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	 The purpose of this study was to automatically detect dense calcium (DC) and acoustic 
shadow regions in intravascular ultrasound (IVUS) images by a dual-threshold-based 
segmentation approach.  Three hundred grayscale IVUS and corresponding virtual histology 
(VH)-IVUS images of human coronary arteries were obtained using a 20 MHz commercial 
catheter.  Plaque regions between intima and media-adventitial borders were manually 
extracted from all IVUS images.  To detect DC and acoustic shadow regions automatically, DC 
candidates were first selected from plaque regions on the basis of intensity.  The shadow mask 
of each DC candidate was then obtained by calculating its centroid.  A DC candidate involving 
acoustic shadow was finally selected as DC tissue.  The segmentation performance of the 
proposed approach was quantitatively evaluated using the area difference, DC ratio, Hausdorff 
distance, and Dice similarity coefficient.  Quantitative results indicated that all the parameters 
for the proposed approach were highly similar to those of VH-IVUS.  Despite the relatively low 
agreement (64.1%) for the DC tissue, reliable performance was found for the proposed approach.  
These experimental results suggest that the proposed method has clinical applicability for 
diagnosing cardiovascular diseases in IVUS images.

1.	 Introduction

	 Atherosclerosis is an inflammatory fibroproliferative disease characterized by deposits 
in the arterial vessel wall over time.(1)  These atherosclerotic plaques are composed of lipids, 
inflammatory cells, and calcium deposits.(2,3)  The disruption of an atherosclerotic plaque is 
the most critical cause of cardiovascular diseases, including angina, myocardial infarction, 
and sudden cardiac death.(4)  Therefore, the early diagnosis and accurate assessment of plaque 
composition are imperative.  They can allow clinicians to choose appropriate pharmaceutical 
or interventional therapies.  In addition, plaque characterization could provide beneficial 
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information for longitudinal studies of atherosclerosis or for understanding the process of 
vascular remodeling.(5)

	 Over the last decade, several imaging techniques have been developed to visualize the 
arterial lumen and wall.  Among these techniques, intravascular ultrasound (IVUS) is the most 
widely used diagnostic tool.  It provides a two-dimensional view of the arterial wall and allows 
thorough visualization of the plaque.(6,7)  Using a specially designed catheter, IVUS not only 
provides real-time cross-sectional images of the coronary lumen and wall, but also introduces 
morphological information such as plaque shape and size.(8,9)  Virtual histology (VH) is a new 
technique that characterizes arterial plaque based on the radio frequency (RF) signal analysis 
of reflected ultrasound pulses.(10,11)  VH-IVUS can identify the media and four components of 
plaque [fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), and calcified tissue (DC)] 
with a color-coded map.(10,11)  With a VH-IVUS image, clinicians can realize a more accurate 
characterization of plaque composition.  Although the RF signal provides additional information 
compared with grayscale IVUS data, VH-IVUS regards the shadow region and other regions in 
a similar way.(12)  Shadow regions usually occur behind DC regions without providing useful 
information for plaque characterization.  Nevertheless, VH-IVUS classifies acoustic shadow 
regions as FFT or NC class, although they should be assigned as NC or DC.(13,14)  Therefore, 
VH-IVUS results may differ from histology interpretations by pathologists for the shadow 
area.(13,14) 
	 On the other hand, the amount of DC plaque accumulated in the arterial wall can be 
considered as an accurate indicator of atherosclerotic disease.(6)  It is well known that the degree 
of calcification correlates with the overall risk of acute myocardial infarction.  Therefore, if the 
shape and position of the calcified plaque and acoustic shadow are properly characterized, it 
will help physicians choose the appropriate treatment in order to reduce the risk of operation.  
However, most of the previously reported techniques have looked into the segmentation of inner 
and outer vessel borders.  Only a few studies have attempted to characterize DC and acoustic 
shadow regions simultaneously from sequential IVUS image frames.(6,12,15)

	 Therefore, the purpose of this study was to use a dual-threshold-based segmentation 
approach to automatically detect DC and acoustic shadow regions in IVUS images.  For this 
purpose, a total of three hundred IVUS and corresponding VH-IVUS images were acquired 
from 26 cardiovascular patients.  DC and acoustic shadow regions were identified using the 
dual-threshold-based segmentation approach.  To determine the reliability of the proposed 
method, four evaluation indexes were calculated along with ground truth data (VH-IVUS).  The 
remainder of this manuscript is organized as follows.  Details of the segmentation approach 
and performance evaluation are presented in Sect. 2. Experimental results and discussions are 
provided in Sects. 3 and 4, respectively.  Finally, Sect. 5 concludes the paper and identifies 
future works.

