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	 With over four decades spent collecting spaceborne moderate-resolution imagery, Landsat 
represents the longest remote sensing mission in the world, and has had various applications.  
Land cover mapping is its heritage for research around the world.  Landsat 8 continues the 
legacy of previous Landsat systems, with a new Operational Land Imager (OLI) sensor that 
has high spectral resolution and improved signal-to-noise ratio for better characterization of 
land cover.  With improved quality, data size also increases.  Hence, with limited research in 
adjusting data size, it is necessary to explore robust land cover classification techniques that 
produce accurate maps with more or fewer inputs.  The Optimum Index Factor (OIF) is a 
statistic value that can be used to select the optimum combination of three bands in a satellite 
image that has the highest amount of information.  In this study, we explore the land cover 
classification of OLI imagery based on OIF.  Two test sites were selected around the hilly 
regions of Korea for OLI original composite, first-rank OIF composite, and OLI original with 
sum derivative of top-three OIF ranked composites.  These three composites were classified 
with the well-known Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) 
classifiers.  The results were then analyzed and compared on the basis of producer accuracy, 
user accuracy, overall accuracy, and kappa coefficient.  The result shows that the first-ranked 
OIF with a three-band composite shows a similar classification accuracy in SVM and slightly 
less in SAM, while the ten-band composite with OLI original bands and the sum derivative of 
the top-three OIF rank shows the same result or a small improvement in SVM classification.  
OIF-derivative composites can be useful in classification problems depending on whether 
the minimum amount of data for a similar result or more data to achieve higher accuracy is 
preferred.

1.	 Introduction

	 The era of satellite remote sensing began after the successful launch of Sputnik 1, the first 
artificial satellite of the former Soviet Union, on October 4, 1957.(1)  Since then, many remote 
sensors with different capabilities have been providing revolutionary scientific insights of 
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the Earth’s surface for various purposes.  The remotely sensed data have been widely used in 
various applications such as agriculture, disaster monitoring, forest and vegetation monitoring, 
hydrology, land use/cover change, and so on.
	 Since 1972, Landsat satellites have provided satellite imagery of the Earth’s surface through 
its sensors.(2)  Owing to the consistent, cross-calibrated set of records,(3) Landsat imagery has 
maintained a tradition of land cover mapping in many research studies.(4)  Landsat 8 is the 
latest addition that maintains the legacy of previous Landsat systems.  Its new Operational 
Land Imager (OLI) sensor, with high spectral resolution and improved signal-to-noise ratio,(5,6) 
provides high-quality land cover mapping imagery, enabling better characterization of the 
Earth’s surface.(7)  The high image quality also increases the image size, requiring high 
computation costs for classification tasks.
	 Lu and Weng carried out a detailed survey on classification methods to improve performance.(8)  
In recent years, various techniques have been used to produce land cover maps using OLI 
imagery.(9–15)  These studies have contributed significantly to the field but have been limited 
to classification results and accuracy comparisons.  Very limited focus has been on improving 
accuracy by altering original data, i.e., reducing bands or adding derivative bands.  Moreover, 
comparisons of classifiers for complex urban greenery, vinyl house farmlands, mixtures of 
coniferous and deciduous forests, and other land cover types are also limited.  Hence, it is 
necessary to explore robust land cover classification techniques with adjusted data inputs that 
produce accurate maps.
	 The Optimum Index Factor (OIF) is a statistic value that can be used to select the optimum 
combination of three bands out of all possible three-band combinations, which has the 
highest amount of ‘information’, i.e., the highest sum of standard deviations, with the least 
amount of duplication (lowest correlation among band pairs).(16)  OIF can provide a minimum 
band composite with much information, and the sum of these composites could give extra 
information.  In order to test this, in this study, we aim to explore the land cover classification 
of OLI imagery in two test sites around the hilly regions of Korea based on OIF scores.  The 
original OLI composite (Comp7) along with first-ranked OIF composite (Comp3) and OLI 
original with the sum derivative of top-three OIF ranked composites (Comp10) were classified 
using the Spectral Angle Mapper (SAM) and Support Vector Machine (SVM).  In order 
to examine the robustness of the band composites, the accuracies of the results of the new 
composites based on ground truth were compared with the original OLI composite.

