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	 A hybrid numerical scheme comprising the differential transformation method (DTM) and 
the finite difference (FD) approximation approach is used to analyze the complex nonlinear 
pull-in behavior of an electrostatically actuated double-clamped nanobeam subject to Casimir 
and van der Waals force effects and an axial residual stress.  It is shown that, for an initial gap 
size of 50 nm, the pull-in voltage predicted by the hybrid numerical scheme deviates from that 
predicted by the universal pull-in formula by just 0.2%.  In addition, the results show that the 
Casimir and van der Waals forces both have a significant effect on the steady and dynamic 
deflection behaviors of the beam as a function of applied voltage.  Finally, the minimum 
allowable gap without the applied voltage of double-clamped nanobeams can be determined.

1.	 Introduction

	 Nano-electromechanical system (NEMS) devices have found widespread use throughout the 
industry for such applications as nanoswitches,(1) nanotweezers,(2) and ultrasensitive sensors.(3)  
NEMS devices commonly incorporate beam-type electrostatic actuators consisting of two 
conductive electrodes (one fixed and the other movable) separated by a dielectric spacer.  When 
a voltage difference is applied across the two electrodes, the upper electrode deflects in the 
downward direction as a result of electrostatic forces.  At a certain critical voltage, defined as 
the pull-in voltage, the electrostatic force exceeds the elastic restoring force, and the electrode 
collapses onto the lower fixed electrode.  The pull-in behavior of MEMS actuators has attracted 
significant interest in recent decades.  Hung and Senturia(4) utilized the leveraged bending 
and strain stiffening methods to extend the travel range of analog-tuned electrostatic actuators 
prior to pull-in.  Liu and Wang(5) evaluated the effects of squeeze-film damping on the pull-
in voltage of clamped–clamped microbeams.  Sadeghian et al.(6) applied the generalized 
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differential quadrature method (DQM) to the investigation of the pull-in phenomena of MEMS-
based microswitches.  Kuang and Chen(7) used the Adomian decomposition method (ADM) to 
examine the nonlinear pull-in behavior of microactuators.
	 At the nanoscale, defined as characteristic dimensions of 100 nm or less, various new and 
exciting physical phenomena occur, causing many properties to vary significantly from those 
observed at a larger scale.  Thus, in analyzing and designing NEMS devices, the effects of 
intermolecular forces such as the van der Waals force(8) and Casimir force(9) must be taken into 
account.  Both forces vary inversely with the separation distance between the two electrodes, 
and hence NEMS devices exhibit an inherently nonlinear behavior.  For separation distances 
less than 20 nm, the attraction force is dominated by the van der Waals force.  However, for 
separation distances greater than 20 nm, the force between the two surfaces is governed by 
the Casimir effect.(10)  Ramezani et al.(11) presented a distributed parameter model for the pull-
in instability analysis of electrically actuated nanocantilevers subject to van der Waals and 
Casimir force effects.  Rotkin(12) presented a general analytical model for describing the effect 
of the van der Waals force on the pull-in voltage and pull-in gap of NEMS systems.  Jia et al.(13) 
used the DQM method to study the free vibration behavior of nano-/microbeams under different 
boundary conditions with the combined effects of electrostatic force, axial residual stress, 
nonlinear midplane stretching, and Casimir force.
	 The differential transformation method (DTM) is a numerical technique based on Taylor 
series expansion for the solution of differential equations in the form of polynomials.(14)  DTM 
requires neither linearization nor perturbation and provides an effective, straightforward, 
and accurate means of solving a wide range of linear and nonlinear problems.(15)  Although 
originally proposed for the solution of problems in the electrical circuit domain, DTM has been 
extended to a wide variety of problems in the engineering field in recent years.  For example, 
Liu and coworkers(16,17) used DTM to investigate the problem of entropy generation within a 
mixed convection flow with viscous dissipation effects.  The same group(18–20) used a hybrid 
method combining the DTM approach and the finite difference (FD) approximation method to 
analyze the nonlinear dynamic behavior of micro-electromechanical circular plates subject to 
squeeze-film damping effects.
	 In this study, the hybrid numerical scheme is used to examine the nonlinear deflection 
behavior of a double-clamped nanobeam.  The validity of the proposed method is demonstrated 
by comparing the predicted pull-in voltages for various initial gap sizes with the results 
obtained using the universal pull-in formula presented in Ref. 8.  The validated method is then 
used to explore the effects of the van der Waals and Casimir forces on the pull-in behavior of 
the clamped nanobeam given various values of the axial residual stress.  In general, the results 
show that the hybrid numerical scheme provides an accurate method of analyzing the nonlinear 
pull-in behavior of double-clamped nanobeams and similar NEMS-based structures.