2.	 Materials and Methods

	 DC and acoustic shadow were detected only for plaque regions of the original IVUS image.  
Plaque regions were manually accomplished by an expert for all IVUS images.  They were 
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classified into FT, FFT, NC, or DC using VH-IVUS.  The proposed approach detected DC 
tissue from IVUS images through a process consisting of coordinate conversion, noise removal, 
DC candidate extraction, and shadow detection.  VH-IVUS was utilized as the ground truth 
to validate the segmentation performance of the proposed method.  Experimental results were 
quantitatively assessed using various evaluation parameters.  The process used for the detection 
of DC and corresponding acoustic shadow regions is shown in Fig. 1.

2.1	 Image acquisition

	 Three hundred grayscale IVUS images and corresponding VH-IVUS images of right 
coronary arteries of 26 patients with known or suspected coronary artery disease were obtained.  
IVUS images with adequate involvements of FT, FFT, NC, and DC in plaque regions were 
selected as experimental subjects.  Those images having no acoustic shadow were excluded.  
IVUS imaging was performed using a commercially available 20 MHz IVUS catheter (Eagle 
Eye, Volcano Therapeutics Inc., Rancho Cordova, CA, USA) with an imaging system.  IVUS 
images were recorded and digitized along with a simultaneous ECG at 400 × 400 pixels in 
8-bit grayscale.  A motorized pullback was performed along the entire vessel at a speed of 0.5 
mm/s, acquiring 30 frames/s using a dedicated pullback device.  Written informed consent 
was obtained from all patients.  The present study was approved by the Institutional Review 
Board of Ulsan University Hospital, Republic of Korea.  For all IVUS image frames, intima and 
media-adventitial (MA) borders, also known as plaque regions, were manually segmented by an 
expert.

Fig. 1.	 Overall flowchart of the proposed approach for detecting DC and corresponding acoustic shadow from 
IVUS images (DC: dense calcium, IDC: intensity of dense calcium, IAS: intensity of acoustic shadow, THigh: high 
threshold, TLow: low threshold).
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2.2	 Automated DC and acoustic shadow segmentation algorithm

	 The dual-threshold-based segmentation approach was used to segment DC and 
corresponding acoustic shadow regions in IVUS images.  This method could detect DC and 
shadow regions using two thresholds.  One was for detecting high-intensity regions that might 
belong to DC.  The other was for identifying low-intensity regions (shadow region).
	 Owing to the circular trait of vessels, original IVUS images in Cartesian coordinates [Fig. 
2(a)] were first converted into polar coordinates in order to simplify the segmentation steps [Fig. 
2(b)].  Some parts of the image in IVUS frames such as calibration marks and scale marks were 
not significant for segmentation.  In particular, the catheter created a dead zone at the center of 
the Cartesian domain, equivalently at top rows of the polar domain, along with imaging artifacts 
(Fig. 2).  These artifacts should be removed.  Otherwise, they will disrupt the detection process.  
The most straightforward approach to remove the dead zone is by subtracting the clear artifact 
zone from every frame.  This does not degrade the image quality.  However, it is not easy to 
obtain a constant artifact zone because the luminal border often interferes with the artifact 
zone.  To avoid this limitation, the constant dead zone was extracted from the polar domain by 
calculating the minimum image ( , ) min ( , )min i iI x y I x y∈= λ  over a set of frames (Ii) with IVUS 
sequence λ(4) (50 frames) [Fig. 2(c)].  The obtained constant artifact zone was then subtracted 
from every frame to avoid interference with the catheter as shown in Fig. 2(d).  DC candidates 
were then acquired by extracting regions with a pixel intensity higher than THigh in lesion 
regions [Fig. 3(a)] as follows:

	 ( ){ }( , ) ( , ) ROIDCC HighX i j I i j T= > ∈∑ ,	 (1)

where XDCC and I(i, j) are the DC candidate region and the intensity of the pixel (i, j), 
respectively, and THigh is the high threshold for detecting the DC candidate.  ROI is the region 

(a) (b)

(c) (d)

Fig. 2.	 Transformation of Cartesian to polar coordinates and removal of the dead zone based on the constant 
artifact zone (a) Cartesian coordinate, (b) polar coordinate, (c) constant artifact zone, and (d) catheter removed 
image.
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of interest (plaque region) and ∑ indicates the ensemble of the pixel.  Morphological operation 
consisting of erosion and dilation was successively employed to remove unnecessary noises 
in the original image [Fig. 3(b)].  During morphological processing, the operation had a disk 
shape at a size of 1 × 1 pixel.  The detected DC candidate regions often distributed very closely 
owing to inherent tissue characteristics.  To minimize the computational load, these regions 
were merged as one by calculating the convex hull (16) when the distance of the adjacent DC 
candidate was less than 10 pixels [Fig. 3(c)].
	 DC candidate regions were classified into calcified or noncalcified groups according to 
the existence of acoustic shadow.  To evaluate the presence of shadow, the centroid (center of 
mass) of each DC candidate was calculated.  An image mask was generated by extracting the 
minimum and maximum locations of the y-axis following Eq. (2) [Fig. 3(d)].