2.	 Materials and Methods

2.1	 Study area

	 Two study areas in South Korea were selected for this study (Fig. 1).  The first study area is 
located in Hwasun county, Jeollanam province.  It is situated between 35°0’17.15” to 35°7’39.08” 
N latitude and 126°54’41.89” to 127°2’35.08” E longitude covering an area of approximately 
167.05 km2.  The elevation in the area ranges from 30 to 1177 m and mostly a hilly area with 
forest, agricultural lands, a small urban area with a small river, and a few small water bodies.
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	 The second study area is located slightly northeast of the first in Gumi City, Gyeongsangbuk 
province.  It is situated between 36°4’16.19” to 36°11’34.06” N latitude and 128°16’21.83” to 
128°24’30.97” E longitude covering an area of approximately 165.16 km2.  The elevation ranges 
from 25 to 958 m and has hilly forest, agricultural land, dense urban areas with a large river, 
and a few small water bodies.  The urban area is a dense residential and industrial built-up area 
with some rural villages.
	 The two areas represent the typical land cover in South Korea with dense urban areas, mixed 
forests, and farmlands with vinyl houses.  The selection of these was based on the availability 
of Landsat imagery and similar-date high-resolution imagery in Google Earth Pro (GEP) for 
validation purposes.

2.2	 Data used

	 For this study, Landsat 8 OLI images (one for each study area) were selected.  Both of the 
images were downloaded from the United States Geological Survey (USGS) EarthExplorer 
platform and were the highest quality Level-1 Terrain corrected products, i.e., L1T.  The image 
details are shown in Table 1.  The obtained GeoTiFF images were converted from digital 
numbers to Top of the Atmosphere (TOA) radiance by using the Radiometric Calibration pre-
processing tool in ENvironment for Visualizing Images (ENVI) v.5.2 based on the MTL header 
files information.  The Radiometric Calibration carried out subsetting of the whole scene to the 
study area based on the provided shape file.  Then, the subsetted TOA radiance scenes were 
transformed to reflectance using the Fast Line-of-sight Atmospheric Analysis of Hypercubes 
(FLAASH) tool in the ENVI.  For the average elevation parameter in FLAASH, the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation 
Model (GDEM) of 1 arc-sec resolution downloaded from the USGS EarthExplorer was used.  
	 Four types of land cover classes were chosen for this study.  A detailed description of each 
class is shown in Table 2.  Additionally, for the purpose of training and accuracy assessment, the 
high-resolution images available in GEP were used as the ground truth data.  The availability 

Fig. 1.	 (Color online) Location map of study area showing zoomed Landsat imagery and training polygons: 
Hwasun (red) and Gumi (blue).
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of the high-resolution images in GEP corresponding to the OLI imagery was also one of the 
major reasons for the selection of the study area as well as the dates.  The corresponding images 
available in GEP for Hwasun and Gumi are October 24 and 30, 2013 and January 17, 2015, 
respectively, which are the nearest possible dates for similar land-cover identification.  These 
two dates also represent the typical season and variation in land cover in Korea.
	 On the basis of the  knowledge of the areas and the distribution of land cover, 3 × 3 pixel 
polygons were selected as the training input for classification, which were as pure as possible 
and represent all types of classes (Fig. 1).  However, for validation, random points were used and 
crosschecked with GEP and its high-resolution images.  Figure 2 shows the validation points 
in the first-rank OIF images.  The numbers of used training polygons and validation points are 
shown in Table 2.  

