
1691Sensors and Materials, Vol. 30, No. 8 (2018) 1691–1706
MYU Tokyo

S & M 1626

*Corresponding author: e-mail: wlmao@yuntech.edu.tw
http://dx.doi.org/10.18494/SAM.2018.1873

ISSN 0914-4935 © MYU K.K.
http://myukk.org/

Applications of Modified Adaptive Affine Projection Predictor 
for Global Positioning System Interference Suppression

Wei-Lung Mao* and Chung-Wen Hung

Graduate School of Engineering Science & Technology and Department of Electrical Engineering,
National Yunlin University of Science and Technology,

123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan, R.O.C.

(Received March 1, 2017; accepted March 5, 2018)

Keywords: affine projection algorithm (APA), dynamic selection method, global positioning system (GPS) 
sensor, interference suppression, variable-step size

 The global positioning system (GPS) sensor has had a considerable impact on almost all 
positioning, navigation, timing, and monitoring applications.  It provides spread spectrum 
satellite signals that can be processed in a GPS receiver, and it allows the receiver to estimate 
information about position, velocity, and time.  A low-power GPS signal is susceptible to 
interference, which can seriously degrade receiver acquisition and tracking performance.  Two 
kinds of modified affine projection filters, namely, variable step-size and dynamic selection 
structures, are presented for GPS jamming suppression applications.  The variable step-size 
method based on the minimization of the mean square deviation is employed to achieve a 
higher convergence rate and a lower misadjustment error.  The dynamic selection method can 
update the input vector by selecting a subset component and reduce computational complexity 
while offering a higher convergence speed.  Suppression performance is evaluated via extensive 
simulation by computing the mean-squared prediction error (MSPE) and signal-to-noise 
ratio (SNR) improvements.  Simulations show that our proposed methods can provide better 
performance than the conventional affine projection algorithm (APA) structures when severe 
interference-to-noise ratios (INRs) are experienced.

1. Introduction

 A global positioning system (GPS) sensor(1–3) employing a direct sequence spread spectrum 
(DSSS) technique can provide accurate positioning and timing information in a wide range 
of applications.  The reliability and availability of GPS signals have become crucial issues 
for the fast-growing use of GPS receivers.  GPS spreads the bandwidth of transmitted signals 
with a coarse/acquisition (C/A) code, which results in an approximately 43 dB processing gain.  
Thus, the DSSS scheme inherently provides a modest anti-jamming property that can deal 
with narrowband interference.  If a higher jamming power arises, it is necessary to supplement 
the innate processing gain by using additional signal processing techniques such as adaptive 
filtering.(4–7)  
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 The study of adaptive filters used in anti-jamming has attracted considerable attention 
in recent years.(6–8,18,19)  The most popular adaptive filters are least mean squares (LMS)-
based algorithms owing to their inherent simplicity.  However, LMS-based methods have slow 
convergence rates and are not suitable for applications affected by nonstationary and impulse 
interference.  Ozeki and Umeda(9) first used an affine subspace projection structure to derive 
the basic form of affine projection algorithms (APAs).  These methods(7,8,10,11) provide the 
simplicity of structure and fast computation nature of LMS algorithms and reduce gradient noise 
by exploiting the use of the most recent inputs to improve performance.  The APA is a useful 
family of adaptive filters that offer numerous applications in system identification, acoustic 
echo cancellation, and impulse interference prevention.(13–16)  The family of APAs updates 
the weight coefficients by multiple, most recent input vectors instead of a single, current data 
vector applied in the normalized LMS (NLMS) algorithms.  In conventional APA methods, the 
step size is a constant parameter that determines the convergence rate and steady-state excess 
mean square error.  To meet these conflicting requirements, several schemes for controlling 
the step size have been proposed.(12–14)  The method in Ref. 11 resulted in an optimal step size 
adjusted with the largest decrease in mean square deviation (MSD).  These jamming obstacles 
can be inherently stationary/nonstationary and also be associated with higher order statistics, 
so variable step-size filters may be more suitable for signal prediction.  Recently, various 
algorithms that concentrate on the number of projection orders have also been proposed.(9,13,15,16)  
A higher projection order leads to a higher convergence speed, but a larger estimation error can 
result.  The selection of projection order using the MSD criterion may be employed to yield a 
low computational complexity and a small steady error.  The transform domain approach(19) is 
also proposed for jamming suppression.  A reference signal is generated with a wavelet-packet-
transform-based adaptive predictor, such that the interfering signal can be subtracted from 
the received signal.  This method can mitigate chirp and single-tone interferences with a high 
interference-to-signal ratio (INR).  
 In this paper, the performance of the APA for stationary and nonstationary interference 
cancellation in GPS sensors is considered.  The APAs offer an intermediate complexity between 
the LMS and recursive least squares (RLS) approaches.  To improve the tracking capability of 
APA, two schemes are proposed, i.e., (a) variable step-size APA (VS-APA), and (b) dynamic 
selection APA (DS-APA) structures.  The adaptive step size for APA obtained by minimizing 
the MSD is utilized to provide higher convergence rates and lower misadjustment errors for 
interfering signal estimation.  To reduce the computational complexity in receiver design, an 
APA with dynamic selection input vectors is established to improve the convergence rate.  
Once the prediction of the interfering signal is obtained, an error signal can be computed by 
subtracting the estimate from the received signal.  The error signal is then fed into the correlator 
for dispreading.
 The remainder of this paper is organized as follows. In Sect. 2, the GPS received signal 
model is described.  In Sect. 3, we present the conventional APA, the VS-APA method, and 
the DS-APA method.  In Sect. 4, simulation results and analysis are discussed to verify the 
proposed methods.  In Sect. 5, we conclude this paper.
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2. GPS Received Signal Models