	 ( ) ( ){ },min( ) , ,max( )DCC com DCC comM X i j X i j=∑ ,	 (2)

where M is the outermost pixel coordinate of the shadow mask and icom is the x-axis coordinate 
of the centroid.  After mask extraction, the average of the local intensity placed in the same 

Fig. 3.	 (Color online) One example of the proposed method for detecting DC and corresponding acoustic shadow 
regions including (a) the detection of DC candidates, (b) morphological operation, (c) convex hull, (d) image mask 
of the acoustic shadow, (e) finally obtained DC tissue, and (f) superimposition of DC and shadow regions.

(a) (b)

(c) (d)

(e) (f)
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angle as the DC candidate region was computed to evaluate the presence of shadow.  For pixels 
that satisfied IAS < TLow, corresponding DC candidates were finally accepted to be in DC class [Fig. 
3(e)].  Otherwise, they were regarded as noncalcified.

	 ( ) ( ){ }( , ) ( , ) and ( , ) ROIDC DCC High AS LowX i j I i j T I i j T= > < ∈∑ ,	 (3)

where XDC is the detected calcified region and IDCC and IAS are the intensities of the DC 
candidate and shadow regions, respectively.  In other words, only the region that satisfied 
both IDCC > THigh and IAS < TLow was selected to be in the DC group.  Threshold values for 
IDC and IAS were set at 160 and 50, respectively.  These values were empirically obtained by 
determining the mean intensity of the DC and shadow regions in 300 IVUS images.  Figure 3(f) 
demonstrates the superimposed DC estimates with the corresponding acoustic shadow.
	 Regarding computational load, the proposed method needed about 3.2 s to segment DC and 
the acoustic shadow in one IVUS image using an Intel(R) Core™ i7-2600 CPU at 3.40 GHz 
with 8.00 GB ram.  All the parameters were maintained under the same condition during the 
detection procedure.  All the procedures were implemented with MATLAB software package 
(R2015b, MathWorks Inc., Natick, MA, USA).

2.3	 Performance validation

	 To quantify the detection performance, area difference (AD), DC ratio (DCR), Hausdorff 
distance (HD), and Dice similarity coefficient (DSC) between the proposed method and 
VH-IVUS were determined.  AD is the mean area difference of the DC region.  DCR is 
the corresponding ratio of DC regions between the proposed method and VH-IVUS.  HD 
represented the similarity of the worst case fitting condition.  It was defined as the maximum 
distance of the nearest pixel between two boundaries.(17,18) HD directly depicted pixel-to-
pixel variation.  It was calculated on the basis of the largest distance between pixels using the 
equation

	 ( , ) max max min , max min
b B a Aa A b B

HD A B a b a b
∈ ∈∈ ∈

        = − −          
,	 (4)

where HD(A,B) is the HD between the detected boundaries A and B; A = {a1, a2, …, an} and B = {b1, 
b2, …, bn}.(19) For the coefficient ranging from 0 to 1, a value of 1 indicated perfect agreement, 
whereas a value of 0 indicated the absence of agreement.  
	 DSC has been used as assessment metrics to measure the overlap between two regions.(19) 
It has been widely employed in the evaluation of medical image segmentation.  DSC can be 
computed as

	
2

( , )
A B

DSC A B
A B
⋅ ∩

=
+

,	 (5)
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where DSC(A,B) is the DSC between segmented DC regions obtained by the proposed method 
and VH-IVUS.  If DSC had a value of 1, regions A and B had the same location and area.

3.	 Experimental Results

3.1	 Comparing detection accuracy of DC region between the proposed method and VH-
IVUS

	 Results of parameters including area, AD, DCR, HD, and DSC obtained by the proposed 
method and VH-IVUS are summarized in Table 1.  The mean area difference of the DC region 
was 12.246 mm, which was relatively small.  A relatively high similarity between the proposed 
method and VH-IVUS was found, with HD and DSC values of 0.540 and 0.596, respectively.  
On the other hand, some differences existed between the two approaches as shown in Fig. 
4.  DCR representing the mean overlapping ratio of DC regions was found to be 64.08%.  
Segmentation results of the DC region detected by the proposed method and VH-IVUS are 
shown in Fig. 5.