2.	 Double-clamped Nanoactuator Model

	 The analysis performed in this study considers the double-clamped nanobeam actuator 
shown in Fig. 1.  As shown, the upper beam is actuated by a driving voltage V.  At a certain 
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critical voltage, the magnitude of the electrostatic force between the upper and lower beams 
exceeds the restoring force within the upper beam, and thus pull-in occurs.  The double-
clamped nanobeam actuator is composed of length L with a cross section of thickness b and 
width w.  The initial gap between the movable beam and the fixed electrodes is denoted by G.  
	 The governing equation for a double-clamped nanobeam subject to electrostatic actuation, 
intermolecular forces, and von Kármán nonlinear midplane stretching has the form(21)
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where h is the transverse (i.e., vertical) displacement of the beam at position x and time t [i.e., 
h = h(x,t)], and Ẽ is the effective modulus of the nanobeam material.  For a wide nanobeam 
(i.e., w ≥ 5b), Ẽ is equivalent to the plate modulus E/(1 − v2), where i is the Poisson ratio.  By 
contrast, for a narrow beam, the effective modulus Ẽ is simply equal to the Young’s modulus 
E.  In addition, I in Eq. (1) is the moment of inertia of the nanobeam and is given by I = wb3/12, 
ρ is the material density, and A = w × b is the cross-sectional area.  Tr is the axial load acting on 
the beam and is given by Tr = �σwb, where �σ  is the residual stress and has the form � (1 )vσ σ= − , 
in which σ is the biaxial residual stress.  Finally, Felec is the electrostatic force, and the index 
n has values of 3 (F3) for the van der Waals force interaction and 4 (F4) for the Casimir force 
interaction.
	 The first-order fringing field correction of the electrostatic force per unit length of the beam 
is given by(20)
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where ε0 is the the permittivity of free space.  In addition, the Casimir force per unit length of 
the beam is expressed as(21)

Fig. 1.	 Schematic illustration of double-clamped nanobeam.
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where ħ is Planck’s constant (1.055 × 10−34 J∙s) divided by 2π and c is the speed of light 
(2.998 × 108 m/s).  The van der Waals force per unit length of the beam is derived as(21)
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,	 (4)

where AH is the Hamaker constant.
	 In analyzing the nonlinear deflection behavior of the double-clamped nanobeam, the 
boundary conditions are set as

	 ( , )( , ) 0 at    0h x th x t xx
∂= = =∂
( , )( , ) 0 at    0h x th x t xx

∂= = =∂ ,	
(5)

	 ( , )( , ) 0 at    h x th x t x Lx
∂= = =∂
( , )( , ) 0 at    h x th x t x Lx

∂= = =∂ .	

	 Finally, the initial condition of the double-clamped nanobeam is given as 

	 ( ,0)( ,0) 0h xh x t
∂= =∂ .	 (6)

	 For analytical convenience, let the transverse displacement of the nanobeam, h, be 
normalized with respect to the initial gap between the electrodes, the axial length position x be 
normalized with respect to the nanobeam length, and the time t be normalized with respect to a 
time constant T , where T  is defined as 4T AL EIρ= � .  That is,

	
hh G= , 

xx L= , 
tt T= , 

ww G= .	 (7)

In addition, let the following parameters also be defined as
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where 1 3 4, , ,rT A F F  and α are the dimensionless parameters of axial force, electrostatic force, 
van der Waals force, Casimir force, and gap size, respectively.  By substituting Eq. (7) into Eqs. (1), 
(5), and (6), the dimensionless nonlinear governing equation of the double-clamped nanobeam 
is obtained as
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	 The corresponding boundary conditions are given by

