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	 In this paper, we derived a new piezoresistance tensor equation for a cubic single crystal.  
This equation can be expressed in terms of the three independent principal components 
of piezoresistance tensors, the isotropic and deviatoric stress tensors, and the fourth-rank 
coordinate transformation tensor.  The piezoresistance tensor equation can be decomposed into 
a relation between only the hydrostatic part of the stress tensor and the trace of the resistivity 
change tensor and into a relation between only the deviatoric parts.  The hydrostatic part of the 
piezoresistance tensor equation is invariant with respect to a coordinate transformation.  On the 
other hand, the deviatoric part of the tensor equation is traceless.  The proposed piezoresistance 
tensor decomposition gives a new physical insight into the classical theory of Pfann and Thurston [J. 
Appl. Phys. 32 (2008) 1961].  It was shown that Pfann and Thurston’s theory can be rewritten 
as a special case of our tensor decomposition.  Furthermore, to demonstrate the consistency 
between the proposed tensor equation and the experimental evidence, some basic experiments 
on a single-crystal silicon piezoresistive rosette stress gauge subjected to multiaxial stress were 
carried out.

1.	 Introduction

	 The piezoresistance in various types of cubic single crystals is widely used as a force-
sensing element in micro-electromechanical systems (MEMS).(1–5)  The large piezoresistance 
in single-crystal silicon was discovered by Smith in 1954,(6) who described some of the basic 
properties of the piezoresistance from the viewpoint of the fourth-rank tensor field.(7)  In 
the same era, Pfann and Thurston proposed a theory of single-crystal silicon piezoresistive 
stress transducers considering the anisotropy of cubic crystals.(8)  Tufte and Stelzer performed 
important experiments on a heavily doped single-crystal silicon piezoresistive stress gauge 
produced with an integrated circuit (IC)-compatible fabrication process.(9,10)  Their results have 
been widely used as a design standard for single-crystal silicon piezoresistive stress transducers 
on IC chips.  Since then, the number of published papers concerning cubic-single-crystal 
piezoresistive stress transducers has increased yearly.(1–5)  The successful launch of cubic-



2102	 Sensors and Materials, Vol. 30, No. 9 (2018)

single-crystal piezoresistive stress transducers into the MEMS market is due to the huge amount 
of accumulated data and the IC-compatible microfabrication process.  An excellent review 
by Barlian et al. described the research trend of applying cubic-single-crystal semiconductor 
piezoresistance to microsystem technology over half a century.(3)  
	 The classical theory of Pfann and Thurston has been widely supported by practical engineers 
designing cubic-single-crystal piezoresistive stress transducers.(3)  Pfann and Thurston adopted 
the Voigt notation to describe the components of the cubic piezoresistance tensor.  They derived 
21 components of the piezoresistance tensor in terms of three independent principal components 
and the direction cosine between the principal crystallographic orientation and an arbitrary 
crystallographic orientation.  The combination of the 21 components of the piezoresistance 
tensor and the six components of the stress tensor leads to six piezoresistance equations 
containing the state of multiaxial stress and an arbitrary crystallographic orientation.  However, 
the obtained mathematical structure of the piezoresistance is very complex and it is difficult 
to find the general physical role of the state of multiaxial stress in the cubic crystal anisotropy 
of the piezoresistance.  A plausible reason for the lack of physical significance of Pfann and 
Thurston’s theory is the adoption of components in the analysis of piezoresistance.  It is well 
recognized that the analysis of piezoresistance based on its components and coefficients is 
very useful for specific engineering designs and applications, such as specific stress states, 
crystallographic planes, and orientations in advance.  However, the analysis of piezoresistance 
in terms of its components gives an unclear physical relationship between the state of 
multiaxial stress and the crystal anisotropy of the piezoresistance with respect to a coordinate 
transformation.  
	 Therefore, in this paper, we derive a single piezoresistance tensor equation that clearly 
indicates the physical role of the state of multiaxial stress in the cubic crystal anisotropy of the 
piezoresistance.  Both the fourth-rank piezoresistance tensor and the second-rank stress tensor 
are decomposed into isotropic (hydrostatic) and deviatoric parts.  Then, the piezoresistance 
tensor equation is decomposed into isotropic and deviatoric parts.  The piezoresistance tensor 
equation can also be decomposed into a relation between only the hydrostatic part of the 
stress tensor and the trace of the resistivity change tensor and another relation between only 
the deviatoric parts.  The hydrostatic part of the piezoresistance tensor equation is invariant 
with respect to a coordinate transformation.  On the other hand, the deviatoric part of the 
tensor equation is traceless.  These are new findings in the theory of piezoresistance.  The 
piezoresistance tensor equation gives a new physical insight into the typical single-crystal 
silicon piezoresistive stress transducers derived by Pfann and Thurston.(8)  It was shown that 
Pfann and Thurston’s theory can be rewritten as a special case of our tensor decomposition.  
The cubic-single-crystal piezoresistance may be regarded as a revisited problem,(7–10) 
but our sophisticated method gives a new physical insight into the theory of cubic crystal 
piezoresistance and into practical design applications, as briefly demonstrated in the appropriate 
sections in this paper.  Furthermore, to demonstrate the consistency between the tensor equation 
and the experimental evidence, some basic experiments on a single-crystal silicon piezoresistive 
stress gauge subjected to multiaxial stress were carried out.  
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	 The organization of our paper is as follows.  In the first part of this paper, we derive a 
single piezoresistance tensor equation.  It is shown that this equation can be expressed in 
terms of the three independent principal components of piezoresistance tensors, the isotropic 
(hydrostatic) and deviatoric stress tensors, and the fourth-rank coordinate transformation tensor.  
In addition, the physical structure of the cubic piezoresistance subjected to an arbitrary plane 
stress is clarified under a coordinate transformation.  The obtained result will be useful for 
MEMS piezoresistive mechanical sensor design because a single-crystal silicon wafer is the 
standard substrate for the fabrication process and the MEMS piezoresistive mechanical sensor is 
subjected to a plane stress condition in most applications.  
	 In the second part of this paper, the piezoresistance measurement of a single-crystal silicon 
microbeam element subjected to multiaxial stress is carried out.  The microfabrication process 
and experimental procedure for the single-crystal silicon piezoresistive multiaxial stress rosette 
gauge on the microbeam element are briefly described.  To demonstrate the mathematical 
and physical validity of the proposed concept, experimental results are compared with a 
theoretical prediction based on the tensor equation.  It is shown that the decomposition of the 
piezoresistance tensor can give new physical insight into the classical theory of Pfann and 
Thurston (hereafter referred to as the PT theory).  The basic concept of the PT theory is to 
form a piezoresistor that responds only to specified stress components.  Regarding this point, 
the PT theory provides no physical basis to find a combination of appropriate crystallographic 
orientations that exhibits sensitivity to the specified stress components.  It is demonstrated that 
making a piezoresistor unresponsive to specified stress components is equivalent to finding an 
appropriate form of the deviatoric part of the piezoresistance tensor equation that can cancel the 
specified stress components appearing in the hydrostatic part of it.