Table 1 
Comparison of the evaluation parameters including AD, DCR, HD, and DSC between the proposed method and 
VH-IVUS.

ID AD (mm) 	 DCR	 HD 	 DSC	
	 1 	 13.203	  	 63.629	  	 0.920	  	 0.576	  
	 2 	 8.427	  	 66.886	  	 0.442	  	 0.621	  
	 3 	 18.846	  	 74.654	  	 0.430	  	 0.564	  
	 4 	 18.253	  	 65.904	  	 0.418	  	 0.565	  
	 5 	 16.977	  	 59.042	  	 0.953	  	 0.602	  
	 6 	 4.527	  	 59.535	  	 0.368	  	 0.596	  
	 7 	 4.167	  	 65.120	  	 0.372	  	 0.589	  
	 8 	 16.111	  	 67.714	  	 0.631	  	 0.600	  
	 9 	 15.295	  	 48.723	  	 0.395	  	 0.546	  
	 10 	 2.890	  	 60.846	  	 0.207	  	 0.537	  
	 11 	 14.455	  	 73.114	  	 0.394	  	 0.597	  
	 12 	 31.945	  	 66.290	  	 0.484	  	 0.725	  
	 13 	 0.191	  	 61.626	  	 0.803	  	 0.567	  
	 14 	 8.750	  	 63.989	  	 0.382	  	 0.564	  
	 15 	 13.045	  	 58.588	  	 0.711	  	 0.600	  
	 16 	 10.833	  	 67.140	  	 0.455	  	 0.614	  
	 17 	 18.525	  	 59.936	  	 0.751	  	 0.538	  
	 18 	 9.345	  	 69.437	  	 0.698	  	 0.706	  
	 19 	 17.623	  	 69.270	  	 0.603	  	 0.609	  
	 20 	 1.517	  	 60.103	  	 0.382	  	 0.598	  

Mean 	 12.246	 	 64.077	 	 0.540	 	 0.596	
*AD: average difference, DCR: dense calcium ratio, HD: Hausdorff distance, DSC: Dice similarity coefficient.
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(a) (b)

(c) (d)

Fig. 4.	 (Color online) Comparison of the segmentation results of DC tissue: (a) proposed method and (b) VH-IVUS.  (c) 
Differences between the proposed method and VH-IVUS.   (d) Tissue characterization of (c).

Fig. 5.	 (Color online) Segmentation results between the proposed method and VH-IVUS.

(a) (b) (c) (d)

(e) (f) (g) (h)
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3.2	 Tissue distribution for DC regions obtained by the proposed method

	 As mentioned above, DC regions obtained by the proposed method corresponded to 
approximately 64.08% compared with those by VH-IVUS.  This indicated that the rest (35.92%) 
of the DC regions were classified into different tissues, such as FT, FFT, and NC.  The analysis 
of the tissue distribution for these regions revealed that NC had the highest percentage (28.43%) 
as shown in Table 2, whereas FT and FFT occupied only 4.41 and 0.01%, respectively [Fig. 
4(d)].  These experimental results revealed that the proposed approach had reliable segmentation 
performance despite the presence of some differences in the detected DC regions between the 
two methods.

4.	 Discussion

	 The performance of the proposed method for detecting DC and the corresponding acoustic 
shadow regions can be accurately evaluated by comparison with the arterial tissue distribution 
histologically.  However, it is a very difficult and time-consuming process.  VH-IVUS is a 
good alternative because of its fast and accurate tissue characterization.  VH-IVUS classifies 
cardiovascular tissues into FT, FFT, NC, or DC based on reflected RF signals.  Previous studies 
have reported that VH-IVUS is a reliable classification method with an accuracy above 93.5%.(20) 
Therefore, VH-IVUS was selected as the ground truth (reference) in this study to assess the 
segmentation performance of the proposed method.  The intima and MA borders for tissue 
characterization were designated by experts for all IVUS images.
	 The analysis of DC detection between the proposed method and VH-IVUS showed reliable 
HD and DSC values for both groups.  This is mainly because automatically detected DC regions 
by the proposed method and VH-IVUS showed similar distribution patterns as depicted in Fig. 
5.  The proposed method showed an agreement rate of 64.08% with VH-IVUS.  To improve 
computational efficiency, DC candidates with a small distance of less than 10 pixels with 
neighboring candidates were used to compute convex hull [Fig. 3(c)].  However, considering 
that the remaining region except for DC class was mostly classified as NC tissue, this might 
be a controversial issue.  Typically, the distribution of NC and DC tissues is regarded as one of 
the most important assessment factors for diagnosing cardiovascular diseases in IVUS images.  
However, the plaque region does not involve a relatively large amount of DC tissue with acoustic 
shadow in comparison with the entire image.  In addition, NC tissues existing between detected 
DC regions play no significant role during lesion diagnosis because they are only distributed 
marginally.  Obviously, these regions can also be partly detected on the basis of the existence 

Table 2 
Analysis of tissue distribution for the regions classified as different tissues, namely, FT, FFT, NC, and DC.