 GPS satellites transmit ranging codes and navigation data at two frequencies: primary L1 
and secondary L2, and only the L1 signal, free for civilian use, is analyzed herein.  A simplified 
block diagram of an anti-jamming GPS model is shown in Fig. 1.  The received signal x(t) can 
be modeled as

 1 1( ) ( ) ( ) ( ) 2 ( ) ( )cos(2 ) ( ) ( )L i t i i Lx t S t n t j t P d t C t f t n t j tπ θ= + + = + + + , (1)

where SL1i(t) is the L1 signal transmitted from SVi, Pt is the transmitted signal power, di(t) is the 
navigation data bits, Ci(t) is the pseudorandom noise spreading sequence (C/A code) with chip 
duration Tc, fL1 and θ are L1 carrier frequency (1575.42 MHz) and phase delay, respectively, n(t) 
is additive white Gaussian noise (AWGN) with variance σ2, and the jamming source j(t) has a 
bandwidth much smaller than the GPS spreading bandwidth.  Owing to the downconversion 
step, the spectrum of the signal is shifted to the baseband frequency.  To further simplify the 
analysis, it is assumed that the received signal passes through a filter matched to the chip 
waveform and is sampled synchronously once during each chip interval.  The observation is 
given as

 1( ) ( ) ( ) ( )L ix k S k n k j k= + + , (2)

where {SL1i(k)}, {n(k)}, and { j(k)} are discrete time sampled waveforms of {SL1i(t)}, {n(t)}, and 
{ j(t)}, respectively.  They are assumed to be mutually independent.  The n(k) can be modeled 
as band-limited and white, and the jamming source being considered has a bandwidth much 

Fig. 1. GPS spread spectrum system. (a) Transmitter architecture generated by G-Lab software and (b) anti-
jamming receiver.
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narrower than 1/Tc.  The SL1i(k) sequence is di(k)Ci(k) for values of ±1.  In this paper, four kinds 
of narrowband interference are considered: 

(1) Single-tone continuous wave interference (CWI): ( )1 1( ) 2 cos[ ]J LJ t P tω ω θ∆= + + , (3)

where PJ denotes the power, and ωΔ is its offset frequency from the central frequency of the 
spread spectrum signal.  The term θ is the random phase, which is uniformly distributed over 
the interval [0,2π).  

(2) Multi-tone CWI (MCWI): ( )2 1
1

( ) 2 cos[ ]
I

Ji L i i
i

J t P tω ω θ∆
=

= + +∑ , (4)

where PJi, θi, and ωΔi represent the power, random phase, and offset frequency of the i-th 
interferer, respectively.  The term I is the number of narrowband interferers.

(3) Pulsed CWI (PCWI): ( )1 1
3

1

cos , ( 1) ( 1)( ) 0, ( 1)
L T c T s c

T c c T c

A t l N T t l N T N TJ t l N T N T t lN T
∆

 + − ≤ < − += − + ≤ <
ω ω  (5)

where A denotes the amplitude and Tc is the sample time.  The on-interval period is N1Tc 
seconds long and the off-interval period is (NT − N1)Tc seconds long.  The case in which NT and 
N1 are much greater than unity is considered.

