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	 There are few reports on the pretreatment method based on a fractional differential algorithm 
for the total phosphorus content in saline soil.  Therefore, the desert soil in Fukang City of 
XingJiang, China, was chosen as the research focus.  Field hyperspectral data and surface 
soil down to 20 cm depth were collected between May 9–23, 2017.  The Grünwald–Letnikov 
fractional differential algorithm was introduced to explore the pretreatment effect of the 
correlation between total phosphorus content and five spectral transformations.  Simulation 
results showed that this fractional differential algorithm could elaborately describe the slight 
differences in spectral reflectance, and the fractional differential was close to zero on the 
whole.  Because the sensitivity of the spectrum is controlled by the weighted order, when the 
order gradually increased from zero order to first order, the curve of the fractional differential 
slowly approached the first-order differential curve, and it slowly approximated the second-
order differential curve while increasing from first order to second order.  The overall trend in 
band number that satisfied the 0.05 significance test under five spectral transformations was 
an initial increase followed by decrease as the order increased.  The maximum absolute values 
of correlation coefficients appeared at 1.2 and 1.4 order; the corresponding band was 2067 nm.  
This study made up for the research gap in field measurement spectra based on the fractional 
differential algorithm, and revealed a novel preprocessing method for field hyperspectral data.

1.	 Introduction

	 Because the spectral reflectance curve differs from the traditional first order and second 
order curves after integer-order differential processing, there are obvious shortcomings of 
the pretreatment method based on the traditional integer-order differential algorithm, which 
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disregards the gradual fractional differential information between the 0th-order curve and 
the first- or second-order curve by considering only the preprocessing method of integer-
order differentials.(1) Consequently, it may result in the loss of important information and the 
degradation of modeling accuracy.
	 In the past few years, the fractional derivative has been introduced into the field of spectral 
analysis by domestic and foreign scholars.  Kharintsev and Salakhov used the fractional 
differential algorithm to separate overlapping spectral features,(2) as it has some effectiveness in 
spectral analysis applications.  Tong et al. improved the algorithm of the integer Savizzy–Golay 
differential by using the fractional derivative formula.  The Savitzky–Golay differential was 
found to be better than integer order.(3)  Zhang et al. utilized the Grünwald–Letnikov fractional 
differential to preprocess spectral reflectance data of saline soil in the two regions: Yutian 
and Ebinur Lake in the Xinjiang Uygur Autonomous Region.  Their results showed that the 
fractional differential could refine the changing trend of the correlation coefficient, standard 
deviation, and information entropy, and provided a reference for feature band selection and 
other applications.(1)  Wang et al. took Ebinur Lake as the research target, differentiated the 
spectral reflectance data of soil in steps of 0.2 intervals using the Grünwald–Letnikov fractional 
differential formula.  Partial least squares regression (PLSR) was adopted to estimate the soil 
organic matter content.  The 1.8-order differential model of the original spectrum was optimal, 
the coefficient of determination of validation reached 0.91, the root mean square error was 2.70, 
and the ratio of performance to deviation (RPD) achieved 3.42, which indicated that the 1.8-order 
differential model has a better prediction capability.(4)

	 However, the fractional differential algorithm described above has mainly been used 
to preprocess diesel fuel, soil salt content, and soil organic carbon content.  At present, the 
application of the fractional differential algorithm to estimate total phosphorus content has 
not been reported.  Phosphorus in soil is a limiting and common nutrient element required for 
plant growth.(5,6)  Traditional laboratory chemical analysis methods have the disadvantages 
of destroying collected samples, and of being time-consuming, labor intensive, and high in 
cost.(7,8)  Visible/near-infrared reflectance spectroscopy can be applied to estimate soil total 
phosphorus content because it is fast, efficient, and economically advantageous.(9,10)  In this 
study, we attempt to use the Grünwald–Letnikov fractional differential algorithm to preprocess 
the desert soil total phosphorus content without human interference in the field, to investigate 
the preprocessing effect on hyperspectral data using the fractional differential algorithm, and 
to determine the best fractional differential order.  Results provide a reference for the rapid 
acquisition of soil nutrient parameters in precision agriculture using hyperspectral remote-
sensing methods, and indicate that the requirements of modern precision agriculture regarding 
soil nutrient real-time detection have been met.  This method makes up for the deficiency 
of visible-light and near-infrared spectroscopy in soil total phosphorus analysis, improves 
the estimation accuracy of soil total phosphorus content, and provides effective support for 
quantitative estimation of the total phosphorus content in desert soils.  
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2.	 Materials and Methods

