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	 Labeled datasets are one of the key factors for obtaining a good and robust classifier using 
supervised learning methods.  However, labeling raw data is a tedious and labor-intensive 
process, which is usually done manually.  Many efforts were proposed to utilize a small amount 
of labeled data to train a classifier that is sufficiently robust to label more data for training 
or make a prediction on unlabeled data.  Unlike previous studies, we proposed an automatic 
labeling framework without labeling a small amount of data in advance, to directly annotate 
unlabeled time series data regarding body-worn sensor-based human activity recognition (HAR) 
in laboratory settings.  The framework automatically labels collected time series activity data 
by transforming the original data into its corresponding absolute wavelet energy entropy and 
detects activity endpoints based on constraints and information extracted from a predefined 
human activity sequence.  The performance of the proposed framework was evaluated on the 
collected dataset and the UCI HAR Dataset.  In both cases, the average precision and recall 
scores are above 81.9% and the average F-measure scores are above 88.9%.  Results showed 
that the proposed framework can be adopted as a rapid and reliable way of generating labeled 
datasets from unlabeled data.  

1.	 Introduction

	 Since the 1990s, researchers have begun to use wearable sensors for human activity 
recognition (HAR).(1)  From the perspective of sensor types, research studies on HAR mainly 
include vision sensors (such as cameras), ambient sensors in smart home scenes, and wearable 
sensors [such as accelerometers, gyroscopes, and inertial measurement units (IMUs)], which 
mainly apply supervised learning methods to learn different human activity patterns from 
collected human motion data.  Therefore, acquiring a proper set of labeled data is the basis 
for training HAR models.  Annotation techniques can be generally classified as offline and 
online methods.  Specifically, offline methods include self-recall,(2) indirect observation, 
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and video and audio recordings,(3,4) and online methods include direct observations,(5) time 
diary, and experience sampling.(6,7)  For studies acquiring data in a laboratory scenario, direct 
observation and video recordings are usually taken as the annotation methods, which might also 
be called on-site annotation and post hoc annotation, respectively.(8)  For the former method, 
an annotator records the timestamp range of human activity currently performed by a subject.  
For the latter method, an annotator needs to compare between the video footage of the whole 
data acquisition process and the acquired time series to complete raw data annotation.(9,10)  For 
long-term HAR studies, especially focusing on activity monitoring, online methods are more 
appealing for realistic application whereas offline methods almost make it impossible to obtain 
ground truth labels, which are always labor-intensive and usually unacceptable due to privacy 
concerns.(11)  There is a tradeoff between the accuracy of an annotation method and the time 
and effort required for annotation.  Offline methods can provide more accurate annotations than 
online methods but demand massive effort, especially when the set of data is large.  Although 
online methods are less time-consuming, inaccurate annotations and more ambiguity may be 
introduced to the labeled dataset.  
	 In this work, we target supervised learning-based applications that mainly acquire data in 
laboratory settings.  In such controlled settings, annotations can often be obtained by video 
recordings or direct observations.  For annotators, video recordings are generally easier to 
interpret than time series data, and annotation efforts will increase when the numbers of 
activities and subjects become larger and the data acquisition time becomes longer.  To obtain 
detailed annotations with acceptable accuracy and reduce the annotation efforts in post hoc 
labeling settings, we proposed a novel automatic labeling framework (ALF) towards multivariate 
time series data acquired from multiple wearable sensors.  Unlike previous methods based on 
machine learning, we tackle this problem from a speech processing perspective.  The proposed 
framework consists of two main steps: (1) inserting a rest position between two human activities 
during data acquisition to create a human activity sequence (HAS), and (2) extracting a wavelet 
energy entropy (WEE) feature from HAS and detecting endpoints of each human activity.  The 
proposed ALF can accelerate the process and reduce the cost of data annotation.
	 The rest of the paper is organized as follows.  In Sect. 2, we provide a brief overview of 
related work on reducing labeling efforts.  In Sect. 3, the proposed ALF is demonstrated in 
detail.  Experimental results of the proposed ALF are discussed in detail in Sect. 4.  Finally, 
conclusions are presented in Sect. 5.

2.	 Related Work

	 Supervised algorithms with high recognition performance usually require significant 
amounts of labeled training data.  In previous HAR studies based on wearable sensors, 
especially for those using supervised algorithms, manual methods, e.g., video recordings and 
direct observations, were widely used to obtain annotations.  Plotnik et al. developed a wearable 
assistant for Parkinson’s disease patients with freezing of gait (FOG) symptom.(12)  In the data 
acquisition phase, two annotators were assigned to conduct on-site annotation.  One was using 
a digital video camera to record subjects’ activities including standing, walking, turning, and 
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freezing, while the other was assigning the corresponding labels in real time to the acceleration 
data transmitted from a wearable assistant on a laptop.  A physiotherapist then determined the 
endpoints of FOG events in the acquired data according to a post hoc analysis on the video 
recordings.  Similarly, Anguita et al. used a smartphone (Samsung Galaxy S II) to collect 
human motion data and perceived different types of human activities on the basis of ambient 
information.(13)  Acceleration and angular velocities of typical daily activities, including 
standing, sitting, lying, walking, going downstairs, and going upstairs, were collected from 30 
subjects aged 19 to 48 years.  Each subject was requested to perform two rounds of each set of 
human activities and to rest for 5 s between each round.  Acquired data were manually labeled 
afterwards according to the video footage of subjects’ activities.  Banos et al. attached two 
IMUs to each subject’s right wrist and left ankle and another sensor to the chest, which provides 
two-lead ECG measurements.(14)  Thus, acceleration, angular velocity, geomagnetic information, 
and ECG of 12 different outdoor human activities were collected among 10 volunteers.  The 
entire data acquisition process was recorded by a video camera and then manually annotated.  
Furthermore, there are many other public HAR datasets based on wearable sensors or portable 
devices available online in which acceleration, angular velocity, and geomagnetic signals are 
mostly collected, and some vital signals are also acquired for future work purposes.(15–18)  
Detailed annotation with high accuracy can be obtained by manual annotation methods with 
intensive labeling efforts.  
	 In long-term human activity monitoring settings, supervised algorithms face the challenge 
of obtaining a labeled dataset.  To cope with the problem of insufficient labeled data, some 
researchers have moved from fully supervised settings to weakly supervised ones so as 
to reduce annotation efforts.  By incorporating with experience sampling, multi-instance 
learning (MIL) obtains knowledge from a significantly weak labeled dataset in which labels 
are associated with sets (bags) of instances, instead of training instances.  In this way, sensor 
data can be labeled on a very coarse level, which significantly lowers the annotation burden.  
A bag is labeled positive if and only if at least one positive instance, i.e., the activity we are 
interested in, exists in the bag, and negative if all instances in the bag are negative.  The first 
work of MIL on time series data for HAR was Ref. 11 and it adapted modifications of Support 
Vector Machine (mi-SVM) to three different bag-labeling scenarios (i.e., single-labeled bags, 
multilabeled bags, and majority-voting bags).  The extensive study and comparative evaluation 
proved the capability of significantly decreasing the annotation efforts in the proposed MIL-
based methods.  Guan et al. proposed a novel MIL model based on the work described in Ref. 
11 for offline activity recognition from multivariate time series data, and it is a generative 
graphical model based on an Auto-Regressive Hidden Markov Model (HMM), which can 
predict both bag and instance labels.(19)