(4) Linear FM: ( ) 2
4 1( ) 2 cos[ ]

2J LJ t P t tα
ω ω ∆

∆= + + , (6)

where PJ, ωΔ, and αΔ represent the power, offset frequency, and frequency rate, respectively.  
In Fig. 1(b), the narrowband canceller composed of an APA-based filter and a subtractor is 
employed to suppress the jamming signals.  The {SL1i(k)} and {n(k)} sequences are wideband 
signals with nearly flat spectra.  However, these two sequences cannot be estimated from their 
past values.  The interfering signal { j(k)} can be predicted because of its correlated property.  
The error signal z(k) is 

 1 1
ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )L i L iz k S k n k j k j k S k n k= + + − ≅ + , (7)

where z(k) can be obtained as an almost interference-free signal, and the intermediate frequency 
(IF) component can be demodulated to a navigation signal after code correlation.

3. Proposed APAs

 While a NLMS method updates the weights based only on the current input vector, the APA 
can update the weights based on the current and previous input vectors.  It is a useful family of 
adaptive filters in numerous digital signal processing applications.  
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3.1 APA 

 An APA includes a family of configurable algorithms designed to improve the performance 
of other adaptive algorithms, mainly LMS-based ones, especially when input data is highly 
correlated.  The objective of an APA is to minimize this cost function:

 21min ( 1) ( )
2

k k
   + −    

w w  (8)

subject to: T( ) ( ) ( 1)k k k− + = 0d X w ,
with 
 ( ) [ ( ) ( 1) ( )]k k k k L= − −�X x x x ,
 T( ) [ ( ) ( 1) ( )]k x k x k x k N= − −�x ,
 T( ) [ ( ) ( 1) ( )]k d k d k d k L= − −�d , 
 T( ) ( ) ( )k k k=y X w , 
 ( ) ( ) ( )k k k= −e d y ,

where X(k) is the input signal matrix, x(k) is the column vector in X(k), d(k) is the desired signal 
vector, y(k) is the adaptive-filter output, and L is the data reuse factor.  The Lagrange multiplier 
method is used to turn the constrained minimization into an unstrained one.  The unconstrained 
function to be minimized becomes

 
2 T T1( ) ( 1) ( ) ( ) ( ) ( ) ( 1)

2
k k k k k k k = + − + − +  

λJ w w d X w ,  (9)

where λ(k) is an 1 × (L + 1) vector of Lagrange multipliers.  The gradient of J(k) with respect to 
w(k + 1) can be represented as 

 
( ) ( 1) ( ) ( ) ( )

( 1)
k k k k k

k
∂

= + − −
∂ +

λJ w w X
w . (10)

The gradient function above is set to zero, and the weighting vector can be 

 ( 1) ( ) ( ) ( )k k k k+ = + λw w X . (11)

After substituting Eq. (11) into the constraint relation of Eq. (8) followed by some manipulations, 
the update equation is 

 ( ) 1T( 1) ( ) ( ) ( ) ( ) ( )k k k k k k
−

+ = +w w X X X e . (12)

The APA is represented as
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Initialization: [ ](0) 0 0 0= �w , 0 < μ ≤ 2  (13)

For k ∈ {1, ..., ∞},

 T( ) ( ) ( ) ( )k k k k= −e d X w , (14)

 ( ) 1T( 1) ( ) ( ) ( ) ( ) ( )k k k k k k
−

+ = + +µ γw w X X X I e , (15)

where μ is the learning rate, and γ is a small constant added to the matrix XT(k)X(k) to avoid 
numerical problems in the matrix inversion.

3.2 VS-APA

 The conventional APA method uses a constant step size in the coefficient update equation 
that controls the stability as well as convergence rate and misadjustment.  In this method, the 
algorithm misadjustment decreased as the step-size parameter decreased, and this leads to lower 
convergence speeds.  The APA based on minimizing the mean squared norm of the coefficient 
error vector is employed.(10)  The parameter μ is chosen such that Δ(μ) is maximized, and this 
choice provides for the MSD to have the largest decrease at each iteration.  Let ( ) ( )ok k= −�w w w be a weight 
error vector, ( ) ( )ok k= −�w w w , such that 

 ( ) 1T( ) ( 1) ( ) ( ) ( ) ( )k k k k k kµ
−

= − −� �w w X X X e , (16)

where wo is an unknown column vector to be estimated.  Squaring both sides and taking 
expectations, the MSD can be represented as

 2 2( ) ( 1) ( )E k E k= − −∆ µ� �w w , (17)

with ( ) ( )1 1T T T 2 T T( ) 2 Re ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( )E k k k k k E k k k k
− −         ∆ = − −          

µ µ µ�e X X X w e X X e .

