
1715Sensors and Materials, Vol. 30, No. 8 (2018) 1715–1721
MYU Tokyo

S & M 1628

*Corresponding author: e-mail: shonkim@korea.ac.kr
**Corresponding author: e-mail: ejkim32@hallym.ac.kr
http://dx.doi.org/10.18494/SAM.2018.1864

ISSN 0914-4935 © MYU K.K.
http://myukk.org/

Message Queue Telemetry Transport Broker with Priority Support
for Emergency Events in Internet of Things

Yong-Seong Kim,1 Hwi-Ho Lee,2 Jung-Hyok Kwon,2
Yong Sin Kim,1* and Eui-Jik Kim2**

1School of Electrical Engineering, Korea University,
145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea

2Department of Convergence Software, Hallym University,
1 Hallymdaehak-gil, Chuncheon, Gangwon 24252, South Korea

(Received March 30, 2017: accepted January 22, 2018)

Keywords:	 emergency event, Internet of Things, MQTT, priority control, virtual queue

	 This paper presents a message queue telemetry transport (MQTT) broker with priority
support for emergency events in the Internet of Things (IoT), which is abbreviated p-MQTT. To
support the timely and reliable message delivery of emergency events, the p-MQTT classifies
the published messages coming into the broker server and controls their priority according to
the classification results. To this end, the p-MQTT consists of three components: virtual queue,
classification, and priority control. The virtual queue stores the published messages separately
according to their type, for which the p-MQTT broker server maintains three virtual queues:
Urgent, Critical, and Normal. The classification component classifies the published messages
into the three types mentioned above by checking the message type field in the published
message header and stores the messages in the appropriate virtual queue. Finally, the priority
control assigns a forwarding priority to each virtual queue and adjusts the quality-of-service (QoS)
level of the messages within each virtual queue accordingly. To verify its effectiveness, we
conduct an experimental implementation of the p-MQTT. The results show that the p-MQTT
achieves better performance in emergency events than the existing MQTT.

1.	 Introduction

	 Recently, the demand for various Internet of Things (IoT) services, such as smart homes,
smart grids, health care, and smart factories, has significantly increased. Most IoT services
employ a number of resource-constrained devices with limited computing capabilities, limited
storage capacity, and limited power, and these devices communicate with each other through
low-power lossy networks (LLNs). This constrained environment can lead to high packet loss
and unpredictable long delays in IoT services.
	 To support reliable IoT services, the organization for the advancement of structured
information standards (OASIS) specifies the message queue telemetry transport (MQTT)

1716	 Sensors and Materials, Vol. 30, No. 8 (2018)

protocol as the international organization for standardization (ISO) standard (i.e., ISO/IEC PRF
20922).(1) The MQTT is a lightweight publish/subscribe-based messaging protocol. In the
MQTT, devices exchange messages via a broker server that distributes the published messages
to interested devices based on the topic of the message. The MQTT uses very small message
header sizes (i.e., 2 B) to keep message overhead small in the constrained environment of IoT
services. Therefore, the MQTT is widely considered one of the essential technologies for
making IoT services reliable.
	 Monitoring applications such as vehicle tracking, accident detection, health condition
recognition, and industrial machine monitoring are considered the most general and
representative IoT applications.(2) In these applications, timely and reliable message delivery
is crucial, particularly for emergency events. The MQTT standard manages the reliability of
message delivery by defining three quality-of-service (QoS) levels.(1) The QoS levels determine
the use of acknowledgement and retransmission in message delivery; thus, the message is
delivered at most once (i.e., QoS level 0), at least once (i.e., QoS level 1), or exactly once (i.e.,
QoS level 2), depending on the QoS level. However, the MQTT standard does not define any
mechanism to support the timeliness of message delivery; thus, there could be a long delay even
for the delivery of emergency events. Therefore, priority support for specific emergency-event
messages and a mechanism for providing reliability in combination with priority support are
needed for seamless IoT services.
	 In recent years, a number of studies related to timely and reliable message delivery have been
conducted for IoT services. Tachibana et al. proposed a priority control mechanism to specify
the transmission time for IoT devices taking into consideration the data type (e.g., image, text,
and video) and transmission interval for the data.(3) For this, a broker server is used, and the
server is responsible for managing the transmission priority of all IoT devices. This mechanism
can guarantee the timeliness of message delivery by controlling the transmission priority of IoT
devices. However, it has low compatibility with the existing IoT system, since it was designed
without consideration for application protocol specifications such as the MQTT. Jo and Jin
proposed an adaptation framework for periodic N-to-1 communication over the MQTT, which
adjusts the publication period to ensure the timeliness of periodic messaging.(4) However, this
framework focuses on only the requirements of periodic communication where all messages
have the same priority, so it is not suitable for emergency events. This is because an emergency-
event message needs to have a higher transmission priority than other messages. Al-Fuqaha et
al. proposed an enhanced MQTT designed to allow the MQTT broker to reprioritize messages.(5)
Since the MQTT broker controls the forwarding priority of published messages, the enhanced
MQTT can guarantee the timeliness of message delivery in an emergency event. However, the
authors do not provide details of the priority control mechanism; thus, it is very unlikely to be
applied in a real environment.
	 In this paper, we propose an MQTT broker with priority support for emergency events for
IoT monitoring applications (p-MQTT), which aims to support timely and reliable message
delivery for emergency events. The p-MQTT classifies the published messages coming into the
broker server and controls their priority according to the classification results. To this end, the
p-MQTT consists of three components: virtual queue, classification, and priority control. The