2.1	 Soil spectrum acquisition and total phosphorus content test

	 The study area was located at the northern edge of the eastern Tianshan Mountains in 
Xinjiang and the southern edge of Junggar Basin, at east longitude 87°44’–88°46’ and north 
latitude 43°29’–45°45’.  Field investigations confirmed that the research area was far from 
any human settlements and had not been affected by human activities.  The surface soils 
basically retained the original ecological features.  In the study area, five sampling lines 
(between 600–800 m) were arranged from south to north, and five sampling points (between 
300–500 m) were distributed on each sampling line, so there was a total of 25 sampling points 
in all.  Field spectra of soil samples was conducted from 9 to 23 May 2017 using the Field spec® 
3Hi-Res spectrometer, which had a wavelength range of 350–2500 nm.  0–20 cm soil layers 
were acquired on the surface.  Soil samples were placed in a sealed bag, brought back to the 
laboratory for natural air drying, impurity removal, grinding, sieving, and other pretreatments, 
and then sent to the Xinjiang Institute of Ecology and Geography, Chinese Academy of 
Sciences, for the determination of soil total phosphorus content by professionals.

2.2	 Grünwald–Letnikov fractional differential algorithm

	 There are many fields involving fractional calculus theory and applications, mainly 
including control systems, nonlinear dynamics, biomedicine, and digital signal processing.(11) 
The commonly used Grünwald–Letnikov fractional differential is defined as
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	 The difference expression of the fractional differential of function f(x) can be shown as
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2.3	 Spectral data processing

	 Firstly, the spectrum was smoothed by the Savitzky–Golay method.  Secondly, spectral 
reflectances in the range of 350–399 and 2401–2500 nm were eliminated because the signal-
to-noise ratio was very low, and are shown in Fig. 1.  Then, the bands located in the moisture 
absorption bands (1355–1410 and 1820–1942 nm) were also excluded.  These are shown in 
Fig. 2(a).  The reflectance spectroscopy data of the 400–1354, 1411–1819, and 1943–2400 nm 
bands, shown in Fig. 2(b), were used in the study.  Finally, in order to eliminate the influence 
of background and atmospheric scattering and to improve the contrast among different 
absorption characteristics, it was often necessary to perform various transformations on original 
hyperspectral data.  The original spectral reflectance R was transformed into four different 
forms: reciprocal (1/R), logarithmic (lgR), logarithmic reciprocal (1/lgR), and root mean square 
( R ).

3.	 Experimental Results and Discussion

3.1	 Computational characteristics of fractional differential in R

	 Taking the average of the original spectrum (R) as an example, a total of 11 order 
differentials were obtained at intervals of 0.2 order.  The range of the 1140–1340 nm band was 

Fig. 1.	 Edge band spectral curve: (a) 350–399 and (b) 2401–2500 nm.

(a) (b)
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selected to show the results of the fractional differential calculation in Fig. 3.  The variation 
tendency of R gradually approached the first-order differential curve while increasing from zero 
order to first order.  When the order was increased from first order to second order, the variation 
tendency of R slowly approximated the second-order differential curve.  It was reported that the 
fractional differential is close to the zero value after processing by the second-order differential 
in Fig. 3.

3.2	 Correlation coefficient change

	 In the process of total phosphorus content model building, the correlation between total 
phosphorus content and spectral reflectance was chosen to determine the sensitive band.  The 
stronger the correlation is, the more likely this band is to be selected as the sensitive band.  A 
correlation coefficient greater than 0.5 could be viewed as moderate correlation.  Therefore, 
taking R as an example, the 11th-order differential of the correlation coefficient between total 
phosphorus content and spectral reflectance was analyzed and checked at the 0.05 significance 
level (threshold was equal to plus or minus 0.396).  Simulation results are shown in Fig. 4.  
There is no band passing the 0.05 significance level in the range of 0 order to 0.4  order, and the 
band satisfied the 0.05 significance level from the 0.6  order as order increased.