	 ( , )( , ) 0      at    0h x th x t xx
∂= = =∂
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(10)

	 ( , )( , ) 0       at    1h x th x t xx
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	 Finally, the initial condition is defined as

	 ( ,0)( ,0) 0h xh x t
∂= =∂ .	 (11)

3.	 Solution of Dimensionless Nonlinear Governing Equation

	 In this study, the dimensionless nonlinear governing equation of the double-clamped 
nanobeam given in Eq. (9) was solved using the hybrid DTM/FD numerical scheme.  The 
solution procedure commenced by discretizing the equation of motion with respect to the time 
domain t using the DTM method,(17,19) i.e.,
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 ), k and l are transformation parameters, and Ht is the 
time interval.  Having discretized the governing equation, the associated boundary conditions, 
and the initial condition, the transverse displacement of the beam was discretized spatially in 
the length direction using the FD approximation method based on fourth- and second-order 
accurate central difference formulae.(17,19,20)
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4.	 Results and Discussion

4.1	 Comparison and validation

	 The validity of the proposed hybrid numerical scheme was demonstrated by comparing the 
results obtained for the pull-in voltage of the double-clamped nanobeam with those presented 
in Ref. 8 based on the universal pull-in formula.  In performing the analysis, the material and 
geometry properties of the nanobeam were assigned the values given in Table 1.  Furthermore, 
an assumption was made that the nanobeam was actuated by a DC voltage.  As shown in Table 2, 
for an initial gap size of 15 nm, the pull-in voltage predicted by the hybrid numerical scheme (0.44 V) 
was identical to that predicted by the universal pull-in formula (0.44 V).  Furthermore, for a gap 
size of 50 nm, the pull-in voltage predicted by the hybrid numerical scheme (5.1 V) deviated 
from that predicted by the universal pull-in formula (5.11 V) by just 0.2%.  Thus, the validity of 
the proposed hybrid numerical scheme is confirmed.

4.2	 Effects of Casimir and van der Waals forces on nanobeam dynamic behavior

	 Figure 2 shows the effect of the Casimir force on the variation of the nanobeam center-point 
displacement over time for various actuating voltages. The material and geometry parameters 
considered in the present analyses are summarized in Table 1.  Note that the initial gap size is 
set as 50 nm and the beam is assumed to have no residual stress.  In the absence of a Casimir 
force effect, the pull-in voltage is 5.14 V.  However, the pull-in voltage decreases to 5.12 V when 
the Casimir force is taken into account.

Table 1
Assumed parameter values of double-clamped nanobeam.
Symbol Parameters Value/unit
E Young’s modulus 80 (GPa)
ν Poisson’s ratio 0.42
ρ Density  19300 (kg/m3)
ε0 Permittivity of free space 8.85 × 10−12 (F/m)
w Width of beam 1 (μm)
b Thickness of beam  100 (nm)
L Length of beam 5 (μm)
AH Hamaker constant 44 × 10−20 (J)

Table 2
Comparison of results obtained for pull-in voltage for different initial gap sizes.

Initial gap (nm)
Pull-in voltage (V) Error

(1)Hybrid numerical 
scheme

(2)Universal pull-in 
formula(8) Δe (%)