2.	 Description of Piezoresistance Tensor Equation for Cubic-Single-Crystal 
Symmetry

2.1	 Piezoresistance tensor equation for cubic-crystal symmetry

	 We define two Cartesian coordinate systems corresponding to the arbitrary crystallographic 
frame O-x1x2x3 and the principal cubic-single-crystal crystallographic frame O-X1X2X3.  The 
orthogonal orientations of the two Cartesian coordinate systems can be related by three Euler 
angles (ψ, θ, ϕ).  If an index occurs twice in any term of the Cartesian tensor components, 
summation is taken from 1 to 3.  However, the tensor summation convention does not apply to 
the Greek indices.  Furthermore, the capital letters in the summation symbol obey the ordinary 
summation rule and the tensor summation convention does not apply to them.  According to a 
previous work,(11) a piezoresistance tensor having cubic anisotropy with respect to the cubic-
single-crystal crystallographic principal frame O-X1X2X3 can be written as

	 1
ˆ

ijkl ij klΠ =Π δ δ 2
ˆ2 ijklI+ Π

3

3
1

ˆ
iL jL kL lL

L=
+Π ∑δ δ δ δ ,	 (1)
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where δij is the Kronecker delta, ( )1
2ijkl ik jl il jkI δ δ δ δ= + , 

1 1122 2211 2233 3322 3311 1133Π̂ = Π = Π =Π =Π =Π =Π , 

2 2323 3131 1212Π̂ = Π = Π =Π

( 2323 2332 3223 3232Π =Π =Π =Π , and similarly for other components, 3131Π  and 1212Π ),  

1 2 3 1111 2222 3333
ˆ ˆ ˆ2Π + Π +Π =Π =Π =Π .

Note that the anisotropy factors defined as 1Π̂ , 2Π̂ , and 3Π̂  are measures of the anisotropy of 
crystals, and these are standard descriptions for the elastic compliance and stiffness tensors.  
The Voigt notation reduces the fourth-rank tensor components to second-rank components as 

1111 11Π =Π , 1122 12Π =Π , and 44
2323 2

Π
Π = .  The law of the fourth-rank tensor transformation 

leads to the following piezoresistance tensor with respect to the arbitrary crystallographic 
frame:

	
p q sr

ijkl pqrs
i j k l

X X XX
x x x x

π
∂ ∂ ∂∂

= Π
∂ ∂ ∂ ∂

,	 (2)

where 
p

i

X
x

∂

∂
 is the direction cosine between the reference frames O-X1X2X3 and O-x1x2x3, which 

can be expressed by a standard method using the three Euler angles (ψ, θ, ϕ) (Fig. 1) as follows.(12)  

Fig. 1.	 (Color online) Three Euler angles (ψ, θ, ϕ) used to define the direction cosine tensor component p

i

X
x

∂

∂
 

between the piezoresistor reference frame O-X1X2X3 and the crystallographic principal frame O-x1x2x3.
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	 The substitution of Eq. (1) into Eq. (2) leads to the following piezoresistance tensor with 
respect to the arbitrary crystallographic frame O-x1x2x3:

	 1
ˆ

ijkl ij klπ δ δ= Π + 22 ˆ
ijklIΠ + 3

ˆ
ijklLΠ ,	 (4)

where 
3

1
ijkl Li Lj Lk Ll

L
L a a a a

=

≡ ∑  is a fourth-rank tensor that consists of the second-rank tensors 

L
Li

i

Xa
x

∂
≡

∂
 given in Eq. (3).  The fourth-rank tensor Lijkl can be decomposed into isotropic and 

deviatoric parts as (see Appendix A)

	 ( ) ( ) ( ) ( )*ijkl ijkl ijkl ijkl ijklisotropic deviatoric I
L L L L L= + ≡ + ,	 (5)

where 

( ) ( ) ( )1 2
12 2
5ijkl ijkl ij kl ijkl ij kl ijklisotropic I

L L L L I Iδ δ δ δ≡ = + = + ,

( )1
1 12

15 5ppqq pqpqL L L= − = , and 2
1 1 1

10 3 5pqpq ppqqL L L = − = 
 

.  

The piezoresistance tensor πijkl can be decomposed into isotropic and deviatoric parts in a 
similar way to Eq. (5) (see Appendix A): 

	 ( ) ( ) ( ) ( )*ijkl ijkl ijkl ijkl ijklisotropic deviatoric I
π π π π π= + ≡ + ,	 (6)

where

( ) ( ) 1 3
ˆˆ 1

5ijkl ijkl ij klisotropic I
π π δ δ = = Π + Π + 

 
2 3

1 ˆ2 ˆ
5 ijklI Π + Π 

 
, 

( ) ( ) ( )*
3

1 2
5

ˆ
ijkl ijkl ijkl ij kl ijkldeviatoric

L Iπ π δ δ = = Π − +  
.
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The stress tensor can be decomposed into isotropic (spherical) and deviatoric parts by referring 
to the classical continuum theory of plasticity as follows:(13)

	 ( ) ( ) ( )*ij ij ij ij ijisotropic deviatoric
σ σ σ σδ σ= + ≡ + ,	 (7)

where 
1
3 ppσ σ≡  is the scalar-valued mean stress related to the first stress invariant, and ( )*ijσ  

is the deviatoric stress tensor whose trace is ( )* 0ppσ = .