	 Unsupervised learning techniques are usually used to discover the underlying structures 
in activity data without the necessity of providing labels.  Wyatt et al. viewed activity data as 
a stream of natural language terms, i.e., sequences of object use, and generic models mined 
by daily activities from the web, which served as common sense in HAR.(20)  Bottcher et al. 
proposed an unsupervised framework of adopting clustering algorithms to detect transitions 
between steps of manual work that follows a (semi-) fixed procedure.  Although the order and/or 
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number of steps in the process may be given in advance, the framework removes the necessity 
for labeled data.(21)  By using unsupervised techniques, the effort of labeling activity data is 
unnecessary.
	 Transfer learning is defined as the ability to extend what has been learned in one context to 
new contexts and relies on the assumption that some underlying relationship between the source 
and the target areas exists and allows for the successful transfer of knowledge from the source 
to the target.(22,23)  In a smart home setting, Kasteren et al. proposed three different function 
groups to project extracted features to a common space and then used both unlabeled data from 
house A and labeled data from house B to learn the parameters of a semisupervised HMM for 
activity recognition in house A.(24)  In another work, Kasteren et al. transferred the knowledge 
obtained by using existing labeled data from various homes to an HMM model applied in a 
new home.(25)  Chen et al., however, proposed a transfer learning framework based on principal 
component analysis (PCA) transformation, Gale–Shapley similarity measurement, and Jensen–
Shannon divergence (JSD) feature mapping.(26)

	 Semisupervised learning makes use of only a small amount of labeled training data and a 
substantial amount of unlabeled training data.(27)  For example, self-training, cotraining,(28) 
and En-Co-Training are some typical semisupervised techniques whereas a special case of 
semisupervised learning,(29) i.e., active learning, mainly focuses on labeling the most profitable 
instances, but human intervention is necessary to some extent for a small amount of labeled 
data.  For example, Zhao et al. proposed a robust active learning model using crowdsourced 
annotations for activity recognition.(30)

	 The aforementioned methods addressed the issue of data annotation by mainly using 
two kinds of annotation techniques, which adopt either intensive labeling efforts or learning 
methods.  As the research moves from a laboratory setting to a real-world setting, detailed 
labeled data are more difficult to obtain.  As a result, using a small amount of labeled data 
and prior knowledge of the target activities to train a learning model that can classify activity 
of daily life (ADL) with acceptable accuracy is the core idea of MIL, unsupervised learning, 
transfer learning, semisupervised learning, and active learning.  However, manual labeling of 
the initial data is required to some extent by these methods.  Thus, we propose a framework 
to achieve automatic annotation of time series activity data in a laboratory setting, which is 
based on the prior knowledge of the acquired data and the WEE feature to automatically detect 
endpoints of human activities.  

3.	 Proposed ALF

	 The fact that it is difficult to interpret time series data generated by wearable sensors, such as 
IMUs, makes it necessary to refer to video recordings of the data acquisition process when the 
manual annotation is conducted so as to guarantee labeling accuracy.  Video recording methods 
are still widely used in data annotation in a laboratory setting when supervised learning 
methods are adopted to train an activity classifier because it can be seen as a kind of prior 
knowledge of the acquired data, which can help annotators interpret time series data during 
labeling.  However, when the number of subjects taking part in the data acquisition increases or 
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the duration of data acquisition per subject becomes longer, labeling efforts would be intensive 
and time-consuming.  Automatic methods to address this issue should take into account the 
prior knowledge of acquired data.  In this work, we consider the information contained in the 
acquired sequence of human activities as a type of prior knowledge of time series data, e.g., 
the order of activities, the longest/shortest duration of acquired activities, the longest/shortest 
duration of rest posture (RP), and the possible lowest acceleration during an activity.
	 Therefore, we proposed an ALF including HAS, feature extraction, and automatic labeling 
as shown in Fig. 1.  On one hand, HAS is predesigned as a data acquisition scheme for acquiring 
time series activity data.  On the other hand, HAS provides prior knowledge, i.e., constraints 
and the activity sequence for automatic labeling.  Details of each step regarding this framework 
are demonstrated in the following sections.  