Sensors and Materials, Vol. 30, No. 8 (2018)	 1717

virtual queue stores the published messages separately according to the message type, for which
the p-MQTT broker server maintains three virtual queues: Urgent, Critical, and Normal. The
classification component classifies the published messages into the three types mentioned above
by checking the message type field in the published message header, and stores the messages in
the appropriate virtual queue. Finally, the priority control assigns a forwarding priority to each
virtual queue, and adjusts the QoS level of the messages within each virtual queue accordingly.
To evaluate the performance of the p-MQTT, an experimental implementation is conducted by
using the open-source MQTT software Mosquitto and Paho. The results show that the p-MQTT
achieves better performance compared to the existing MQTT, in terms of the latency and
message loss rate.
	 The rest of this paper is organized as follows. In Sect. 2, the design of the p-MQTT is
described in detail. Section 3 presents the results of implementation and experiment. Finally,
the paper is concluded in Sect. 4.

2.	 Design of p-MQTT

	 The p-MQTT supports the timely and reliable message delivery of emergency events
by assigning a forwarding priority to each virtual queue and adjusting the QoS level of the
messages within each virtual queue accordingly. To this end, it consists of three components:
virtual queue, classification, and priority control. In the following subsections, the architecture
and operation of the p-MQTT are described in detail.

2.1	 System architecture

	 Figure 1 shows the system architecture for the p-MQTT, where the p-MQTT broker server
includes virtual queue, classification, and priority control components. The virtual queue stores
the messages transmitted from the publishers separately according to the messages type. The
p-MQTT broker server maintains three virtual queues: Urgent, Critical, and Normal. The
urgent queue stores messages that should be transmitted more urgently than any other message.
The critical queue stores messages that are less urgent than the urgent queue, but still require
high reliability. The messages stored in the normal queue are those used in the existing MQTT
standard.

Classification

p-MQTT Broker Server

Normal
queue

Critical
queue

Urgent
queue

Priority
control

Virtual queue

Publisher Subscriber

Fig. 1.	 System architecture for p-MQTT.