	 The generalized Ohm’s law with respect to the arbitrary crystallographic frame O-x1x2x3 is 
expressed as(7)

	 ( )0i ik ik ke jρ δ ρ= + ∆ ,	 (8)

where ei is the electrical field vector, jk is the current density vector, ρ0 is the scalar invariant 
of the zero-stress resistivity, and Δρik is the resistivity change tensor due to the applied 
stress.  When stress is applied to a cubic anisotropic medium with respect to the arbitrary 
crystallographic frame O-x1x2x3, the second-rank tensor fields of stress and resistivity change 
are connected at every point by the linear relation(3,6)

	
0

ij
ijkl kl

ρ
π σ

ρ
∆

= ,	 (9)

where 
0

ijρ
ρ
∆

 is the relative resistivity change tensor due to the applied stress.  

	 The substitution of Eqs. (6) and (7) into Eq. (9) leads to the decomposition of the 
piezoresistance tensor equation into the hydrostatic and deviatoric parts of stress tensors,

*

0 0 0

1
3

ij ijmm
ij

ρ ρρ
δ

ρ ρ ρ
∆ ∆ ∆

= +  
 

( )1 2 32ˆ̂ ˆ3 ijσδ= Π + Π +Π +( ) ( )*1 2 3 22ˆ ˆ3 2 ij ijσδ σ= Π + Π +Π + Π + ( )*3
ˆ

ijkl klL σΠ 	 (10)

( ) ( ) ( ) ( )* *
11 12 44 11 12 442 ij ij ijkl klLσδ σ σ= Π + Π +Π + Π −Π −Π ,

where ( )1 2 3
0

1 2ˆ̂3
3

ˆmm
ij ij

ρ
δ σδ

ρ
∆

≡ Π + Π +Π( )2 3
0

1 2 ˆ̂
3

mm
ij ij

ρ
δ σδ

ρ
∆

≡ Π +Π( )3
0

1
3

ˆmm
ij ij

ρ
δ σδ

ρ
∆

≡ +Π  is the hydrostatic part and 

( ) ( )
*

* *
2 3

0

ˆ2 ˆij
ij ijkl klL

ρ
σ σ

ρ
∆ 

≡ Π +Π 
 

 is the deviatoric part.  
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	 An alternative derivation of Eq. (10) is useful to clarify its physical meaning.  Therefore, 
we give a brief discussion below.  We note again that if an index occurs once in any term 
of the Cartesian tensor components, the index is free and is taken from 1 to 3, and if an 
index occurs twice in any term of the Cartesian tensor components, the index is dummy and 
summation is taken from 1 to 3.  A scalar multiple of πmmnn and δij forms the isotropic second-

rank piezoresistance tensor 1
3ijmm mmnn ijπ π δ= .  The fourth-rank piezoresistance tensor πijkl 

that becomes the zero second-rank tensor when its suffixes are contracted, i.e., πmmkl = πklmm 
= 0, is defined as the traceless fourth-rank piezoresistance tensor (deviatoric tensor) (πijkl)*.  
Consequently, the number of independent components is no more than 15 for the symmetric 
fourth-rank tensor, i.e., πijkl = πklij.  The decomposition of the fourth-rank piezoresistance tensor 
πijkl is straightforward,

	 ( )*1
9ijkl mmnn ij kl ijklπ π δ δ π= + ,	 (11)

where (πmmkl)* = (πklmm)* = 0.
	 By introducing the traceless parts of the stress and resistivity change tensors, i.e., 

( )* 1
3ij pp ijijσ σ σ δ= −  and ( )* 1

3ij pp ijijρ ρ ρ δ∆ = − , Eq. (9) can be broken down as

	

( ) ( )

0
*

* *

0

,

.

1 1
3 3

pp
ij mmnn pp ij

ij
ijkl kl

ρ
δ π σ δ

ρ

ρ
π σ

ρ

∆
=

∆ 
= 

 

	 (12)

	 Therefore, the piezoresistance tensor equation can be decomposed into a relation between 
only the hydrostatic part of the stress tensor (the trace of the stress tensor) and the trace of 
the resistivity change tensor and into another relation between only the deviatoric parts.  
The tensor Eqs. (10) and (12) have clear physical meanings.  The deviatoric part of Eqs. 
(10) and (12) becomes the zero second-rank tensor when its suffixes are contracted, i.e., 

( )*22 ˆ
mmσΠ ( )*3

ˆ
mmkl klL σ+Π ( )( )*2 32 0ˆ̂

mmσ= Π +Π =( )( )*3 0ˆ
mmσ+Π =  and ( ) ( )* * 0mmkl klπ σ = .  On the other 

hand, the isotropic parts of Eqs. (10) and (12) represent the relation between only the hydrostatic 
part of the stress tensor and the trace of the resistivity change tensor.  Therefore, the trace of Eqs. (10) 
and (12) leads to the following scalar invariant with respect to the coordinate transformation.

	 ( )11 12
0

2mm
mm

ρ
σ

ρ
∆

= Π + Π 	 (13)
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	 The geometrical explanation of Eq. (13) has not been well recognized.  The relative 
change in resistance in a series-connected configuration of three orthogonal piezoresistors is 
proportional to the hydrostatic part of the stress tensor and insensitive to the three principal 
stress orientations as shown in Fig. 2.  
	 If a multiaxial stress is applied to a cubic anisotropic medium with respect to the cubic-
single-crystal crystallographic principal frame O-X1X2X3, then the component of the deviatoric 
stress tensor with respect to the arbitrary crystallographic frame O-x1x2x3 is transformed as

	 ( ) ( )
* *

ij ki lj kl' a aσ σ= .	 (14)

The combination of Eqs. (10) and (14) leads to the following component of the piezoresistance 
tensor equation with respect to the arbitrary crystallographic frame O-x1x2x3 as a function of 
the stress components with respect to the cubic-single-crystal crystallographic principal frame 
O-X1X2X3:

( ) ( ) ( )
3

* *
1 2 3 2 3

0 1

ˆ̂̂̂ ˆ3 2 2ij
ij ki lj kl Li Lj LL

L
a a a a

ρ
σδ σ σ

ρ =

∆
= Π + Π +Π + Π +Π

′
∑( ) ( )*1 2 3 2

0

ˆˆ3 2 2ij
ij ki lj kla a

ρ
σδ σ

ρ
∆

= Π + Π +Π + Π
′

+ ( )
3

*
3

1

ˆ
Li Lj LL

L
a a σ

=

Π ∑ 	

( ) ( ) ( ) ( )
3

* *
11 12 44 11 12 44

1
2 ij ki lj kl Li Lj LL

L
a a a aσδ σ σ

=

= Π + Π +Π + Π −Π −Π ∑ .