3.1	 HAS

	 HAS is a set of time-aligned human activities that are predesigned before conducting the 
data acquisition process.  In the real world, the boundary between different human activities 
is not distinct, which makes it challenging to segment two different but consecutive human 
activities.(1)  For instance, Refs. 12 and 18 collected consecutive human activities with no 
apparent pause state between every two human activities.  There are mainly two different 
ways of labeling a time series data.  One is to label every single activity that is performed by 
each subject while the other is to label specific activities of interest.  Figure 2(a) is subject 1’s 
acceleration and corresponding labels in Ref. 13.  Each human activity (i.e., walking, ascending 
stairs, descending stairs, sitting, standing, and lying down) is labeled as a decimal number from 
one to six, respectively.  Figure 2(b) shows the acceleration of subject 2’s activity during data 
acquisition in Ref. 14.  Only activities of interest (i.e., standing and ascending stairs) are labeled.  
When special locations are required to conduct data acquisition for different kinds of activities, 
irrelevant activities were created and labeled as number zero between two different activities 
of interest, e.g., the subject needs to move from the laboratory to a building with stairs so as 

Fig. 1.	 (Color online) Proposed ALF.
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to ascend the stairs.  Lee and Xu(31) and Amft et al.(32) introduced a predefined rest position 
between two different hand gestures in order to create distinct boundaries for different types 
of hand gestures.  In this work, we inserted RP between each target activity performed by each 
subject during data acquisition in order to make the boundaries of human activities clearer for 
labeling.  An RP is defined as the stationary status of a subject during data acquisition.  For 
example, standing still, sitting, and lying down are three typical RPs a subject can simulate.  
	 Therefore, we designed the HAS as shown in Fig. 3.  It groups the activities of normal 
people in daily life into three different types, namely, stationary (STACT), quasi-periodic 
(QPACT), and sporadic (SPACT) activities.  STACTs indicate that the subject stays in a static 
posture, i.e., standing still (STND), sitting (SIT), lying down (LD), and RP.  QPACTs show 
a pattern of recurrence with similar movements during a subject’s activities such as walking 
(WLK), ascending (AS) and descending stairs (DS), jumping up and down (JUD), and squatting 
slowly (SS) and quickly (SQ).  SPACTs indicate activities that occur sparsely or accidently in 
our daily life with uncertainty such as falling, which is rare but of high risk.  Particularly, we 
simulated two kinds of falls, i.e., falls with spontaneous protection (SP) and those without SP.  
A simulated fall with SP means that the subject spontaneously triggers self-protective actions, 
e.g., bending knees or stretching arms straight to mitigate the impact between the subject’s body 
and the foam, to protect self from an impending and inevitable fall.  In contrast, a simulated 
fall with no spontaneous protection (NSP) simulates a state when one is unconscious (e.g., faint 
or falling asleep) or being in a pathological state (e.g., having a syncope or hemiplegia) and 
failing to spontaneously trigger self-protective actions during a fall.  Each type of fall is further 
categorized into four types of specific falls on the basis of the direction of falling, i.e., fall 
forward (FF), fall backwards (FB), fall to the left (FL), and fall to the right (FR).  In total, time 
series data of 17 target activities are collected and denoted as decimal numbers from 1 to 17.
	 To date, some hardware and sensors have been adopted to acquire human motion data.  
These devices can be categorized into two types, namely, commercial products (Samsung 
Galaxy S2, HTC Magic, SHIMMER, and Xsens) and research prototypes (Wocket, 3dNX, 
GENEA, and e-AR).(33–40)  Commercial products such as a smartphone or a smartwatch may 

Fig. 2.	 (Color online) (a) UCI HAR Dataset from Ref. 13 and (b) segment of mHealth Dataset from Ref. 14.

(a) (b)



Sensors and Materials, Vol. 30, No. 9 (2018)	 2055

be uncomfortable to be attached to places other than wrists of a wearer while products such 
as SHIMMER and Xsens are expensive.  Moreover, research prototypes developed by other 
researchers may be unavailable for sale or to obtain.  To seek a low-cost miniature hardware 
that acquires motion data of human activities, we developed IMU modules, each of which is 
based on a Microcontroller Unit (MCU), STM32F103R, and a six-axis MEMS motion tracking 
device, MPU6050, which consists of a tri-axial accelerometer and a tri-axial gyroscope, as 
shown in Fig. 4(a).  Nine IMUs were attached to each subject on nine different locations using 
hook-and-loop fasteners as shown in Fig. 4(b), i.e., left upper arm (LUA), right upper arm (RUA), 
left wrist (LWR), right wrist (RWR), front waist (FW), left thigh (LT), right thigh (RT), left 
ankle (LAK), and right ankle (RAK), as shown in Fig. 5(a).  Data acquisition was conducted in 
a laboratory setting as shown in Fig. 5(b).  Six subjects (five males and one female) were chosen 
from students aged between 26 and 28.  Each subject was asked to follow the experimenter’s 
instructions to start or terminate a specific activity and to perform each of them thoroughly and 
completely according to their understanding of each activity.  Also, slow and steady moves were 
mostly recommended to subjects during transition activities.  Particularly, all simulated falls are 
self-initiated by each subject and all subjects are protected by a foam after a simulated fall.  No 
further instruction on how to perform each activity is provided.
	 During the process of data acquisition, each subject was asked to start performing activity 
1 at location A and to end up with activity 17 at location E sequentially according to HAS.  
Moreover, each subject shifted the location as target activities are being performed as shown in 
Fig. 5, i.e., to start with sitting at A → standing at B → lying down at E → walking steadily (B ↔ C) 
→ ascending stairs (C → D) → descending stairs (D → C) → jumping up and down at C → 