2.3	 Methodology

	 Figure 3 shows the overall schematics of the study.  After the preprocessing and atmospheric 
correction of the subsetted Landsat OLI imagery, each band of the images was exported to 8-bit 
gray-scale GeoTIFF files in ENVI Classic and later imported to Integrated Land and Water 
Information System (ILWIS) v.3.31 Academic to form a map list and OIF scores were thus 
calculated for each study area.  
	 In order to calculate the OIF, a minimum of three raster maps are required within the same 
value domain in the same georeference.  The inputs for the calculation of OIF are standard 
deviations and correlation coefficients for each band in the composite image.  First, the possible 

Table 1
Specifications of Landsat Operational Land Imager-8 (OLI) imagery used in this study.

Study area Path/row Date acquired Scene centre time Band Name Wavelength 
(µm)

Hwasun 115/36 10/27/2013 02:07:24.14Z
1 Coastal aerosol 0.435–0.451
2 Blue 0.452–0.512
3 Green 0.533–0.590

Gumi 115/35 1/18/2015 02:05:16.62Z

4 Red 0.636–0.673
5 NIR 0.851–0.879
6 SWIR1 1.566–1.651
7 SWIR2 2.107–2.294

Table 2
Description of land-cover classes along with number of training polygons and validation points 
for each class.

S. No. Class Description Training polygons Validation points
(3 × 3 pixels) (1 pixel)

Study area Hwasun Gumi Hwasun Gumi
1 Built-up Building, greenhouses, roads 19 15 29 64
2 Forest Forest, vegetation 15 17 176 85
3 Land Farmland, barren 12 16 9 11
4 Water River, lake, wetland, ice 7 11 36 90
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number of all three-band combinations is determined and then the standard deviation and 
correlation between each band are calculated.  For each combination, OIF is calculated as 

	
, , ,
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where Std is standard deviation of band i and Cor is the correlation coefficient of bands i, j, and 
k.  Finally, the OIF values are ranked.  Using the rank, one can create a three-band composite of 
a satellite image for maximum visual information.
	 On the basis of the ranked composite, we create two new types of composite image out of the 
original OLI bands.  The first composite is a three-band composite of the first-rank OIF and the 
other is a ten-band composite of seven OLI original bands and three derivative bands created 
by summing the top-three OIF ranked composites, i.e., OIF1 (sum of 3 bands), OIF2 (sum of 3 
bands), and OIF3 (sum of 3 bands).  The Comp3 composite represents the minimum set of band 
composites that could be used for the classification, whereas Comp10 represents the addition 
of informative bands for the evaluation of classification accuracy.  Both Comp3 and Comp7 
composites will be compared with the original composite bands for accuracy assessment and 
whether they improve the accuracy of land cover mapping.

Fig. 3.	 Schematic flow of the study.

Fig. 2.	 (Color online) First-rank OIF band composite in RGB with validation points: (a) Hwasun (Bands 125) and (b) 
Gumi (Bands 156).

(a) (b)
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	 For the classification of the band composites, the two most widely used classifiers that are 
available in ENVI software, namely, SAM and SVM, are used for the classification of the 
images.
	 SAM is a physically based spectral classification method that allows quick mapping of the 
spectral symmetry based on angles of the image spectra to the reference spectra, treating them 
as vectors in n-dimensional space.(17)  The reference spectra can either be a spectrum measured 
in a laboratory, a field spectrum, or obtained directly from the image.  It is not affected by solar 
illumination factors, because the angle between the two vectors is independent of the vector 
length.(17,18)  In ENVI, SAM assigns the angles to output channels, and then every pixel is 
allocated to the class defined by the reference spectrum.  The class that is assigned to each pixel 
is saved in the output channel.(19)  It has been widely used in the classification of land cover in 
remote sensing.(20–22)