A piezoresistor subjected to a remote uniform uniaxial normal stress along the principal cubic-
single-crystal crystallographic frame is transformed to the state of multiaxial stress by the 

Fig. 2.	 Schematic of the series-connected three-orthogonal-piezoresistor (the relative change in resistance is 
proportional to the trace of the stress tensor and insensitive to the three principal stress orientations).

(15)
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coordinate transformation and vice versa.  Therefore, such a consideration is useful for the 
design of MEMS piezoresistive mechanical sensors on single-crystal silicon wafers subjected 
to arbitrary plane stress.  As a special case, if we consider the in-plane (X1X2-plane) state of 
multiaxial stress with respect to the principal cubic-single-crystal crystallographic frame 

O-X1X2X3, then the relative resistance change 11

0

R'
R

∆
 in a piezoresistor in which the current 

density and electrical field are both parallel to an arbitrary x′1 direction on the crystallographic 
plane (X1X2-plane) can be given by Eqs. (10) and (15), neglecting the dimensional change due to 
the elastic deformation [this will be briefly discussed as Eq. (17) in Sect. 2.2].

	 11 11 11

0 0 0hydrostatic deviatoric

R R R
R R R

   ′ ′ ′∆ ∆ ∆
= +      
   

,	  

where 

( )( )11 11
11 11 12 11 22

0 0

1 1 2
3 3

hydrostatic

R
R

ρ δ σ σ
ρ

 ′∆ ∆
≅ = + Π +   Π

 
, 

( )( )( )

( )( )

*
11 11

0 0

2 2
11 12 11 21 11 22

2 2
11 12 11 11 21 22 44 11 21 12.

 

1
3

2

deviatoric

R
R

a a

a a a a

ρ
ρ

σ σ

σ σ σ

   ′∆ ∆
≅       

= − Π −Π + +

+ Π −Π + + Π

	

These results are used for the discussion of piezoresistance measurement.

2.2	 Geometrical effect of resistance change due to linear elastic deformation

	 We derive a general equation for the effect of the relative resistance change due to elastic 
deformation.  This correction was first discussed by Smith.(6)  We derive the following general 
tensor equation valid for an arbitrary crystallographic coordinate transformation:

	
0 0

2ij ij
ij pp

R
R

ρ
ε ε

ρ
∆ ∆

= + − ,	 (17)

where εij is the linear elastic strain tensor and εpp is the trace of εij with reference to the 
dilatation of normal strain.  Equation (17) is only valid for the normal strain (i = j) because 
the shear strain (i ≠ j) does not change the volume of a solid and makes no contribution to the 
resistance change due to elastic deformation.
	 The linear elastic strain tensor is related to the stress tensor by Hooke’s law:

(16)



2110	 Sensors and Materials, Vol. 30, No. 9 (2018)

	 εij = sijklσkl,	 (18)

where sijkl is the elastic compliance tensor.
	 The crystal symmetry of the cubic elastic compliance tensor is similar to that of the 
piezoresistance tensor.  Therefore, applying Nye’s expression to the Voigt notation,(14,15) we can 
derive

	 1 2 3
ˆ ˆ ˆ2ijkl ij kl ijkl ijkls S S I S Lδ δ= + + ,	 (19)

where 1 2
ˆ3 2Ŝ S+ + 3 11 12

ˆ 2S S S≡ + , 2 44
12 ˆ
2

S S≡ , 2 3 11 12
ˆ2Ŝ S S S+ ≡ − .

	 The substitution of Eqs. (18) and (19) into Eq. (17) leads to the following relative resistance 
change due to the applied stress in place of the elastic strain:

	
( )( ) ( )*11 12 44

*
11 12 44 ,

2 2 2 3

12
2

ij pp ij ij

ijkl kl

S S S

S S S L

ε ε δ σ σ

σ

− = + − +

 + − − 
 

	 (20)

where i = j.  
	 Figure 3 depicts graphical representations of (2ε11 − εpp)/σ11 for single-crystal silicon 
subjected to the in-plane uniaxial tension σ11 with respect to the arbitrary crystallographic 
orientation in the {100}, {110}, and {111} planes.  The values of the three components of 
the cubic elastic compliance tensor, i.e., S11, S12, and S44, were taken from Ref. 15 and used 
for the calculation of (2ε11 − εpp)/σ11 from Eq. (20).  As can be seen from the figures, it is 
straightforward to derive Smith’s geometrical correction as a special case of Eq. (20).  The 
graphical variation of (2ε11 − εpp)/σ11 depicted in Fig. 3 is similar to that of the Young’s modulus (15) 
because the in-plane uniaxial tensile strain ε11 applied to the piezoresistor is directly related to 
the in-plane uniaxial tensile stress ε11.  The order of (2ε11 − εpp)/σ11 for single-crystal silicon is 
(2ε11 − εpp)/σ11 ~ 1/S11 ~ 10−12 (1/Pa).  On the other hand, the orders of the piezoresistance tensor 
components Π11, Π12, and Π44 for single-crystal silicon are Π11, Π12, and Π44 ~ 10−9 (1/Pa), 
respectively.  Therefore, the effect of the relative resistance change due to elastic deformation 
can be neglected for single-crystal silicon.