Fig. 3.	 (Color online) Proposed HAS with a duration of 10 min.
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walking slowly to B and facing the 3D printer → squatting slowly at B → squatting quickly at B 
→ NSP falling backwards (B → E) → SP falling backwards (B → E) → NSP falling forwards 
(B → E) → SP falling forwards ( B → E) → NSP falling to the left (B → E) → SP falling to 
the left (B → E) → NSP falling to the right (B → E) → SP falling to the right (B → E).  Each 
IMU module was designed to collect a stream of data with a duration of 10 min in a constant 
sampling rate of 100 Hz.  As a result, a stream of activity data lasting 600 s was collected for 
each subject, and the durations of STACT, QPACT, and SPACT are approximately 105, 235 and 
260 s, respectively.  During data acquisition, some transition movements are inevitably created 
owing to the necessity of moving from one location to another so as to complete the whole 
process.  Therefore, RP and transition movements should both be labeled as number zero in the 
following automatic labeling process.  Figures 6(a) and 6(b) show two sets of FW acceleration 

Fig. 5.	 (Color online) (a) Layout and coordinate systems of IMUs attached to a subject and (b) layout of the 
laboratory setting.

Fig. 4.	 (Color online) (a) An IMU module and (b) IMU modules with hook-and-loop fasteners.

(a) (b)

(a) (b)
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obtained from two subjects, the target activities of which have clearer boundaries when 
compared with Fig. 2.  Note that the presented HAS is merely a scheme that cannot be seen as a 
direct source of providing ground-truth labels of the collected data owing to the fact that either 
a timekeeper or a subject cannot time or perform as promptly as the target activities planned in 
the HAS.  That is, lead-lag timing or performing a target activity is inevitable and certainly has 
a lead-lag impact on the schedule of each activity to follow in the collected data.  

3.2	 Feature extraction

	 Various studies have been conducted on the endpoint detection regarding speech signals.(41–43)  
The main task of endpoint detection of speech signals is to detect the start and end points of a 
speech signal.  The collected acceleration data in Figs. 6(a) and 6(b) are similar in morphology 
to a speech signal.  That is, the stationary part of acceleration can be treated as the mute part in 
a speech signal while the oscillating part of acceleration can be treated as the part containing 
a speech.  In this work, we consider the processing of collected data in a speech processing 
perspective.
	 Many algorithms have been proposed to tackle the endpoint detection of speech signals, 
which mostly aim to extract different features from the original signal, e.g., spectral entropy, 
cepstrum distance, and dual thresholds.  Among various endpoint detection techniques, 
energy-based methods are the most widely applied solutions to this problem.(41)  These 
algorithms are mostly based on the short-time Fourier transform (STFT).  However, STFT 
has a fixed resolution, which might lead to poor time/frequency resolution in the analysis of 
nonstationary signals, e.g., a speech signal and a time series of acceleration collected here 
are both nonstationary signals.  Moreover, the energies of different activities vary from each 
other.  To locate the boundaries of activity data with better accuracy, we adopted multilevel 
one-dimensional (1-D) wavelet decomposition to the original activity data and extracted the 
corresponding detail coefficient of each level.  In this way, the wavelet energy distribution along 

Fig. 6.	 (Color online) (a) Unlabeled subject 1’s FW resultant acceleration and (b) unlabeled subject 2’s FW 
resultant acceleration.

(a) (b)
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different levels of decomposition can be calculated and described by the WEE feature.  
	 Multilevel 1-D wavelet decomposition is based on wavelet transform.  Suppose 2( )f L R∀ ∈ , 
its continuous wavelet transform (CWT) is defined as Eq. (1).  

	 ( ) ( ) ,
1, = ,f a b

x bCWT a b f x dx f
aa

∞

−∞

 − =   ∫ ψ ψ ,	 (1) 

where the CWT of a given function f(x) is equal to the inner product between f(x) and the 

wavelet function ψa,b in which ψa,b is equal to ( )x b
a a−ψ  (a, b ∈ R).  In practice, the discrete 

wavelet transform (DWT) is mostly adopted and its parameters usually take dyadic values, 
i.e., a = 1/2j, b = k/2j

 ( j, k ∈ Z).  Thus, the DWT of f(x) is denoted as Eq. (2), which is a dyadic 
orthogonal wavelet transform to create wavelet basis functions for multiresolution analysis (MRA).  

	 ,
1 , ,
2 2f j kj j

kDWT f
  =  

ψ 	 (2) 

	 To apply MRA to f(x) is to perform multilevel wavelet decomposition on f(x) and to 
reconstruct f(x) as Eq. (3).

	 ( ) ( ) ( ) ( ) ( ), , , ,
Z 1

ˆ ˆ
J

j k j k i k i k
k i

f x c x d x f x g x
∈ =

= + = +∑ ∑φ ψ ,	 (3) 

where ( ),j k xφ  are scale functions to compose the approximation item ( )f̂ x , and ( ),i k xψ  are 

wavelet functions to compose the detail item ( )ĝ x .  , ,,j k j kc f= φ  are the approximation 

coefficients, , ,,i k i kfd = ψ  are the detail coefficients, and J is the number of levels of 
decomposition.  Detail coefficients capture high-frequency components of the original signal.  
In this work, segments with oscillating acceleration contain high-frequency components while 
those with steady acceleration contain low-frequency components.  Thus, the magnitude of 
detail coefficients indicates the energy of the signal segment.  Thus, the wavelet energy of a 
J-level 1-D wavelet decomposition is defined as Eq. (4).