FT (%) FFT (%) NC (%) DC (%)
Proportion 4.41 0.01 28.43 64.08

*FT: fibrous tissue, FFT: fibro-fatty tissue, NC: necrotic core, DC: dense calcium.
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of acoustic shadow.  However, this study focused on the optimization of computational load 
rather than the accurate segmentation of DC.  Another reason for this result comes from the DC 
distribution on VH-IVUS.  The calcified area usually involves a corresponding lateral shadow 
region.  However, some regions were classified as DC class, although there was no shadow 
behind them.  These factors might have affected the agreement between the proposed method 
and VH-IVUS.
	 The rest of the automatically detected DC regions by the proposed method but not by VH-
IVUS were mostly classified as NC, while FT and FFT accounted for only 4.41 and 0.01%, 
respectively.  Interestingly, FFT has a very low percentage.  This might be due to the detection 
characteristic of the proposed method for DC and acoustic shadow.  Typically, the mean 
intensities of arterial tissues are in the order of DC > NC > FT > FFT in IVUS sequences.(15,21) 
Moreover, the overlapping region between FFT and DC is quite small because these tissues 
have quite different intensity profiles.  Existing approaches have attempted to classify tissue 
compositions on the basis of these characteristics and verified that the intensity could be a good 
indicator for tissue characterization.(15,21)  The proposed method implemented dual threshold in 
order to detect DC and the corresponding acoustic shadow in IVUS images.  For this purpose, 
most FT and FFT with relatively low intensities were excluded through the criterion of I > THigh.  
Only the regions that satisfied the condition I < TLow were finally selected as DC.  This might 
have caused the very small distributions of FT and FFT.
	 The major contribution of this study is that it is possible to segment DC and acoustic shadow 
regions reliably using only intensity information in comparison with VH-IVUS, which utilizes 
tricky and complex RF signals.  Another obvious advantage of the proposed method is that it 
can automatically detect DC and shadow from IVUS images.  This can help clinicians diagnose 
various cardiovascular diseases.  According to the distribution and location of detected DC, 
clinicians will be able to establish appropriate treatment strategies.  Moreover, the proposed 
method can be easily implemented to image-based tissue characterization techniques to improve 
the diagnostic accuracy and efficiency of existing methods.
	 One of the main limitations of this study was that VH-IVUS data were designated as the 
ground truth for assessing the segmentation performance of the proposed method.  Although 
VH-IVUS imaging provides acceptable correlation with histologic analyses, even a subtle 
error in VH-IVUS can affect the entire procedure, thus influencing the agreement between 
the proposed method and VH-IVUS.  VH-IVUS can be utilized as a basis for validating 
segmentation performance.  However, it should not be considered as the ground truth.  Another 
limitation of this method was that NC, which was regarded as DC during the segmentation 
process, was not properly extracted because the proposed method focused on the optimization 
of computational load.  This region cannot be easily differentiated using only the intensity 
characteristic.  Additional texture features are needed.  To solve these limitations, further study 
is needed to improve the segmentation performance for DC and acoustic shadow.  In addition, a 
convolutional neural-network-based classification model needs to be developed to characterize 
cardiovascular tissue components.  We also needed to directly evaluate the segmentation 
performance of the proposed method via histologic analysis.



Sensors and Materials, Vol. 30, No. 8 (2018)	 1851

5.	 Conclusions

	 In this study, we automatically segmented DC and corresponding acoustic shadow regions 
based on dual threshold from IVUS image sequences.  The performance of the proposed 
method was evaluated by evaluating parameters such as AD, DCR, HD, and DSC.  Quantitative 
analyses indicated that the proposed method had reliable segmentation performance compared 
with VH-IVUS.  In particular, the proposed method showed high similarity with VH-IVUS 
despite a relatively low agreement rate.  Moreover, DC regions detected by the proposed 
approach involved only small amounts of FT and FFT.  These experimental results suggest that 
the proposed method has clinical applicability for the diagnosis of cardiovascular diseases based 
on IVUS images.  To improve its segmentation performance, further study is needed using 
various vessel conditions.
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