	 SVM is a nonparametric machine learning algorithm used for classification and regression 
in remote sensing.  It is based on minimizing the structural risk and maximizing the separation 
margin.(23)  The success of SVM depends on how well the process is trained.  SVM often yields 
good classification results from complex and noisy data and is thus often used as the reference 
state-of-the-art method for comparison of object identification and classification.(24–28)  
	 In order to assess the accuracy of the classifications, measures of overall accuracy (OA), 
kappa coefficient (kappa), producer’s accuracy (PA), and user’s accuracy (UA) were used.  
These statistics are the most widely used in remote sensing classification, in which the OA 
is defined as the ratio of the total number of correctly classified pixels to the total number of 
pixels (the total number of all ground truth reference pixels), whereas the PA corresponds to the 
omission error and the UA corresponds to commission error.(20,25,29)  The kappa coefficient uses 
all elements in the error matrix, and it is used to accurately explain errors ranging from −1 to 
+1, where 0 represents the amount of agreement that can be expected from random chance, and 
1 represents perfect agreement between the raters.(30)  

3.	 Results and Discussion

	 The map list formed in ILWIS was used to create the correlation matrix and standard 
deviation of each OLI band as shown in Table 3.  By using values from Table 3 and Eq. (1), the 
three-band composite OIF scores, and thus ranks, were derived.  The ranks for both study areas 
are shown in Table 4.  In Fig. 2, the first-rank composites are shown in the Red-Green-Blue 
color composite.  In both images, land covers (built-up, forest, land, and water) are distinctly 
separate from each other.
	 After forming the ten-band composite using the sum of the top-three OIF ranked bands, 
the training polygons were analyzed to see the effectiveness of the newly formed bands using 
the plots of the mean reflectance in each class.  Figure 4 shows that in both study areas, 
the composites newly formed by summing have high separability and are important in the 
classifications.
	 After applying the classifiers on each of the composite images, the resulting maps were as 
shown in Figs. 5 and 6 for the Hwasun and Gumi study areas, respectively.  The results were 



Sensors and Materials, Vol. 30, No. 8 (2018)	 1759

Table 3
(Color online) Correlation matrix (green to red color scale) and standard deviation (grey to blue color scale) of each band of 
Landsat scenes in both study areas.
Study area Band 1 2 3 4 5 6 7 Std. dev.

Hwasun

1 1 0.99 0.94 0.91 0.18 0.67 0.82 59.03
2 0.99 1 0.97 0.95 0.2 0.72 0.86 63.1
3 0.94 0.97 1 0.98 0.37 0.83 0.92 62.17
4 0.91 0.95 0.98 1 0.28 0.82 0.93 62.63
5 0.18 0.2 0.37 0.28 1 0.68 0.46 61.43
6 0.67 0.72 0.83 0.82 0.68 1 0.95 60.11
7 0.82 0.86 0.92 0.93 0.46 0.95 1 62.05

Gumi

1 1 0.99 0.93 0.86 0.54 0.65 0.76 61.7
2 0.99 1 0.96 0.9 0.59 0.7 0.81 65.52
3 0.93 0.96 1 0.98 0.7 0.81 0.88 69.77
4 0.86 0.9 0.98 1 0.75 0.88 0.93 72.92
5 0.54 0.59 0.7 0.75 1 0.89 0.83 69.29
6 0.65 0.7 0.81 0.88 0.89 1 0.97 71.01
7 0.76 0.81 0.88 0.93 0.83 0.97 1 71.76

Table 4
OIF score and rank for the band composites in both study areas.
Study area Rank Composite OIF Score

Hwasun

1 Band 1 Band 2 Band 5 133.93
2 Band 1 Band 4 Band 5 133.15
3 Band 2 Band 4 Band 5 130.14
4 Band 1 Band 5 Band 7 125.7
5 Band 2 Band 5 Band 7 122.52

Gumi

1 Band 1 Band 5 Band 6   97.42
2 Band 1 Band 5 Band 7   95.34
3 Band 1 Band 4 Band 5   95.14
4 Band 2 Band 5 Band 6   94.36
5 Band 2 Band 4 Band 5   92.95

Fig. 4.	 (Color online) Plot of mean reflectance value of each band of ten-band composite (7 OLI and 3 OIF ranked 
bands sum) for both study areas: (a) Hwasun and (b) Gumi.