3.3	 Bands satisfying 0.05 significance test under five spectral transformations

	 The bands that satisfied the 0.05 significance test under five spectral transformations was 
calculated and are listed in Table 1.  It could be clearly observed that the spectral reflectance 
of various mathematical transformations satisfied the 0.05 significance test from the 0.6 order.  
In addition, the overall trend of band number was an initial increase and a later decrease as the 
order increased, but the corresponding order with the largest band number was not uniform; 
there were certain differences, such as R and 1/lgR being of 1.4 order, R  and lgR being of 1.2 
order, and 1/R being of 0.8 order.  

Fig. 2.	 Spectral reflectance curves: (a) full band and (b) moisture-deleted absorption bands.

(a) (b)
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Fig. 4.	 (Color online) Change in correlation coefficient: (a) 0–0.4, (b) 0.6–1, (c) 1.2–1.4, and (d) 1.6–2 order.

(a) (b)

Fig. 3.	 (Color online) Fractional differential calculation result of R: (a) 0–1 and (b) 1–2 order.

(a) (b)

(c) (d)
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3.4	 Maximum absolute value of correlation coefficient

	 The maximum absolute values of the correlation coefficient under f ive spectral 
transformations after 11th-order differential processing are shown in Table 2.  R, R , 1/R, 
and lgR were of 1.2 order, corresponding to the 2067 nm band, and 1/lgR was of 1.4 order, 
corresponding to the 2067 nm band.  At the same time, at the 1.2 order, maximum absolute 
values of correlation coefficients under five spectral transformations were greater than 0.7.

4.	 Conclusions

	 The Grünwald–Letnikov fractional differential algorithm was applied to explore the 
pretreatment effect of field spectroscopy of saline soil that reflects the original ecological 
environment through four aspects.  Simulations showed that pretreatment of fractional 
differentials could refine the subtle changes in the correlation between total phosphorus 
content and soil spectral reflectance.  The correlation coefficient satisfied the 0.05 significance 
test and showed a trend of first increasing and then decreasing after fractional differential 

Table 1
Bands that satisfied the 0.05 significance test.
Order R R 1/R lgR 1/lgR
0 0 0 0 0 0
0.2 0 0 0 0 0
0.4 0 0 0 0 0
0.6 11 10 26 10 12
0.8 46 50 193 55 44
1 72 74 190 89 79
1.2 92 107 147 119 74
1.4 100 102 132 107 96
1.6 95 97 109 101 87
1.8 96 98 103 99 88
2 97 93 100 98 89

Table 2
Bands with the max absolute value of correlation coefficients under five transformations.

Order R R 1/R lgR 1/lgR
Max Band Max Band Max Max Band Max Band Max 

0 	0.310499 	 451 	0.318157 	 451 	0.338822 	 450 	0.32543 	 451 	0.308743 	 451
0.2 	0.312689 	 451 	0.320503 	 451 	0.342793 	 442 	0.328006 	 442 	0.310513 	 451
0.4 	0.373807 	 1002 	0.373598 	 1002 	0.373649 	 1002 	0.373479 	 1002 	0.376202 	 1002
0.6 	0.445148 	 1002 	0.447989 	 1002 	0.4565 	 1002 	0.45086 	 1002 	0.44373 	 1002
0.8 	0.590023 	 2252 	0.587964 	 2067 	0.585587 	 2067 	0.591116 	 2067 	0.584035 	 2252
1 	0.695528 	 2067 	0.69587 	 2067 	0.672586 	 2067 	0.692454 	 2067 	0.676921 	 2067
1.2 	0.737302 	 2067 	0.733033 	 2067 	0.700229 	 2067 	0.725459 	 2067 	0.731621 	 2067
1.4 	0.718571 	 2067 	0.705614 	 2067 	0.653319 	 1508 	0.689809 	 2067 	0.735853 	 2067
1.6 	0.631626 	 1995 	0.631207 	 1995 	0.6181 	 1995 	0.62871 	 1995 	0.64429 	 2067
1.8 	0.6489 	 1995 	0.645911 	 1995 	0.62003 	 1995 	0.639893 	 1995 	0.642674 	 1995
2 	0.610027 	 2309 	0.60736 	 2309 	0.628818 	 425 	0.614293 	 425 	0.602613 	 2309
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preprocessing.  The maximum correlation coefficient under five spectral transformations all 
appeared in fractional orders.  In this study, we explored the possibility of using the fractional 
differential algorithm to monitor soil total phosphorus content using the field hyperspectral data 
and provided a new perspective to predict total phosphorus content in arid areas.  
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