3.	 Piezoresistance Measurement

	 A piezoresistive rosette stress gauge consisting of seven p-type piezoresistors was prepared 
on an n-type (100) silicon substrate.  Each piezoresistor had a length of 100 µm, a width of 10 
µm, and a depth of 2 µm.  The shape of the piezoresistive rosette stress gauge formed a right 
angle.  The longitudinal directions of the two end piezoresistors coincided with the <110> 
crystallographic orientation.  The right angle was divided into 15° steps from the end as shown 
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in Fig. 4.  The piezoresistive rosette stress gauge was fabricated by a combination of two-
step thermal diffusion and ultraviolet lithography.  The sheet resistance of the p-type silicon 
diffusion layer was 52.6 Ω/□ and the surface carrier concentration was approximately 1018 cm-3.  
A rectangular microbeam was cut from the n-type (100) silicon substrate and used to remotely 
apply the uniform tensile stress σ0 along the <110> direction to the piezoresistive rosette stress 
gauge via a simple four-point bending system (Fig. 5).
	 As previously mentioned in the discussion of Eq. (16), the relative resistance change in a 
piezoresistor in which the directions of the current density and electrical field are both parallel 
to an arbitrary x’1 direction in the crystallographic plane (X1X2-plane) is

	
( )( ) ( )( )( )

( )( )

2 211
11 12 11 22 11 12 11 21 11 22

0
2 2

11 12 11 11 21 22 44 11 21 12

1 12  
3 3

2 .

R a a
R

a a a a

σ σ σ σ

σ σ σ

′∆
≅ Π + Π + − Π −Π + +

+ Π −Π + + Π
	 (21)

Therefore, the response of the piezoresistive rosette stress gauge depends on the three plane 

Fig. 3.	 (Color online) Graphical representations of the relative resistance change (2ε11 − εpp)/σ11 due to the in-
plane uniaxial tension σ11  with respect to the arbitrary crystallographic orientation in {100}, {110}, and {111} planes 
of the single-crystal silicon (unit: ×10−11 Pa−1).

(a) (b)

(c)
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stress components σ11, σ22, and σ12 applied to the principal crystallographic axis in the {100} 
plane.  It is straightforward to derive Eq. (14) in Ref. 16 as a special case of Eq. (21).  
	 Figure 6 shows the relationship between the transformation of the stress component and the 
crystallographic orientation subjected to uniform remote uniaxial tensile stress σ0 along <110> 
in the {100} plane.  The constitutive equation for this experiment can be rewritten from Eq. (21) 
with Euler angles (ψ = 0, θ = 0) and direction cosines a11 = cosϕ and a21 = −sinϕ.

	 11 11 12 11 12 44
0 0

0

2 sin 2
3 6 2

R
R

σ σ φ
′∆ Π + Π Π −Π Π ≅ − − 

 
,	 (22)

where 11 11 12
0

0

2
3

hydrostatic

R
R

σ
 ′∆ Π + Π

≅  
 

 and 11 11 12 44
0

0
sin 2

6 2
deviatoric

R
R

σ φ
 ′∆ Π −Π Π ≅ − −       

, 

and 
4 4
π πφ− ≤ ≤ , 

4
πφ = ±  coincides with <110>, and ϕ = 0 coincides with <100> as shown in 

Fig. 6.  If we perform the superposition and replacement of the remote stress as 0
11 22 2

σ
σ σ= =  

and 0
12 2

σ
σ = + , then the alternative derivation of Eq. (22) from Eq. (21) is straightforward.

	 A semiconductor parameter analyzer (HP4155A) was used to measure the resistance change 
in the piezoresistive rosette stress gauge.  Figure 7 shows a comparison of the normalized 

theoretical equation 11

11 max

R
R

′∆

′∆
 based on Eq. (22) and the experimental results.  The theoretical 

equation was in good agreement with the experimental values.  Thus, the part of the proposed 
theory was experimentally verified.

Fig. 5.	 (Color online) Rectangular microbeam of 
the n-type (100) silicon substrate used to apply the 
uniform remote tensile stress σ0 along <110> direction 
to the piezoresistive rosette stress gauge via a simple 
four-point bending.

Fig. 4.	 (Color online) Schematic of the piezoresistive 
rosette stress gauge that consists of seven p-type 
piezoresistors on the n-type (100) silicon substrate.
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4.	 Physical Interpretation of PT Theory Based on the New Piezoresistance Tensor 
Equation

	 The validity of the proposed theory was verified by experimental evidence in the previous 
section.  Here, we demonstrate that the design of a piezoresistor derived by using PT theory 
can be reproduced as a special case of our piezoresistance equation.  We primarily discuss a 
piezoresistor fabricated by the planar diffusion technique on the surface of bulk single-crystal 
silicon and a piezoresistor fabricated on silicon-on-insulator (SOI) substrates as described in 
the previous section.  We assume that the in-plane normal and shear stresses are faithfully 
transmitted to the piezoresistors as assumed by Pfann and Thurston.(8)  

4.1	 Tensor equation for piezoresistor responding only to specified stress components

	 The basic concept of the PT theory is to form a piezoresistor that responds only to specified 
stress components.  Regarding this point, the PT theory provides no physical basis to find a 
combination of appropriate crystallographic orientations that exhibit sensitivity to the specified 
stress components.  We start from Eq. (10) to provide a new physical basis in a manner unified 
with the PT theory.

Fig. 6.	 Relationship between the stress component 
transformation and the crystallographic orientation 
under the uniform remote tensile stress σ0 along 
<110> direction in {100} plane depicted in Fig. 4.

