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	 In this paper, we present a distributed sensor scheduling scheme based on Euclidean distance 
(DSS-ED) for Internet of Things (IoT) local networks, with the aim of extending the network 
lifetime while maximizing the utilization of the limited network capacity of the IoT local 
network to support various IoT applications.  For this purpose, the DSS-ED adapts the state 
of individual sensor devices by comprehensively considering the characteristics of various 
variables.  In the DSS-ED, each sensor device first calculates the Euclidian distance between 
the measured variables and their ideal values, then notifies its neighbors of the calculated 
results.  Afterward, the sensor device adaptively determines its own state by comparing its 
Euclidian distance with those of its neighbors.  An experimental simulation is conducted to 
evaluate the performance of the DSS-ED.  The results show that the DSS-ED obtains better 
performance than the lightweight redundancy-aware topology control protocol (LRTCP) in 
terms of throughput and energy consumption.

1.	 Introduction

	 Recently, the Internet of Things (IoT) has received considerable attention as a core 
technology for large-scale monitoring applications such as smart cities, smart factories, and 
smart farms.(1,2)  In IoT applications, a number of resource-constrained sensors constitute the 
IoT local network, through which the collected data are delivered to a sink or gateway via a 
lossy wireless link.  Thus, the IoT local network is highly similar to the wireless sensor network 
(WSN) in its structure.
	 Energy efficiency is a traditionally crucial performance factor for the IoT local network, 
but it is essential to maximize the utilization of the limited network capacity of the IoT local 
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network to support various IoT applications.  The sensor scheduling mechanism considers 
the redundancy of sensor devices deployed in the sensing field.  It controls their states or 
actions, thereby extending the network lifetime while maintaining the wireless connectivity for 
delivering the sensing data.(3–5)

	 To date, many studies have been conducted on sensor scheduling, taking into account the 
redundancy of sensor devices.  Cerpa and Estrin proposed the adaptive self-configuring sensor 
network topologies (ASCENT) to prolong the network lifetime while maintaining connectivity 
among sensor devices.(6)  For this purpose, ASCENT supports state transition for four states 
of the sensor devices (i.e., Test, Active, Passive, and Sleep), considering the average packet 
loss rate and the number of neighbors.  However, ASCENT cannot address the load-balancing 
problem because the sensor device retains its state permanently once it enters the active state.  
Xie et al. proposed a residual energy-aware scheme (READC) for duty cycle adaptation.  This 
system adapts the sleep and wake states of sensor devices by adjusting the duty cycle of sensor 
devices, considering their residual energy levels.(7)  However, the READC focuses only on the 
residual energy of sensor devices, thus it may increase the number of lost packets.  Zebbane et 
al. proposed the lightweight redundancy-aware topology control protocol (LRTCP) to improve 
network connectivity and extend network lifetime.(8)  The LRTCP adaptively adjusts the states 
of sensor devices depending on the degree of redundancy, which is determined by the number 
of neighbors and the residual energy level of the sensor device.  However, the LRTCP does not 
consider the link quality between the sensor devices, thus degrading the network performance.
	 In this paper, we propose a distributed sensor scheduling scheme based on Euclidean 
distance (DSS-ED) for IoT local networks, aiming to extend network lifetime while maximizing 
the utilization of the limited network capacity of the IoT local network to support various 
IoT applications.  To this end, the DSS-ED adapts the state of individual sensor devices by 
comprehensively considering the characteristics of various variables.  In the DSS-ED, each 
sensor device first calculates the Euclidian distance between the measured variables and 
their ideal values, then notifies its neighbors of the calculated result.  Afterward, the sensor 
device adaptively determines its own state by comparing its Euclidian distance and those of 
its neighbors.  To evaluate the performance of the DSS-ED, an experimental simulation is 
conducted under various scenarios.  The results show that the DSS-ED obtains 11.1% higher 
throughput and 1.2% lower energy consumption than those of the LRTCP.
	 The rest of this paper is organized as follows: the detailed design of the DSS-ED is described 
in Sect. 2.  Section 3 presents the simulation results and performance analysis.  Finally, we 
conclude this paper in Sect. 4.