(a)

(b)
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Fig. 5.	 (Color online) Land cover maps of the Hwasun area for all three composites using SAM and SVM 
classifiers.
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Fig. 6.	 (Color online) Land cover maps of the Gumi area for all three composites using SAM and SVM classifiers.
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neither aggregated nor filtered for better comparison.  The results in both study areas were 
different and the methods produced varied results.  Visually, owing to the limitation of the 
satellite resolution, the results show a great deal of salt/pepper effects and only with careful 
observation can a difference in the classes of pixels be detected.  The general misclassification 
was between water and the shadows of tall buildings; between sparse vegetation, green roof 
buildings, cropland, and forest; between bare land and urban areas; between factories with 
blue roofs and vinyl houses; and so on.  The water area in the river was not large enough to be 
continuously mapped and small water bodies were highly confused with the growing vegetation 
surrounding them.  Similarly, limitations were also apparent in the linear visualization of the 
roads.  Overall, both Comp3 composite with only three bands and Comp10 composite with ten 
bands produce visually similar maps compared with the original composite of OLI.  
	 As shown in Table 5, the percentages of the pixels classified by each method were very 
inconsistent among built-up areas, forest, and open land.  The highest inconsistency was shown 
between open land and built-up classifications in the Hwasun area, whereas it was between 
open land and forest classifications in the Gumi area.  This could be the result of the dominant 
class and limitations in the training data.  In the Hwasun area, the SVM method produced more 
built-up pixels than SAM, assigning them to the land class, whereas in the Gumi area, land 
pixels were more assigned to the forest class.  The reason for the inconsistency is the seasonal 
variation in the study area images.  The Hwasun area was more covered by green forest, and 
the farmland with growing crops showed much similarity to the impervious built-up areas.  
Additionally, in the case of the Gumi area, the fact that the image was from winter meant that 
the deciduous forest was sparse and very similar to farmland with growing crops.  This could 
also be the effect of a dominant class feature.  In terms of the band composites, the results of 
Comp7 are very similar to those of Comp3 using SAM, whereas the SVM results from Comp7 
were similar to those from Comp10.  This shows that depending on the classifier and study area, 
both Comp3 and Comp10 can produce similar results comparable to the original OLI composite, 
i.e., Comp7.
	 Results were validated with ground truth to see how the randomly sampled pixels were 
classified.  Table 6 shows the classification accuracies of the classifiers for all three composite 

Table 5
(Color online) Percentage of classified pixels for each class in each composite band using SAM and SVM classifiers. 
The colors of cells represent the highest (red) and lowest (green) values in each row, i.e., class.

Method SAM SVM Average 
classified

Study area Class Comp7 Comp3 Comp10 Comp7 Comp3 Comp10 Pixels (%)

Hwasun

Built-up 4.01 3.94 5.37 9.45 6.14 9.57 6.41
Forest 77.51 76.72 78.04 79.27 76.53 79.07 77.86
Water 0.34 0.32 0.35 0.56 0.75 0.55 0.48
Land 18.14 19.01 16.23 10.72 16.58 10.82 15.25