Fig. 7.	 Comparison of the normalized theoretical 

equation of 11

11 max

R
R

′∆

′∆
 and the experimental results.
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( )

( )

11 12 44
0

11 12 44

1 12
3 3

1 ,
3

kk kk

ij ij kk ijL

αα
αα

αα

ρ
σ σ σ

ρ

σ σ δ

∆  = Π + Π +Π − 
 

 + Π −Π −Π − 
 

	

Note that the tensor summation convention does not apply to the Greek indices.  Equation 
(23) corresponds to the configuration of a piezoresistor subjected to multiaxial stress, where 
the electrical field and current density vectors are both parallel to the xα direction.  By setting 
Lαα12 = Lαα21 = 0, Lαα23 = Lαα32 = 0, and Lαα31 = Lαα13 = 0, the crystallographic orientations 
for which the piezoresistor does not respond to the shear stress components can be obtained 

from Eq. (23).  The hydrostatic part of Eq. (23), i.e., ( )11 12
1 2
3 kkσΠ + Π , is scalar-invariant and 

responds to the first stress invariant regardless of the crystallographic orientation.  Therefore, 
making a piezoresistor unresponsive to specified stress components is equivalent to finding 
an appropriate form of the deviatoric part of Eq. (23) that can cancel the specified stress 
components appearing in the hydrostatic part of Eq. (23).  If we design a piezoresistor that does 
not respond to the stress component σββ, then the general procedure is to find a combination of 
appropriate crystallographic orientations Lααββ that cancel the stress component of σββ in the 
hydrostatic part (see Appendix B), where Lααββ is given by

	 12

11 12 44
Lααββ

Π
= −

Π −Π −Π  for α ≠ β,	 (24)

	 12 44

11 12 44
Lααββ

Π +Π
= −

Π −Π −Π  for α = β.	 (25)

4.2	 Tensor equation for piezoresistor insensitive to stress orientation

	 The removal of the third piezoresistor from the three-piezoresistor configuration results in 
a two-piezoresistor configuration.  This configuration is a special case of the series-connected 
three-piezoresistor configuration represented by Eq. (13) (Fig. 2), which is scalar-invariant with 
respect to the coordinate transformation.  Equation (23) leads to

	 ( ) ( )( )33
12 11 22 11 12 44 3311 11 3322 22

0
L Lρ

σ σ σ σ
ρ
∆

= Π + + Π −Π −Π + ,	 (26)

which corresponds to the configuration of a piezoresistor subjected to in-plane biaxial 
normal stress with the electrical field and current density vectors both parallel to the plane 
normal direction xα.  Therefore, the general equation corresponding to the two-piezoresistor 
configuration is

(23)
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( )( )

( )( )

33
11 12 11 22

0 0

11 12 44 3311 11 3322 22 .

mm

L L

ρ ρ
σ σ

ρ ρ

σ σ

∆ ∆
− = Π +Π +

− Π −Π −Π +
	 (27)

Finding a combination of crystallographic orientations of L3311 and L3322 that is scalar-valued 
corresponds to finding the conditions under which the piezoresistor is insensitive to the in-plane 
biaxial stress orientation.  
	 From the viewpoint of tensor calculus, these considerations provide a state-of-the-art 
physical basis for and insight into the classical PT theory.

4.3	 Piezoresistor responding only to transverse normal stress

	 In Sects. 4.3 and 4.4, we apply the concept described in Sect. 4.1.  We consider a piezoresistor 
subject to biaxial normal and shear stresses as shown in Fig. 8.  The relative resistance change 
for the current density and electrical field in the x3 direction is given by Eq. (10), which neglects 
the dimensional change due to the elastic deformation.  If we consider the plane stress in the 
(x1, x2) plane, Eqs. (10) and (23) lead to

	
( )

( ) ( ) ( )

33
11 12 44

0

11 12 44 3311 11 3322 22 3333 3312 12 ].

2

[ 2L L L L

ρ
σ

ρ

σ σ σ σ σ σ

∆
= Π + Π −Π

+ Π −Π −Π − + − − +
	 (28)

Fig. 8.	 Piezoresistor subjected to biaxial normal and shear stresses [relative resistance change for the current 
density and electrical field in the x3 direction with the plane stress in the (x1, x2) plane].
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	 The response depends on the three plane stress components σ11, σ22, and σ12 in the (x1, x2) 
plane.  As a particular case, the piezoresistor responds only to the biaxial normal stresses σ11 
and σ22 in the x1 and x2 directions, respectively, if the x1 and x3 directions are <110> and the 

x2 direction is <100>.  In this case, the three Euler angles (σ, θ, ϕ) are 0, , 0
4
πψ θ φ = = = 

 
.  

Then, Eq. (3) becomes Eq. (29).

	

1 2 3

1

2

3

1 10
2 2

0 1 0
1 10
2 2

x x x

X

X

X

−

	 (29)

The fourth-rank tensor components Lijkl obtained from Eq. (10) are 3311 3333
1
2

L L= =  and L3311 = 

L3312 = 0.  Indeed, the piezoresistor does not respond to the in-plane shear stress component σ12 
because L3312 = 0.  Thus, Eq. (26) leads to

	 ( )33
11 12 44 11 12 22

0

1
2

ρ
σ σ

ρ
∆

= Π +Π −Π +Π .	 (30)

It is evident that Eq. (30) coincides with Eq. (11) of Pfann and Thurston.(8)  
	 Furthermore, the orthogonal orientations insensitive to both σ22 and σ12 can be found by 

choosing the Euler angles as , ,
2 2 4
π π πψ θ α φ = = + = 

 
.  Then, Eq. (3) becomes Eq. (31).

	

1 2 3

1

2

3

1 sin cos
2 2 2

1 sin cos
2 2 2

0 cos sin

x x x

X

X

X

α α

α α

α α

− − −

−

−

	 (31)

The fourth-rank tensor components Lijkl obtained from Eq. (31) are 2
3311

1 cos
2

L α= , 

2 2
3322

3 cos sin
2

L α α= , L3312 = 0, and ( )4 4
3333

1 cos sin
2

L α α= + .  Therefore, Eq. (28) leads to
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2 2

33
12 11 12 22

0

cos 3sin 21 1
2 8C C

ρ α ασ σ
ρ

   ∆
= Π − +Π −      

   
.	 (32)

where 12

11 12 44
 C Π

= −
Π +Π −Π

.