1718	 Sensors and Materials, Vol. 30, No. 8 (2018)

	 The classification component checks the message type field in the published message header,
by which it classifies the messages as urgent, critical, or normal according to the value. Then,
it stores the messages in the appropriate virtual queue. If the message type is 0, it classifies
the message as an urgent message, and stores it in the urgent queue within the p-MQTT broker
server. If the message type is 1–14, it classifies the message as a normal message and stores it
in the normal queue. If the message type is 15, it classifies the message as a critical message,
and stores it in the critical queue.
	 Finally, the priority-control component assigns a forwarding priority to each virtual queue,
and adjusts the QoS level of the messages within each virtual queue accordingly. The urgent
queue is assigned the highest forwarding priority; thus, the messages stored in the urgent queue
are forwarded first, regardless of the presence of messages stored in other queues. In this case,
the priority control component adjusts the QoS level of the message header to 0 for timely
message delivery, and the message is delivered at most once without acknowledgement and
retransmission.
	 The critical queue has a medium forwarding priority, and thus the messages in the critical
queue can be forwarded only when the urgent queue is empty. In this case, the QoS level is
adjusted to 2 to deliver the message exactly once, thereby ensuring a higher reliability for
message delivery. Finally, the normal queue is assigned the lowest priority, and the messages in
the normal queue are forwarded only when both the urgent and critical queues are empty. The
QoS level of the messages remains unchanged, and the value set by the publisher also remains
unchanged.

2.2	 Message format

	 Figure 2 shows the message format for the MQTT protocol.(1) The p-MQTT uses the same
message format as the existing MQTT for compatibility. In the figure, the message types are
defined in 4 bits, and thus 16 message types can be defined. However, only 14 message types (i.e.,
1–14) are defined in the MQTT specification, and the values 0 and 15 are “reserved”. To add a
message type for urgent and critical messages, we use those “reserved” values (i.e., 0 and 15).
Figure 3 shows the message types for the p-MQTT in detail. In the p-MQTT, the values 0 and
15 are used for urgent and critical messages, respectively. If the value of the message type is
between 1 and 14, the p-MQTT broker server identifies the message as a normal message. The
value of the message type is assigned by the publisher, and the message type is identified by the
p-MQTT broker server based on the value.

Message Type DUP QoS level RETAIN

Remaining length

Optional : variable length header

Optional : variable length message payload

0 1 2 3 4 5 6 7

Fig. 2.	 MQTT message format.

Sensors and Materials, Vol. 30, No. 8 (2018)	 1719

3.	 Performance Evaluation

	 An experimental implementation is conducted to evaluate the performance of the p-MQTT.
The p-MQTT broker server is implemented using the open-source Mosquitto software version
1.4.13 on Ubuntu version 16.04.2.(6,7) Moreover, the publisher and subscriber are implemented
using open-source libraries provided by the Eclipse Paho project.(8)

	 In the experiment, multiple devices (i.e., publishers) are connected to the p-MQTT broker
server and periodically transmit messages to it. Among these devices, only a single publisher
generates urgent or critical messages that include an emergency event while the other publishers
generate normal messages. In order to check the variations in latency and message loss rate
when the number of devices changes, we vary the number of publishers from 100 to 1000 in
the experiment. We set the total number of messages per publisher to 4; thus, each publisher
transmits four messages during the experiment. In addition, each publisher generates a new
message after a successful transmission until the number of generated messages reaches 4. The
message size is set to 4 B. The QoS level of the published message is set to 1; thus, all messages
are initially published with a QoS level of 1. However, in the case of urgent and critical
messages, the QoS level is changed to 0 and 2 by the MQTT broker server. The experiment is
repeated 10 times. The detailed experiment parameters are listed in Table 1.
	 Figure 4 shows the variations in latency for urgent messages as the number of devices
increases. Overall, the latency for urgent message with the p-MQTT is on average 35.3%
lower than that with the existing MQTT. This is because the urgent queue of the p-MQTT
broker server has the highest forwarding priority; thus, an urgent message is delivered earlier
than other messages. In the figure, the difference in latency for urgent messages between the
p-MQTT and the MQTT increases as the number of devices increases. The reason for this is

Value
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Description
URGENT

CONNECT
CONNACK
PUBLISH
PUBACK
PUBREC
PUBREL

PUBCOMP
SUBSCRIBE

SUBACK
UNSUBSCRIBE

UNSUBACK
PINGREQ
PINGRESP

DISCONNECT
CRITICAL

Fig. 3.	 p-MQTT message types.