2.	 Design of DSS-ED

	 The DSS-ED adapts the state of the sensor devices to extend the network lifetime while 
maximizing the utilization of the limited network capacity of the IoT local network.  The sensor 
devices are used in various IoT applications with different service requirements.  To support 
various applications, the DSS-ED considers a number of variables related to the network 
capacity, and the composition of the variable set varies depending on the targeted application.  
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Each sensor device maintains a set of variables, as given in

	 { }( ) (1, ) (2, ) ( , ), , ,
ii i i k iV V V=V � ,	 (1)

where i is the index of each application, ki is the maximum index of the variable for the ith 
application, V(i) is a set of variables for the ith application, and ( , )ik iV  is the kith variable for the 
ith application.  The sensor devices periodically measure all variables, and update their variable 
set.  The characteristics of the measured variable differ depending on the variable type, thus the 
sensor device maintains the ideal values for the variable set.  These ideal values are compared 
with each measured variable to check the state of the sensor device.  Each ideal value is set to 
maximize the utilization of the network capacity by the user.  For example, if the maximum 
energy level of the sensor device is 50 mW, its ideal value is set to 50 mW.  The ideal value set 
for V(i) can be expressed as

	 { }( ) (1, ) (2, ) ( , ), , ,
ii i i k iI I I=I � ,	 (2)

where ( , )ik iI  is the ideal value for ( , )ik iV .
	 Then, the sensor device calculates the Euclidean distance between the measured variables 
and their ideal values.  For this, the sensor device first conducts a normalization to convert both 
the measured variables and the ideal values to values between 0 and 1, where the larger value 
is set to 1 and the smaller value is set to a ratio proportional to the larger value.  Table 1 shows 
an example of the normalization in which the measured variable and ideal value for the residual 
energy are converted to 0.5 and 1, respectively.  In the case of the number of neighbors, the 
measured variable and the ideal value are converted to 1 and 0.2, respectively.
	 After normalization, the sensor device calculates the Euclidean distance between two 
converted values, namely, the normalized measured variables and the normalized ideal values, 
which are calculated with

	 ( )2( , ) ( , ) ( , )
1

ik
norm norm

l i j i j i
j

D V I
=

= −∑ ,	 (3)

where D(l,i) is the Euclidean distance of the lth sensor device for the ith application, and ( , )
norm
j iV  

Table 1
Example of normalization.

Variable type Before normalization After normalization
Measured variable Ideal value Measured variable Ideal value

Residual energy 50 W 100 W 0.5 1
Number of neighbors 10 2 1 0.2
Link quality 10 Mbps 100 Mbps 0.1 1
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and ( , )
norm
j iI  are the normalized values for the jth measured variables and ideal values for the ith 

application, respectively.  Then, the sensor device periodically informs the neighbors of their 
calculated Euclidean distance.  Upon receiving the Euclidean distance from their neighbors, 
each sensor device maintains its list of Euclidean distances in a table and counts the number of 
neighbors.  The table and the number of neighbors are used to determine the state of each sensor 
device.
	 Figure 1 shows the state transition diagram for each sensor device.  The sensor device has 
the following four states: Test, Active, Passive, and Sleep, and sets the timer in each state for the 
state transition.  In the figure, the timers for Test, Active, Passive, and Sleep states are expressed 
as Tt, Ta, Tp, and Ts, respectively.  Test is the initial state of the sensor device, where the sensor 
device exchanges control messages including the Euclidean distance.  If the number of Active 
neighbors is less than or equal to the neighbor threshold (NT) and the Euclidean distance is 
the smallest among the neighbors, the sensor node checks the timer Tt to change its state to the 
Active state.  Otherwise, the state is changed to the Passive state.  The NT is predefined by the 
user and refers to the maximum number of Active neighbors.  In the Active state, the sensor 
device detects changes in the surrounding environment, and transmits the sensed data to the 
sink.  When the timer Ta expires, the sensor device changes its state to the Test state.  On the 
other hand, the sensor device turns on its radio only to listen to the neighbors’ control messages 
while in the Passive state.  In this state, the sensor device changes its state to Sleep when the 
timer Tp expires.  The sensor device turns off its radio to save energy in the Sleep state.  When 
the timer Ts expires in the Sleep state, the sensor device changes its state to the Passive state.