	 Equation (32) is identically insensitive to σ12.  The combination of Eqs. (23) and (24) leads to 
a physical basis for the problem that a piezoresistor only responds to σ11 because L3322 satisfies 

Eq. (24), i.e., 2 2
3322

3 cos sin
2

L Cα α= = .  Indeed, if we choose 2 8sin
3
Cα = , then Eq. (32) is 

insensitive to σ22.  It is evident that Eq. (32) coincides with Eq. (13) of Pfann and Thurston.(8)

4.4	 Piezoresistor having zero transverse normal stress sensitivity

	 The relative resistance change for the current density and electrical field in the x3 direction is 
given by Eqs. (10) and (23), which neglect the dimensional change due to elastic deformation.  If 
we consider the plane stress in the (x1, x3) plane shown in Fig. 9, Eqs. (10) and (23) lead to

	
( )

( ) ( ) ( )

33
11 12 44 44 33

0

11 12 44 3311 11 3322 3333 33 3313 13

2

[ 2 ].L L L L

ρ
σ σ

ρ

σ σ σ σ σ σ

∆
= Π + Π −Π +Π

+ Π −Π −Π − + − − +
	 (33)

Fig. 9.	 Piezoresistor subjected to biaxial normal and shear stresses [relative resistance change for the current 
density and electrical field in the x3 direction with the plane stress in the (x1, x3) plane].
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	 The orthogonal orientations insensitive to both σ33 and σ13 can be found by choosing the 

Euler angles as , , 0
4
πψ θ φ = = 

 
.  Then, Eq. (3) becomes Eq. (34).

	

1 2 3

1

2

3

cos cossin
2 2

sin sincos
2 2

1 10
2 2

x x x

X

X

X

ψ ψψ

ψ ψψ

−

−
	 (34)

	 The angle ψ is an arbitrary rotation around the x3 axis perpendicular to the {110} plane.  

The fourth-rank tensor components Lijkl obtained from Eq. (34) are L3313 = 0, 2
3311

1 cos
2

L ψ= , 

2
3322

1 sin
2

L ψ= , and 3333
1
2

L = .  Indeed, the piezoresistor does not respond to the in-plane 

shear stress component σ13 because L3313 = 0.  Equation (33) is reduced to

	
2

33
12 33 12 11

0

1 cos1 1
6 2C C

ρ ψσ σ
ρ

 ∆  = Π − +Π −       
,	 (35)

where 12

11 12 44
 C Π

= −
Π −Π −Π

.

	 Equation (35) is identically insensitive to σ13.  The combination of Eqs. (23) and (24) leads 
to a physical basis for the problem that a piezoresistor only responds to σ33 because L3311 

satisfies Eq. (24), i.e., 2
3311

1 cos
2

L Cψ= = .  Indeed, if we choose cos2ψ = 2C, then Eq. (35) is 

insensitive to σ11.  Thus, the piezoresistor responds only to the longitudinal normal stress σ33 
and has zero transverse normal stress sensitivity.  It is evident that Eq. (35) coincides with Eq. (20) 
of Pfann and Thurston.(8)

4.5	 Piezoresistor insensitive to stress orientation

	 In this section, we apply the concept described in Sect. 4.2.  Figure 10 shows a piezoresistor 
in the form of an ell with two in-plane perpendicular arms, where x1 and x2 denote the directions 
of the arms.  If we consider the plane stresses σ11, σ22, and σ12 in the (x1, x2) plane, then Eq. (10) 
leads to
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( )( )

( ) ( )( )

( ) ( )( )

( )( )

11 22
11 12 44 11 22

0 0

11 12 44
1133 2233 11 22

11 12 44
1111 1122 11 22

1122 2222 22 11

2 2
3

3

[ 2
3

2 ].

L L

L L

L L

ρ ρ σ σ
ρ ρ

σ σ

σ σ

σ σ

∆ ∆
+ = Π + Π +Π +

Π −Π −Π
− + +

Π −Π −Π
+ + −

+ + −

	 (36)

	 A piezoresistor insensitive to the orientations of σ11 and σ22 can be obtained from Eq. (10) by 
choosing the Euler angles as (ψ = 0, θ = 0, ϕ).  Then, Eq. (3) becomes Eq. (37).

	

1 2 3

1

2

3

cos sin 0
sin cos 0
0 0 1

x x x
X
X
X

φ φ
φ φ−

	 (37)

The angle ϕ is an arbitrary rotation around the x3 axis perpendicular to the {100} plane.  The 
fourth-rank tensor components Lijkl obtained from Eq. (37) are L1111 = L2222 = cos4ϕ + sin4ϕ, 
L1122 = 2cos2ϕsin2ϕ, and L1133 = L2233 = 0.  Equation (10) is reduced to

	 ( )( )11 22
11 12 11 22

0 0

ρ ρ σ σ
ρ ρ
∆ ∆

+ = Π +Π + .	 (38)

Fig. 10.	 Piezoresistor made in the form of an ell with the in-plane two perpendicular arms: (a) x3 //{100}, (b) x3 //{111}, 
x1 and x2 denote the directions of the arms.

(a) (b)
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Equation (38) is identically insensitive to the orientations of σ11 and σ22.  It is evident that 
Eq. (38) coincides with Eq. (23) of Pfann and Thurston.(8)  An alternative solution of Eq. (38) is 
straightforward and is obtained from Eq. (27) as

	 ( )( )33
11 12 11 22

0 0

mmρ ρ
σ σ

ρ ρ
∆ ∆

− = Π +Π + .	 (39)

An alternative piezoresistor insensitive to the orientations of σ11 and σ22 can be obtained from 

Eq. (27) by choosing the Euler angles as 1 11 1, cos , cos
3 2

ψ θ φ− − 
= = 

 
.  Then, Eq. (3) 

becomes Eq. (40).

	

1 2 3

1

2

3

cos sin cos sin 2 cos
36 2 6 2

sin cos sin cos 2 sin
36 2 6 2

1 1 1
3 3 3

x x x

X

X

X

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

− + −

− − − + 	 (40)

The angle ψ is an arbitrary rotation around the x3 axis perpendicular to the {111} plane as 
shown in Fig. 10(b).  The fourth-rank tensor components Lijkl obtained from Eq. (40) are 

1111 1122
1
2

L L= = , 2222
1
6

L = , and 1133 2233 3333
2
3

L L L= = = .  Equation (10) leads to

	 ( )( )11 22
11 12 44 11 22

0 0

1 2 4
3

ρ ρ σ σ
ρ ρ
∆ ∆

+ = Π + Π +Π + .	 (41)

Equation (41) is identically insensitive to the orientations of σ11 and σ22.  It is evident that Eq. (41) 
coincides with Eq. (24) of Pfann and Thurston.(8)  Similarly to Eq. (39), an alternative solution 
of Eq. (41) can be easily obtained from Eq. (27).