	
2 2

, ,
1 1

J J

J i J k i k
i i

Et EA ED c d
= =

= + = +∑ ∑ ,	 (4) 

where Et is the total wavelet energy, i is the i-th level wavelet decomposition (i = 1, 2, ..., 
J), EDi denotes the detail energy of the i-th level wavelet decomposition, and EAJ denotes 
the approximation energy of the J-th level wavelet decomposition.  In combination with 
Shannon entropy, WEE indicates the distribution of human activities along all level wavelet 
decompositions and can be defined as Eq. (5).(44)
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	 2
1

_ log
J

i i
i

Enpy WE p p
=

=−∑ ,	 (5) 

where pi is the probability density of the i-th level wavelet energy, pi = EDi/Et (i = 1, 2, L, J), 
and Enpy_WE denotes WEE.
	 Assume the collected time series activity data as f(x), which is a vector of dimension M × 1.  
The sliding window technique is adopted to extract the WEE feature from f(x), which is to move 
a sliding window with a fixed length L along f(x) with a constant step size d.  By centering the 
current data point in the middle of the sliding window, M frames of segments are created.  In 
each frame, 10-level 1-D wavelet decomposition is adopted by selecting Daubechies-4 wavelets.  
As a result, a transformed version of f(x) is created.  If subject 1’s FW resultant acceleration is 
taken as an example, a segment of original unlabeled FW resultant acceleration from 0 to 300 
s is shown in Fig. 7(a).  After extracting the WEE feature, it is transformed to the form in Fig. 
7(b) in which zero crossings of the value of WEE occur.  This leads to a difficulty of selecting 
the optimal threshold of endpoint detection.  Thus, the absolute value of WEE is calculated as 

Fig. 7.	 (Color online) (a) A segment of subject 1’s FW resultant acceleration, (b) WEE, (c) absolute WEE, and (d) 
smoothed absolute WEE of subject 1’s FW resultant acceleration.

(a) (b)

(c) (d)



2060	 Sensors and Materials, Vol. 30, No. 9 (2018)

shown in Fig. 7(c) from which the zero-crossing rate of |WEE| is lower than that in Fig. 7(b) 
qualitatively.  However, from 200 to 240 s, a big group of data points with values approximating 
to zero still exists.  To guarantee the quality of selected threshold for endpoint detection, 
average filtering was applied to smoothen |WEE|.  Eventually, a soothing transformed version of 
f(x) is obtained as shown in Fig. 7(d), which is taken as the base signal for automatic labeling in 
Sect. 3.3.  

3.3	 Automatic labeling

	 The original signal f(x) is transformed into a smoothed absolute WEE of f(x), which is 
denoted as SA_WEE(x).  In comparison with Fig. 7(a), the fact that SA_WEE(x) is all positive 
and usually similar to a bell curve within activity intervals enables threshold-based endpoint 
detection.  In this work, automatic labeling is divided into three main steps that include 
preliminary segmentation, endpoint detection, and assign labels.  
	 In the preliminary segmentation stage, the primal goal is to find a suitable threshold that 
can distinguish activity intervals from stationary intervals in SA_WEE(x).  Activity intervals 
contain data points with larger values of SA_WEE(x) than the selected threshold and indicate 
QPACT, SPACT, and some transition activities, i.e., SIT to STND, STND to LD, LD to STND, 
turning around before DS, WLK from location C to B as shown in Fig. 5 after finishing JUD, 
and LD to STND after each simulated fall.  In contrast, stationary intervals contain data points 
with no larger values of SA_WEE(x) than the selected threshold and indicate STACT and RP.  
As observed from collected activity data, e.g., as shown in Fig. 6, the duration of all activity/
stationary intervals is approximately 50% of the total sampling time.  Denote the sampling rate 
of each IMU as Rf, the total sampling time as T, the total number of data points in all activity 
intervals as Na, and the total number of data points in all stationary intervals as Ns.  Define 
activity rate as the proportion of Na over the total number of data points in the total sampling 
time, which can be described as Ra = Na / (Rf × T).  Set the estimated activity rate ERa to 
50%.  We summarized the method to find the initial segmenting threshold in the preliminary 
segmentation stage as shown in Algorithm 1.  Figure 8(a) shows the result of the preliminary 
segmentation of subject 1’s FW acceleration, which contains incorrectly segmented activity 
intervals with various durations.  This issue is dealt with by the endpoint detection step.
	 The endpoint detection step is to determine the boundaries of activity intervals.  
Segmentation results from the preliminary segmentation stage are assigned with binary labels 
in which the activity intervals are labeled with one and the stationary intervals are labeled with 
zero.  However, this binary series contains many incorrectly labeled intervals since the initial 
segmenting threshold is sensitive to local turbulence and transition activities.  The strategy 
in this work to eliminate false segments is to extract constraints and information from HAS, 
which found the basis of an error correction of the binary series.  According to HAS, the 
time stamps separating STACT from QPACT and QPACT from SPACT can be obtained as T1 
= 100 s and T2 = 340 s, respectively.  Define the upper bound of the shortest duration of an 
activity interval as δsdur = 2.5 s.  A batch error correction is firstly done to set the label of any 
interval with a very short duration to zero.  Transition activities create prominent acceleration 
turbulence that may affect the correct labeling in the preliminary segmentation and correspond 
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Algorithm 1: Preliminary Segmentation

1
2
3
4
5
6
7
8
9

10
11
12
13

Input: smoothed trend of absolute wavelet energy entropy, ( )_SA WEE x ; incremental step 
size for the amplification factor of the initial threshold value, _ =0.01step incre ;
amplification factor to accelerate the optimal initial threshold searching, _ =1amp f ;
estimated activity rate, =0.5aER ; length of ( )_SA WEE x , len ;

Output: Column indices of activity interval boundaries, col ;
( )targe_vec= _SA WEE x ;

( )= target_veclen length ;
while 1 do

( )( )= _ target_vec 1:500thresh amp f mean∗ ;
find col such that targe_vec > thresh ;

= ( )aR length col len ;
if _a aR ER step incre− > do

_ _ + _amp f amp f step incre← ;
else

break;
end if

end while
return col ;

Fig. 8.	 (Color online) (a) Result of preliminary segmentation of subject 1’s FW acceleration and (b) result of 
endpoint detection of subject 1’s FW acceleration.