Gumi

Built-up 18.74 19.47 19.85 21.78 21.68 21.89 20.57
Forest 23.85 21.8 24.58 35.62 34.48 36.36 29.45
Water 4.44 4.4 4.35 4.82 4.64 4.55 4.53
Land 52.97 54.33 51.21 37.78 39.2 37.21 45.45
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images of the Hwasun and Gumi areas.  It can be very easily seen that differences in accuracies 
were observed for different classifiers in different study areas.  In the Hwasun area, the 
overall accuracy was the highest (89.6%) for Comp7 for the SVM classification, and the PA 
and UA achieved the highest accuracies of 100% for water only.  In the Gumi area, the SVM 
classification for Comp10 achieved the highest accuracy of 92.8%, and the SVM classifier for 
Comp10 forest samples and the SAM classifier for Comp10 water samples achieved the highest 
PA and UA.  From the variation in accuracies in Table 6, we can see that Comp3 has reduced 
OA while Comp10 has improved with reduced kappa coefficient compared with Comp7.  
Comp3 shows a similar but reduced change in OA for SAM while showing improvements in 
the Hwasun and Gumi regions.  However, in Comp10, the OA has improved or remained nearly 
identical.  Also, SVM shows better OA and kappa coefficient results than SAM in both of the 
composite cases.
	 The similarity or improvement of results based on the OIF scores and composites can be 
very useful depending on the classifier, seasonality, and study area.  For transferring data or 
comparing large-volume data, the Comp3 bands are useful, whereas improved accuracy for 
complex land cover can be achieved by the addition of derivative bands.  It also shows that 
SAM does not work well with fewer bands and shows less improvement with the addition of 
bands.  In contrast, SVM shows a similar result with even fewer bands and is improved with the 
addition of derivative bands.

4.	 Conclusions

	 With the improvement in data quality of additional new remote sensors, the exploration of 
improvements in land cover classification accuracy at the cost of data size is essential.  In this 
study, we explored the classification accuracy of Landsat OLI imagery derivatives in two test 

Table 6
(Color online) Accuracy assessment statistics for all composite bands of study areas using SAM and SVM classifi-
ers. The colors of cells represent the lowest (green) to highest (red) percentage of the accuracy in PA, UA, and OA 
collectively and kappa coefficient separately (blue).

Class Built-up Forest Water Land
OA Kappa

coefficientStudy
area Classifier Composite PA UA PA UA PA UA PA UA

Hwasun

SAM
Comp7 37.93 68.75 93.75 92.18 77.78 100 63.89 47.92 82.4 0.617
Comp3 37.93 64.71 88.64 92.31 66.67 100 63.89 39.66 78.4 0.552
Comp10 58.62 73.91 93.75 91.67 77.78 100 61.11 55 84.4 0.660

SVM
Comp7 82.76 68.57 96.59 94.44 88.89 66.67 61.11 95.65 89.6 0.775
Comp3 62.07 78.26 94.32 96.51 100 64.29 72.22 63.41 87.6 0.741
Comp10 82.76 66.67 96.02 94.41 88.89 66.67 61.11 95.65 89.2 0.767

Gumi

SAM
Comp7 79.69 94.44 60 92.73 90.91 90.91 93.33 64.62 78.4 0.683
Comp3 78.13 87.72 58.82 96.15 81.82 90 95.56 65.65 78 0.677
Comp10 79.69 86.44 62.35 92.98 81.82 100 91.11 65.6 78 0.677

SVM
Comp7 84.38 87.1 97.65 94.32 81.82 75 88.89 90.91 90.4 0.861
Comp3 85.94 90.16 96.47 94.25 81.82 81.82 90 89.01 90.8 0.866
Comp10 87.5 91.8 100 94.44 81.82 90 91.11 92.13 92.8 0.895
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sites around the hilly regions of Korea based on OIF scores using two well-known classifiers, 
SAM and SVM.  The Comp3 and Comp10 composites were compared with the Comp7 
composite.  On the basis of the validation by ground truth, results were compared with PA, UA, 
and OA along with the kappa coefficient.  It can be concluded that only Comp3 shows a similar 
classification accuracy in SVM and slightly less in SAM.  In the case of Comp10, the composite 
shows the same results or an improvement in the SVM classification.  OIF derivative composites 
can be useful for classification problems depending on whether the minimum amount of data 
for a similar result or more data to achieve higher accuracy is preferred.  Improving land cover 
mapping accuracy is beneficial to authorities for better analysis of the environment, but further 
work is required to validate our findings for different cases and variations in sensors, seasons, 
and classifiers.  
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