3.	 Performance Evaluation

	 A simulation is conducted to evaluate the performance of the DSS-ED.  To verify the 
effectiveness of the DSS-ED, the simulation results are compared with those of the LRTCP.  In 
the simulation, the sensor devices are randomly placed in a 100 × 100 m2 area, each of which 
transmits 1024 B of data toward the sink.  We consider four variables, namely, the distance from 
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Fig. 1.	 State transition diagram.
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the sink, the residual energy, the number of neighbors, and the link quality, whose ideal values 
are assumed to be 0 m, 100 W, 3, and 250 kbps, respectively.  Regarding the variables, the DSS-
ED uses the four different variables, while only two variables (i.e., the residual energy and the 
number of neighbors) are adopted in the LRTCP.  The simulation parameters are listed in Table 2.
	 Figure 2 shows the variation of the throughput when the number of sensor devices increases.  
Overall, the DSS-ED obtains higher throughput than the LRTCP.  This is because the DSS-
ED additionally considers the link quality between neighbors and the distance from the sink to 
determine the state of the sensor device, thereby reducing the packet loss rate and the number 
of hop counts.  On average, the DSS-ED obtains 11.1% higher throughput than the LRTCP.  In 
both cases, if the number of sensor devices is less than 30, the throughput increases sharply as 
the number of sensor devices increases.  However, when the number of sensor devices exceeds 
30, the throughput becomes almost constant.  The reason is that the sensor devices change their 
state to the Sleep state as the number of active neighbors reaches the NT.
	 Figure 3 shows the variation in energy consumption for each sensor device as the number 
of sensor devices increases.  Both the DSS-ED and LRTCP exhibit similar curves because the 
number of neighbors and the remaining energy are commonly taken into account as variables 
in both cases.  However, the energy consumption of the DSS-ED is slightly lower than that of 
the LRTCP.  More specifically, the DSS-ED achieves a 1.2% lower energy consumption than 

Table 2
Simulation parameters.
Parameter Value Parameter Value
MAC/PHY model IEEE 802.15.4 MAC header 15 B
Data rate 250 kbps Payload 1003 B
Size of the sensing field 500 × 500 m2 Idle energy consumption 16.4 mW
Number of sensor nodes 100 Tx energy consumption 17.9 mW
Transmission range 20 m Rx energy consumption 15.7 mW
PHY header 6 B Sleep energy consumption 0.2 μW

Fig. 2.	 (Color online) Throughput. Fig. 3.	 (Color online) Energy consumption.
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does the LRTCP.  The reason is that the DSS-ED increases the idle time of the sensor device by 
keeping the sensor devices with better link quality in the Active state, unlike the LRTCP.

4.	 Conclusions

	 In this paper, we proposed a DSS-ED for IoT local networks.  To support various IoT 
applications, the DSS-ED adapts the state of individual sensor devices by comprehensively 
considering the characteristics of various variables.  The DSS-ED is aimed at extending 
network lifetime while maximizing the utilization of the limited network capacity of the IoT 
local network.  Therefore, in the DSS-ED, each sensor device calculates the Euclidian distance 
between the measured variables and their ideal values.  Then, the sensor device adaptively 
determines its own state by comparing its Euclidian distance with those of its neighbors.  To 
evaluate the performance of the DSS-ED, we conducted simulation using the IEEE 802.15.4 
network model to compare the performance of the DSS-ED with that of the LRTCP.  The results 
showed that the DSS-ED obtains 11.1% higher throughput than the LRTCP since it additionally 
considers the link quality between neighbors and the distance from the sink.  In addition, 
the DSS-ED increases the idle time of the sensor device by keeping the sensor devices with 
better link quality in the active state, unlike the LRTCP, thus achieving 1.2% lower energy 
consumption than the LRTCP.
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