(a)

(b)
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to the time-aligned bell curves on the curve of SA_WEE(x).  For instance, intervals containing 
transition activities between 0 and 100 s can be labeled as one, while zero is the label we expect 
for transition activities.  Thus, label reversion needs to be done before the right boundary of 
the third transition activities (i.e., LD to STND) between 0 and 100 s.  Denote the duration 
of a transition activity as δtran.  As for QPACT between 100 and 340 s, transition activities 
occur between AS and DS, and after JUD.  For the former transition activity, there is δtran ∈ 
(2.5 s, 10 s].  For the latter transition activity, there is δtran ∈ (10 s, 30 s] since steady and slow 
moves are required during all transition activities.  As for SPACT between 100 and 340 s, the 
upper bound of the duration of a complete fall is defined as δf = 6 s, and the lower bound of the 
maximum acceleration during a complete fall is defined as δfacc = 1.8 g.  On the basis of the 
abovementioned constraints and information, we summarized the algorithm for the endpoint 
detection stage as shown in Algorithm 2.  Figure 8(b) shows the result of the endpoint detection 
of subject 1’s FW acceleration.  In contrast to Fig. 8(a), all incorrectly segmented activity 
intervals are corrected.  
	 The final step is to label the result exported by the endpoint detection stage according to the 
order of target activities predefined by HAS, which is to assign decimal numbers from 1 to 17 to 
all activity intervals in sequence.  Figure 9 shows the automatic labeling result of subject 1’s FW 
acceleration in which all target activity intervals are correctly assigned with the corresponding 
labels from a qualitative perspective.  

4.	 Experimental Results and Discussion

4.1	 ALF performance indicators

	 The purpose of this study is to reduce manual efforts in labeling raw time series data 
regarding body-worn sensor-based HAR studies, which conduct data acquisition in a laboratory 
setting.  Hence, two indicators, overall labeling accuracy (OLA) and average labeling time (ALT), 
are proposed to measure the performance of the proposed ALF.  To obtain OLA, ground-truth 
labels should be given as a benchmark.  During data acquisition, each subject’s activities were 
recorded by a video camera, which helped annotators interpret and perform post hoc labeling 
on time series data.  Moreover, to obtain a better insight into OLA, precision, recall, and 
F-measure are also adopted as subindicators of OLA.  To reduce the manual annotating error, 
four annotators were asked to conduct data labeling, and the average result of activity endpoints 
was taken as the ground-truth labels of collected activity data.  To obtain ALT, labeling time 
including label checking and correction time taken by each annotator during the whole manual 
labeling process was timed and then averaged.  Note that all IMU modules were synchronized 
before data acquisition so that all IMU modules collected human activity data simultaneously.  
Thus, labeling raw data from all IMU modules is completed once labeling raw data from one 
module is carried out.  We selected data from the FW IMU module as our target of automatic 
labeling.  In addition, the proposed ALF was also examined on a modified dataset presented by 
Ref. 13.  The performance of the proposed ALF was evaluated and verified using MATLAB 
R2016b, which was run in a Windows 10 ×64 operating system with CoreTM i7-3612QM 2.10 
GHz CPU and 8 GB memory.
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Algorithm 2: Endpoint Detection

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Input: data sampling rate, =100fR ; upper bound of the shortest duration of an activity 
interval, =2.5sdurδ ; timestamp to separate STACT from QPACT, 1=100 fT R∗ ;
timestamp to separate QPACT from SPACT, 2 =340 fT R∗ ; upper bound of transition 
activity between AS and DS, _1=10 ftrans R∗ ; upper bound of transition activity 
between JUD and SS, _2=30 ftrans R∗ ; lower bound of the maximum acceleration 
during a complete fall, =1.8faccδ ; upper bound of the duration of a complete fall, 

=6f fδ R∗ ; Column indices of activity interval boundaries, col ;
Output: binary labels of the original time series, _b label ;
Create an all-one vector as _b label with the size of 1 len×
for each i in ( )1 ( )i length col≤ ≤ do

_ ( ( )) 0b label col i = ;
end for
calculate each activity duration in _b label as _len zone
for each i in ( )1 ( )_li ee nl ngth zone≤ ≤ do

if _ ( ) *sdur flen zone i δ R< do
find corresponding segments in _b label do set labels to 0

end if
end for
update _b label ;
[ ]1 21ts T T len= ;

while each n in ( )1 3n≤ ≤ do
if 1n== do
calculate the number of segments in _ ( ( ) : ( 1))b label ts n ts n+ and assign it to _seg n

if _ 7seg n== do
for each i in ( )11 i T≤ ≤ do

_ ( ) _ ( ) 1b label i b label i← + ;
if 2_ ( )b label i == do

0_ ( )b label i = ;
end if

end for
1n n← +

continue;
else do

merge proximal segments with identical labels and update _b label ;
end if

else if 2n== do
calculate each activity duration in _ ( ( ) : ( 1))b label ts n ts n+ as _len zone ;
find segments such that _1_sdur len zoδ trane ns< ≤ do set labels to 0;
find segments such that 1 _2__ len ztrans tone rans< ≤ do set labels to 0;

32
33
34
35
36
37
38
39
40
41

1n n← + ;
continue;

else if 3n== do
calculate each activity duration in _ ( ( ) : ( 1))b label ts n ts n+ as _len zone ;
calculate the maximum value in each activity interval as _m acc ;
find segments such that _ flen zone δ> or _ faccm acc δ< do set labels to 0;

1n n← + ;
end if

end while
return _b label
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4.2	 OLA

	 The OLA is defined as the average ratio per subject of the number of correctly labeled data 
points over the total number of data points as shown in Eq. (6).