1720	 Sensors and Materials, Vol. 30, No. 8 (2018)

that the queuing delay for urgent messages in the p-MQTT broker server is kept short because
of the priority control. On the other hand, the queuing delay for urgent messages in the MQTT
broker server increases exponentially as the number of transmitted messages increases.
	 Figure 5 shows the latency variations for critical messages as the number of devices
increases. Even in the case of critical messages, the p-MQTT exhibits better latency
performance than the existing MQTT owing to the priority control. However, the latency
difference is less than the results in Fig. 4. The reason for this is that the critical queue has a
lower forwarding priority than the urgent queue; thus, the QoS levels of the messages stored
in each virtual queue are adjusted to different values. More specifically, the QoS level for an
urgent message is adjusted to 0 since it only requires timely message delivery. The QoS level
of a critical message is adjusted to 2 for reliable message delivery, which triggers a number of
control message exchanges and retransmissions if necessary.
	 Figure 6 shows the message loss rate according to the message type. In the case of urgent
messages, the p-MQTT shows a slightly higher message loss rate than the existing MQTT
since an urgent message in the p-MQTT does not require acknowledgement owing to its QoS
level. Moreover, the difference in message loss rate is not large. This is because the p-MQTT
maintains a virtual queue dedicated to urgent messages, resulting in message loss reduction.
With critical messages, the message loss rate of the p-MQTT is 51.8% lower than that of the
existing MQTT. The reason for this is that the QoS level of a critical message in the p-MQTT
is adjusted to 2 for reliable message delivery, while the existing MQTT sets the QoS level to 1
regardless of the message type.

Table 1
Experiment parameters.
Parameter Value
Number of publishers 100–1000
Data rate 100 Mbps
Size of message 4 B
Total number of messages per publisher 4
QoS level of published message 1

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

Number of devices

La
te

nc
y

(m
s)

p-MQTT (Urgent)
MQTT (Urgent)

Fig. 4.	 (Color online) Latency for urgent messages.

Sensors and Materials, Vol. 30, No. 8 (2018)	 1721

4.	 Conclusions

	 In this paper, we presented the p-MQTT, which is an MQTT broker server with priority
support for emergency events in IoT services. To support the timely and reliable delivery of
emergency events, the p-MQTT classifies published messages coming into the broker server
and controls their forwarding priority and QoS level according to the classification results.
To evaluate the performance of the p-MQTT, we conducted an experimental implementation
using the open source Mosquitto and Paho, and compared the performance of the p-MQTT
with that of the existing MQTT. The results show that the p-MQTT compared with the existing
MQTT achieves 35.3 and 18.1% lower latencies for urgent and critical messages, respectively.
Moreover, the p-MQTT achieves 51.8% lower message loss for critical messages on average.

Acknowledgments

	 This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2017R1D1A1B03031055). This research was also supported by the Leading Human Resource
Training Program of Regional Neo Industry through the NRF funded by the Ministry of
Science and ICT (NRF-2016H1D5A1910427).

References

	 1	 ISO/IEC 20922:2016 Information Technology-Message Queuing Telemetry Transport (MQTT) v3.1.1. iso.org.
International Organization for Standardization (accessed June 15, 2016).

	 2	 P. Sethi and S. R. Sarangi: Can. J. Electr. Comput. Eng. Can. 2017 (2017) 1.
	 3	 T. Tachibana, T. Furuichi, and H. Mineno: Proc. 13th Int. Conf. Mobile and Ubiquitous Systems: Computing

Networking and Services (ACM, 2016) 239.
	 4	 H. C. Jo and H. W. Jin: Proc. 2015 IEEE 3rd Int. Conf. Cyber-Physical Systems, Networks, and Applications

(CPSNA) (IEEE, 2015) 66.
	 5	 A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi: IEEE Commun. Mag. 53 (2015) 72.
	 6	 Eclipse Foundation: https://mosquitto.org/ (accessed July 2017).
	 7	 Canonical Ltd.: https://www.ubuntu.com/ (accessed July 2017).
	 8	 Eclipse Foundation: http://www.eclipse.org/paho/ (accessed July 2017).

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

Number of devices

La
te

nc
y

(m
s)

p-MQTT (Critical)
MQTT (Critical)

Fig. 5. 	 (Color online) Latency for critical messages.

Urgent Critical
0

5

10

15

20

25

30

Message type

M
es

sa
ge

 lo
ss

 ra
te

 (%
)

p-MQTT
MQTT

Fig. 6. 	 (Color online) Message loss rate.