5.	 Conclusions

	 We have derived a single piezoresistance tensor equation that clearly indicates the physical 
role of the state of multiaxial stress in the cubic crystal anisotropy of piezoresistance.  The 
piezoresistance tensor equation for cubic crystal symmetry can be expressed in terms of 
the three independent components of the principal piezoresistance tensor, the isotropic and 
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deviatoric stress tensors, and the fourth-rank coordinate transformation tensor.  To demonstrate 
the validity of the proposed tensor equation, an experiment on the single-crystal silicon 
piezoresistance stress gauge subjected to multiaxial stress was carried out.  Furthermore, the 
proposed piezoresistance tensor equation can give a physical basis for the typical single-crystal 
silicon piezoresistive stress transducers derived by Pfann and Thurston.  
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Appendix

A.	 Isotropic and deviatoric fourth-rank tensors(17)

	 Components of the isotropic tensor are invariant with respect to the coordinate 
transformation.  We can make an isotropic fourth-rank tensor from an arbitrary fourth-rank 
tensor with the symmetry of Tijkl = Tjikl = Tijlk,

	 ( ) 1 22ijkl ij kl ijklisotropic
T T T Iδ δ= + ,	 (A1)

where

	 ( )1
1 2

15 ppqq pqpqT T T= − ,	 (A2)
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	 ( )2
1 3
30 pqpq ppqqT T T= − .	 (A3)

A deviatoric part of the tensor can be obtained by subtracting the isotropic part from the 
original tensor.

	 ( ) ( )ijkl ijkl ijkldeviatoric isotropic
T T T= − 	 (A4)

Substituting Eq. (4), i.e., 1 2
ˆ ˆ2ijkl ij kl ijklIπ δ δ= Π + Π + 3

ˆ
ijklLΠ  into Eqs. (A2) and (A3), we obtain

	 1 2
ˆ ˆ2ppqq pp qq ppqqIπ δ δ= Π + Π + 3 19ˆ ˆ

ppqqLΠ = Π + 2 3
ˆ6 ˆ 3Π + Π ,	 (A5)

	 1 2
ˆ ˆ2pqpq pq pq pqpqIπ δ δ= Π + Π + 3 13ˆ ˆ

pqpqLΠ = Π + 2 3
ˆ12 ˆ 3Π + Π ,	 (A6)

	 1 1 3
ˆˆ 1

5
T = Π + Π  and 2 2 3

ˆˆ 1
5

T = Π + Π .	 (A7)

	 Note that ( ) ( )
3 2 2

1
 3.ppqq pqpq Lp Lq

L
L L a a

=

= ≡ =∑
	 Thus, Eqs. (A1) and (A4) can be rewritten by using Eqs. (A2), (A3), (A5), (A6), and (A7),

	 ( ) 1 3 2 3
ˆ1 1ˆ̂̂ 2

5 5ijkl ij kl ijklisotropic
Iπ δ δ   = Π + Π + Π + Π   

   
,

	 ( ) ( )3
ˆ 1 2

5ijkl ijkl ij kl ijkldeviatoric
L Iπ δ δ = Π − +  

.	 [Eq. (6)]

B.	 Derivations of Eqs. (24) and (25)

	 Here, the tensor summation convention does not apply to the Greek indices.  The 
piezoresistance in the cubic single crystal subjected to multiaxial stress with the electrical field 
and current density vectors both parallel to the xα direction is given as

	
( )

( )

11 12 44
0

11 12 44

1 12
3 3

1 ,
3

kk kk

ij ij kk ijL

αα
αα

αα

ρ
σ σ σ

ρ

σ σ δ

∆  = Π + Π +Π − 
 

 + Π −Π −Π − 
 

	 [Eq. (23)]
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where the deviatoric part of Eq. (23) is

	

( )

( )

( )( )

44 11 22 33

11 12 44 11 11 22 22 33 33

12 12 23 23 31 31

11 12 44 11 22 33

1
3

(
2 2 2

1 ,

)

3

L L L
L L L

αα

αα αα αα

αα αα αα

σ σ σ σ

σ σ σ

σ σ σ

σ σ σ

 Π − + +  
+ Π −Π −Π + +

+ + +

− Π −Π −Π + +

	 (B1)

and the terms related to the normal stress component σββ are

( )44 11 12 44
1 1 
3 3

Lββ ααββ ββσ σ − Π + Π −Π −Π − 
 

  for α ≠ β,	 (B2)

( )44 11 12 44
2 1
3 3

Lββ ααββ ββσ σ Π + Π −Π −Π − 
 

  for α = β.	 (B3)

	 The hydrostatic part of Eq. (23) is scalar-invariant and always responds to hydrostatic stress 
regardless of the crystallographic orientation.

	 ( )( )11 12 11 22 33
1 2
3

σ σ σΠ + Π + + 	 (B4)

Therefore, making a piezoresistor unresponsive to the normal stress component σββ corresponds 
to cancelling σββ appearing in Eq. (B4), which is derived from Eqs. (B2) and (B3):

( ) ( )44 11 12 44 11 12
1 1 1 2
3 3 3

Lββ ααββ ββ ββσ σ σ − Π + Π −Π −Π − = − Π + Π 
 

  for α ≠ β,	 (B5)

( ) ( )44 11 12 44 11 12
2 1 1 2
3 3 3

Lββ ααββ ββ ββσ σ σ Π + Π −Π −Π − = − Π + Π 
 

  for α = β.	 (B6)

	 Thus, we obtain the following set of crystallographic orientations that satisfy Eqs. (B5) and (B6):

	 12

11 12 44
Lααββ

Π
= −

Π −Π −Π  for α ≠ β,	 [Eq. (24)]

	 12 44

11 12 44
Lααββ

Π +Π
= −

Π −Π −Π  for α = β.	 [Eq. (25)]
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