	
( )6

( )
1

1
6

i
c

OLA i
i all

NR
N=

= ∑ ,	 (6) 

where ( )i
cN  is the number of correctly labeled data points and ( )i

allN  is the total number of data 
points of the subject i.  Comparison between labels created by the proposed ALF and the 
ground truth was made to obtain ROLA.  The labeling accuracies of each subject’s activity data 
are obtained as 96.2, 94.5, 95.6, 96.2, 96.4, and 96.1% from subjects 1 to 6, respectively.  Thus, 
ROLA is 95.8%.  If the automatic labeling result is taken as the response of ALF in a supervised 
learning perspective, F-measure can be taken as a performance measurement.  Precision, 
recall, and F-measure are usually used in a binary classification setting and consist of three 
scores including true positive (TP), false positive (FP), and false negative (FN).(26)  In our work, 
nonzero labels (i.e., 17 target activities) are treated as positive, and zero labels (i.e., transition 
activities and RP) are treated as negative.  In this manner, the multilabel labeling issue in this 
work is turned into a binary labeling issue.  The results of precision, recall, F-measure, and 
accuracy of the proposed ALF tested using collected activity data are presented in Table 1 
in which ‘M’ denotes a male subject and ‘F’ denotes a female subject on the row of subject 
number.  The average precision, recall, and F-measure are 91.0, 99.5, and 95.0%, respectively.  
For intervals being automatically assigned with corresponding target activity labels, 91.0% of 
the labels are correctly assigned, and 99.5% of true target activities are correctly assigned with 
the corresponding labels.

Fig. 9.	 (Color online) Automatic labeling result of subject 1’s FW acceleration.
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	 In Table 1, subject 2’s precision is lower than 90.0%.  Further comparison analysis between 
automatic labeling results and ground truth shows that the durations of the longest mislabeled 
segments of each subject’s data are 1.15, 6.19, 2.86, 1.45, 1.16, and 1.46 s.  Figures 10(a) and 
10(b) show the results of automatic labeled and mislabeled intervals of subject 2’s and 3’s FW 
accelerations.  Mislabeled intervals are assigned with a negative label of −5.  In both situations, 
transition activities (marked in purple dashed circles) that occurred at the beginning or end of a 
target activity are incorrectly assigned with the next or former target activity label.  Even though 
all subjects were instructed in advance that a stationary status (i.e., staying in RP) is necessary 
after and before performing a target activity, some degree of inaccuracy in performing each 
target activity can still happen.  Figures 10(c)–10(f) show the remaining results of automatic 
labeled and mislabeled intervals of other subjects’ FW accelerations.
	 In Ref. 13, a smartphone was used to collect six activities, namely, walking, walking 
upstairs, walking downstairs, sitting, standing, and laying, and contributed it as the UCI HAR 
Dataset (UHD).  However, the RP status proposed in this work was not incorporated into the 
data acquisition process in Ref. 13.  Thus, a slight modification of the UCI HAR Dataset was 
carried out so that a performance evaluation on the proposed ALF can be conducted on another 
public dataset.  During data acquisition of Ref. 13, subjects were instructed to perform each 
activity freely at least twice in a predefined sequence, i.e., standing (30 s) → sitting (30 s) → 
lying down (30 s) → walking (30 s) → walking downstairs (36 s) → walking upstairs (36 s), and 
each sequence of activity was performed twice.  Thus, RPs were inserted between each target 
activity, and a HAS of a modified UCI HAR Dataset (mUHD-HAS) was created as shown in 
Fig. 11.  Particularly, to maintain the structure of the original dataset, RP data was created by 
sampling stationary activities in the current time series, i.e., RP inserted after STND is sampled 
from the last 10 s of the previous STND, RP inserted after SIT is sampled from the last 10 s 
of the previous SIT, RP inserted after LD is sampled from the last 10 s of the previous STND 
owing to the fact that one needs to get up before walking, and RPs inserted between WLK and 
DS and between DS and AS are both sampled from the first 10 s of the previous STND owing 
to the fact that one would be standing as an RP.  In this way, data from 30 volunteers in the 
UCI HAR Dataset were modified as shown in Fig. 11 and tested by adopting the proposed ALF.  
Figures 12(a) and 12(b) show subject 2’s resultant acceleration from the UCI HAR Dataset 
before and after modification and the corresponding original labels.  
	 Before applying ALF to the modified UCI HAR Dataset, constraints and information were 
extracted from mUHD-HAS.  Set the estimated activity rate ERa to 40%.  Assume that the 

Table 1
Precision, recall, F-measure, and accuracy of ALF on collected data.
Subject No. 1(M) 2(F) 3(M) 4(M) 5(M) 6(M) Average
Precision (%) 91.5 88.6 90.2 91.8 92.4 91.3 91.0
Recall (%) 99.7 98.7 99.5 99.6 99.6 99.7 99.5
F-measure (%) 95.4 93.4 94.7 95.5 95.9 95.3 95.0
Accuracy (%) 96.2 94.5 95.6 96.2 96.4 96.1 95.8
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Fig. 11.	 (Color online) HAS of modified UCI HAR Dataset.

Fig. 10.	 (Color online) (a) Results of automatic labeled and mislabeled intervals of subject 1’s, (b) subject 2’s, (c) 
subject 3’s, (d) subject 4’s, (e) subject 5’s, and (f) subject 6’s FW accelerations. 

