobacco samples were collected from Xundian, Shilin, Yiliang, Luquan, 
and Anning.  First, the proportion threshold method was adopted to extract the color values in 
HSV color space.  Then, the three values of HSV were converted into a gray value by exploiting 
the colorimetric formula [Eq. (7)].  Finally, the color composite blocks were sorted from light 
to dark according to the gray value.  The experimental results showed the information about 
regions, positions, and color grades.  Details of the experimental results are shown in Fig. 6 
(SubR is the abbreviation of the subregion).  It can be found that most of the color blocks have 
been arranged from light to dark, which was identified with the visual perception of depth.  The 
experimental results indicated that the method of applying the colorimetric formula to color 
sorting was reliable.  It should be pointed out that it was still difficult to perceive the color 
transition between some color charts in the visual range, although fairly satisfying results have 
been achieved.  Therefore, to make it more realistic and reasonable, we employed the color 
discrimination method described in Sect. 2.4.2 on the color chart for further analysis.

3.3.2	 Color chart development

	 We employed the conclusions of color threshold drawn in Sect. 3.2 for the development of 
the color chart obtained in Sect. 3.3.1.  One of them was removed when the color difference 
between adjacent blocks was less than the color threshold.  Then, the color charts were created 
by filling the shapes of the leaf with different colors.  The completed color charts with leaf 
shape and color information are shown in Fig. 7, which were created by the colorimetric color 
discrimination method.  Figure 7 shows that the color block appeared significantly reduced 
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Fig. 6.	 (Color online) Color synthesis of different color gamuts in various regions: (a) Xundian, (b) Shilin, (c) 
Yiliang, (d) Luquan, and (e) Anning.

(a)

(b)
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(c)

(d)

(e)

Fig. 6.	  (continued).
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Fig. 7.	 (Color online) Color charts of different color gamuts in various regions: (a) Xundian, (b) Shilin, (c) Yiliang, (d) 
Luquan, and (e) Anning.

(a)

(b)

(c)

(d)
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and the gradient between adjacent blocks can be clearly perceived.  On the one hand, the color 
of tobacco is faithfully expressed.  On the other hand, the color chart developed had the color 
and shape information so that real tobacco can be easily imagined from it, which was good for 
tobacco color evaluation.  The color charts produced by applying HSV color space in this paper 
not only had a high ability of color representation, but also each color block was marked with 
corresponding color information that allowed the color charts to be reproduced.

3.4	 Evaluation of the developed tobacco digital color chart

	 In this section, we are trying to verify the reasonableness and naturalness of color 
representation of our developed color chart.  The color chart of Xundian region [Fig. 7(a)] for 
leaf (B1), cutters (C), and lugs (X) position of the tobacco leaf was chosen in the experiment.  
A panel of 12 assessors with normal vision were organized to conduct ranking experiment for 
color blocks for two rounds.  The experimental data were analyzed by Spearman correlation 
coefficient (SCC),(30) which could evaluate the individual performance of ranking.  The SCC is 
calculated by

	
( )

2

2

6
1

1

i
i

s

d

p p
γ = −

−

∑
,	 (10)

where p is the number of color blocks in ranking, di is the difference between the two rankings 
for block i, i.e., theoretical rank and rank order provided by an assessor.  The value of SCC is 
within 0 to 1.  The larger the SCC is, the higher agreement between the two rank orders.  The 
smallest coefficient of all the assessors is illustrated in Table 5.  The SCCs of the leaf (B1), 
cutters (C), and lugs (X) position were 0.93, 0.95, and 0.95, respectively, which is highly beyond 
the corresponding threshold of 0.881 (when α = 0.01).  It could be inferred that high agreement 
was made between the color chart and the color blocks ranked by assessors, hence the color 
chart satisfied the human’s visual perception effectively.

(e)

Fig. 7.	 (continued).
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	 More experiments were designed to evaluate the effectiveness of color chart to enhance the 
assessors’ ability of color discrimination.  We selected 15 tobacco leaf samples from five diverse 
regions, namely, Xundian, Shilin, Yiliang, Luquan, and Anning.  A panel of 12 accessors with 
normal vision was organized to distinguish color range from lemon to orange.  The experiments 
contained three steps.  First, the panel judged all the tobacco leaf samples by color range, 
and the correct discriminated samples were summarized.  Second, all the accessors were 
trained to use the developed color chart, so that they learned the different color representation 
characteristics between color ranges and regions.  Third, the assessors distinguished the same 
tobacco leaf samples as step one.  The summary of the experimental results is shown in Fig. 
8, which lists the average correct discrimination rates for samples of the panel before and after 
color chart training.
	 It could be seen that the correct discriminative rate increased by more than 30%, i.e., 33.9% 
(Xundian), 33.3% (Shilin), 31.0% (Yiliang), 32.7% (Luquan), and 28.8% (Anning).  It strongly 
demonstrated that the color chart could enhance the assessors’ color discriminative ability 
for tobacco leaves from different regions.  Therefore, the developed color chart has practical 
significance to improve the color perception ability and provide color-based standards for 
tobacco leaves.  

4.	 Conclusions

	 On the basis of the CCS developed in this work and the foregoing results and discussion, the 
following conclusions can be drawn:
(1)	Given the development of computer vision technology, an acquisition device based on 

Table 5
Ranking results for color blocks from Xundian.
SCC Leaf (B1) Cutters (C) Lugs (X)
γS 0.93 0.95 0.95

Fig. 8.	 (Color online) Average correct discrimination rates before and after color chart training.
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electronic sensors has been developed, which can improve not only the illumination 
robustness and leaf stretch acquisition, but also the image quality.

(2)	The traditional method of feature color extraction is hard to fully represent the color 
information of tobacco leaves.  We proposed a proportional threshold method, and then three 
monochromatic channel values of HSV color space were selected to represent the color of 
flue-cured tobacco leaves.  The results demonstrated that the HSV color space was suitable 
for expressing the color of flue-cured tobacco leaves.  At the same time, the proportional 
threshold method showed its superiority and reliability.

(3)	The color charts in this paper can highly represent colors; thus, they can provide color-based 
standards.  The color chart of flue-cured tobacco is beneficial for improving the perception 
of different grades of color and reduce the grading training of a professional panel, which 
has certain economic significance and practical value for the development of the tobacco 
industry.  In addition, the color chart of flue-cured tobacco is a novel tool in the field of 
agriculture for the tobacco industry.
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