15 0.44 0.44 0.00
50 5.10 5.11 0.20
Δe (%) = |(2) − (1)| ⁄(2)
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	 Figure 3 shows the variation of the nanobeam center-point deflection over time with and 
without the van der Waals force effect for actuating voltages in the range of 0.4–0.85 V.  Note 
that the effects of residual stress are once again ignored.  As for the Casimir force, the pull-in 
voltage decreases when the van der Waals force is taken into account [i.e., from 0.85 (without 
van der Waals force) to 0.48 V (with van der Waals force)].  Overall, the results presented in 
Figs. 2 and 3 show that the Casimir and van der Waals forces both play a key role in determining 
the deflection behavior of the double-clamped nanobeam.
	 Figure 4 shows the variation of the nanobeam center-point deflection with the actuating 
voltage as a function of the residual stress and initial gap size.  Note that h ≥ 1 is used for the 
pull-in condition in this study.  The pull-in instability can be observed when the slope of the 
deflection-voltage graph reaches infinity.  Note that the effects of Casimir and van der Waals 
forces are both taken into account.  It is seen that, for a constant residual stress, the pull-
in voltage increases as the initial gap size increases owing to the corresponding reduction in 
attractive electrostatic force.  Furthermore, for a constant initial gap size, the pull-in voltage 
increases as the residual stress changes from a negative (i.e., compressive) value to a positive (i.e., 
tensile) value.  For example, given an initial gap size of 50 nm, the pull-in voltage increases from 5.0 
to 5.23 V as the residual stress changes from −10 to 10 MPa.
	 Owing to the complexity of the interactions between the electrostatic coupling effect and 
the nonlinear electrostatic force, the size effect on the nanostructures of dynamic behavior is 
investigated.  Figure 5 shows the variation of the dimensionless center-point deflection with the 
gap size parameter as a function of applied voltage.  Note that the beam is assumed to have no 
residual stress, and the other properties are presented in Table 1.  As expected, the amplitude of 
the nanobeam deflection decreases with increasing gap size owing to a corresponding increase 
in initial gap size.  Moreover, for a constant gap size parameter, the dimensionless center-point 
deflection increases with increasing voltage.

Fig. 2.	 Variation of dimensionless center-point 
deflection over time with and without Casimir force 
effect.

Fig. 3.	 Variation of dimensionless center-point 
deflection over time with and without van der Waals 
force effect.
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	 Figure 6 shows the variation of the nanobeam center-point deflection with the van der Waals 
parameter as a function of residual stress.  Note that the actuating voltage is set to zero such 
that beam deflection is a result of van der Waals forces alone.  It is seen that for each value of 
the residual stress, the nanobeam deflection increases with increasing van der Waals parameter.  
Moreover, the pull-in phenomenon occurs when the van der Waals parameter reaches a certain 
critical value.
	 Figure 7 shows the variation of the nanobeam center-point deflection with the initial 

Fig. 4.	 Variation of dimensionless center-point 
def lection with applied voltage as a function of 
residual stress and initial gap size.

Fig. 5.	 Variation of dimensionless center-point 
deflection with gap size parameter as a function of 
applied voltage.

Fig. 6.	 Variation of dimensionless center-point 
deflection with van der Waals force parameter as a 
function of residual stress.  (Note that no driving 
voltage is applied.)

Fig. 7.	 Variation of dimensionless center-point 
displacement with initial gap size.  (Note that no 
driving voltage is applied.)
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minimum gap size in the absence of an actuating force.  Under this condition, the electrostatic 
force is set to zero and the variation of the dimensionless center-point displacement with the 
initial minimum gap is investigated.  In this figure, with decreasing initial gap size between the 
two electrodes, surface traction is made through molecular interaction.  The deflection of the 
nanobeam may be increased by the van der Waals force, and when the initial gap reaches its 
critical size (black point), the nanobeam suddenly collapses toward its substrate.  Note that the 
infinity slope can also be observed in this figure.  Therefore, the minimum allowable gap for an 
electrically actuated nanobeam can be determined using a hybrid numerical scheme.

5.	 Conclusions

	 In this study, we applied a hybrid numerical scheme comprising the differential 
transformation and FD approximation methods to analyze the nonlinear pull-in behavior and 
examine the minimum allowable gap of an electrically actuated double-clamped nanobeam.  In 
contrast to previous studies, the governing equation developed in this study takes into account 
the fringing field effect, the axial residual stress effect, the geometric nonlinearity of midplane 
stretching, the Casimir force effect, the van der Waals force effect, and the residual stress effect.  
In general, the results have shown that the nanobeam becomes structurally unstable at driving 
voltages equal to or greater than the pull-in voltage and collapses and makes transient contact 
with the lower electrode as a result.  In particular, the results have shown that the pull-in voltage 
decreases when the Casimir and van der Waals force effects are taken into account and when 
the stress state within the nanobeam changes from compressive to tensile.  In a future study, the 
hybrid numerical scheme will be applied to investigate the dynamic response of more complex 
2D NEMS-based nanostructures subject to combined DC/AC loading effects.  
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