(a) (b)

(c) (d)

(e) (f)
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duration of the current subject’s activity data is T.  Since the duration of data collected from 
each subject varies from each other in the original UHD, the time stamps separating stationary 
activities from QPACT were obtained as T1 = 120 × T/499, T2 = 252 × T/499, and T3 = 377 
× T/499 according to mUHD-HAS.  Choose the upper bound of the shortest duration of an 
activity interval as δsdur = 5 s.  Since the modification of UHD might introduce acceleration 
turbulence into the RP stage, we chose the duration of a transition activity as δtran ∈ [0, 10 s].  
Particularly for stationary activities between 0 s and T1, and between T2 and T3, the strategy of 
assigning labels to each stationary activity was changed to first divide both intervals [0, T1] and 
[T2, T3] into three intervals with identical durations and then to assign the corresponding labels 
to each interval according to mUHD-HAS.  On the basis of the abovementioned constraints 
and information, precision, recall, F-measure, and accuracy were adopted to evaluate the 
performance of the proposed ALF on 18 volunteers’ activity data from mUHD.  The remaining 
12 volunteers’ activity data (i.e., subjects 1, 9, 17, 18, 19, 21, 22, 23, 24, 26, 28, and 30) are 
excluded from the test since none of the sequences of their collected data follows the mUHD-
HAS.  Intervals with a zero label are treated as negative samples while others with nonzero 
labels are treated as positive samples.  Results are presented in Table 2.  In Table 2, the average 
accuracy is 82.1% and the average precision is 81.9%.  This may be caused by the inaccuracy of 
choosing the separating timestamps, which is a consequence of the uncertainty in the durations 
of subjects’ data.  The average recall is 97.3%, which indicates that the majority of target 
activities are correctly labeled, and the corresponding average F-measure is 88.9%.
	 One limitation of this work is that errors are propagated after preliminary segmentation 
because the preliminary segmentation threshold is chosen according to the estimated activity 
rate that is subject to the design of HAS and the observation of the collected data, which makes 
the aforementioned batch error correction after preliminary segmentation necessary.  The 
results of the proposed ALF on the collected dataset [Figs. 10(a)–10(f)] and the mUHD show 
that activity intervals detected by ALF are generally wider than those defined by ground truth 
labels, which leads to a certain number of FPs/FNs regarding each target activity.  As the 

Fig. 12.	 (Color online) (a) Original subject 5’s resultant acceleration and (b) modified subject 5’s resultant 
acceleration from UCI HAR Dataset.

(a) (b)
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results show, for SPACT, activity intervals defined by ground truth labels are enclosed by those 
detected by ALF, which means that there are only FPs and no FN.  For STACT and QPACT, 
there are both FPs and FNs.  Since a fall could be fatal to seniors, the risk of having more 
FNs than FPs after adopting ALF is higher to SPACT than to STACT and QPACT.  A possible 
strategy to lower such risk is to select a smaller initial threshold, namely, a larger ERa, for 
preliminary segmentation, which expands the activity intervals but increases the error rate of 
preliminary segmentation.  

4.3	 ALT

	 Each annotator labeled activity data collected from six subjects all at once.  The labeling 
time of each annotator is presented in Table 3.  The ALT is 76.8 min.  However, the automatic 
labeling time of the proposed ALF is 1116.71 s, which is 18.6 min in total.  Therefore, the 
time spent on automatic labeling using the proposed ALF is 75.8% less than the average time 
spent on manual labeling.  In addition, the automatic labeling time of the proposed ALF on 
the modified UCI HAR Dataset (18 subjects) is 2160.296 s, which is approximately 36.0 min 
in total.  Since there is no information about the time spent on labeling the whole dataset from 
Ref. 13 and because of the lack of complete video recordings of the UCI HAR Dataset, no 
comparison is done between the manual labeling time and the automatic labeling time using 
ALF on the UCI HAR Dataset.  

Table 2
Precision, recall, F-measure, and accuracy of ALF on modified UCI HAR Dataset.
Subject No. Precision (%) Recall (%) F-measure (%) Accuracy (%)
2 82.4 99.4 90.1 83.8
3 83.7 99.1 90.7 84.6
4 81.9 99.7 90.0 83.5
5 79.1 99.0 87.9 80.6
6 82.6 98.8 90.0 83.5
7 82.1 99.2 89.9 83.4
8 81.6 96.8 88.5 81.6

10 81.7 99.0 89.5 83.1
11 83.3 99.3 90.6 84.5
12 82.1 97.7 89.2 82.5
13 79.2 97.7 87.5 79.8
14 84.0 100.0 91.3 85.6
15 83.1 96.1 89.2 82.5
16 80.9 92.2 86.1 78.0
20 77.4 91.5 83.9 74.6
25 87.6 99.3 93.1 88.3
27 81.0 91.8 86.0 77.7
29 81.1 94.4 87.2 79.4
Average 81.9 97.3 88.9 82.1
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5.	 Conclusions

	 HAR has become a highlighted research area over the last few years since related research 
outputs play an increasingly important role in our aging society.  In this study, we aimed at 
reducing labeling efforts on time series data, which is collected over diverse individuals using 
multiple body-worn IMUs in a laboratory setting.  Instead of using a small amount of labeled 
data to gain a robust classifier, this work focuses on developing an ALF to directly assign 
accurate labels to unlabeled raw data.  In the proposed ALF, a HAS is the information center 
that is predefined as a sequence of different target activities concatenated by RPs providing 
constraints to improve the robustness of an automatic labeling algorithm.  This algorithm, as 
the execution part, firstly transformed the original activity data into its corresponding trend 
of absolute WEE, then segmented it into activity intervals and stationary intervals based on 
constraints and information extracted from HAS.  From the experimental results, an OLA of 
95.8% was obtained with the average precision, average recall, and average F-measure score as 
91.0, 99.5, and 95.0%, respectively, when the proposed ALF was tested on our collected data.  
The total labeling time for the proposed framework is approximately 18.6 min, which shortens 
the manual labeling time (average of 76.8 min) by 75.8%.  A public dataset, the UCI HAR 
Dataset, was modified to the proposed ALF.  We obtained the average precision of 81.9% and 
the overall accuracy of 82.1%, and the average recall and the average F-measure are 97.3% and 
88.9%, respectively.  The total time for automatically labeling the modified UCI HAR Dataset 
(18 subjects) is approximately 36.0 min.  Both experimental results showed that the proposed 
ALF can reduce the labeling efforts significantly with a guarantee of labeling accuracy, and the 
framework can be adopted as a rapid and reliable way of generating labeled datasets.
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