 Assume that the noise sequence is identically and independently distributed and statistically 
independent of the regression data X(k) and neglect the dependence of ( 1)k−�w  on past noise.  
This can lead to the optimum step-size parameter, which can be approximated as

 
( )

( )

1T T T

0 1T T

Re ( ) ( ) ( ) ( ) ( 1)
( )

( ) ( ) ( ) ( )

E k k k k k
k

E k k k k

−

−

     −      =
 
 
  

µ
�e X X X w

e X X e
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( )

2

12 2 T

( )

( ) ( ) ( )v

E k

E k Tr E k k
−

≅
 
 +
  

σ

p

p X X
, (18)

with ( ) 1T T( ) ( ) ( ) ( ) ( ) ( 1)k k k k k k
−

= −�p X X X X w ,
where p(k) is the projection vector of ( 1)k−�w  onto R(X(k)), the range space of X(k).  The 
projection vector p(k) can be estimated using the time average form.  It can be represented as 

 ( ) 1Tˆ̂ ( ) ( 1) (1 ) ( ) ( ) ( ) ( )k k k k k k
−

= − + −α αp p X X X e , (19)

where α is a smoothing factor in the range of [0,1).  The vector p(k) is substituted by ˆ ( )kp .  The 
VS-APA becomes

 Initialization: ( ) [ ]Tˆ 0 0 0 0= …w . (20)

For { }1,...,k ∈ ∞ ,

 ( ) 1T
0( ) ( 1) ( ) ( ) ( ) ( ) ( )k k k k k k k

−
= − + µw w X X X e , (21)

 
2

0 2

ˆ ( )
( )

ˆ ( )
max

k
k

k C
=

+
µ µ

p

p
, (22)

 ˆ ( )k α=p ( ) 1Tˆ ( 1) (1 ) ( ) ( ) ( ) ( )k k k k kα
−

− + −p X X X e , (23)

where μmax is chosen in the range of [0,2) to guarantee the stability of the algorithm, and C is a 

constant that is related to the noise disturbance variance ( ) 12 T ( ) ( )v Tr E k k
− 

 
  

σ X X .

3.3 DS-APA

 Adaptive APAs with dynamic selection update belong to the family of adaptive methods 
that update only a portion of filter parameters at each iteration.  These architectures can reduce 
computational complexity while attempting to maintain close performance to their full update 
structure.  In this section, the dynamic selection of a subset of input vectors is presented 
to improve the convergence performance of the APA.  Let ( )k�w  be a weight error vector, 

( ) ( )ok k= −�w w w , such that 

 ( ) 1T( ) ( 1) ( ) ( ) ( ) ( )k k k k k k
−

= − −µ� �w w X X X e , (24)
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where wo is an unknown column vector to be estimated.  Squaring both sides and taking 
expectations, the MSD becomes

 2 2( ) ( 1)E k E k= − −∆� �w w , (25)

with ( ) ( )1 1T T T 2 T T2 Re ( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( )E k k k k k E k k k k
− −         ∆= − −          

µ µ�e X X X w e X X e ,

where Δ is a function of the input vectors.  The function Δ is maximized for iteration k, and 
the biggest decrease can be obtained in MSD from iteration (k − 1) to iteration k.  Since it is not 
feasible to know the exact expected value, the instantaneous value is replaced in the equation.  
It can be approximated as  

( ) ( )
11 1T T 2 T

2 2 1 2 2 1 2 2 1
0 1 1

2 2 2

(2 ) ( ) ( ) ( ) ( ) 2 ( ) ( )

( ) 2 (2 ) ( ) 2 (2 ) ( ) 2 (2 )(2 )
( ) ( 1) ( )

v

v v L v

k k k k Tr k k

k k k

k k k L

−− −

− − −
−

 
 ∆= − −
  

          − − − − − −      ≈ − + + +             − −         

µ µ µσ

σ µ σ µ σ µ
µ µ �

e X X e X X

e e e

x x x
,
   

 (26)

with ( ) ( ) ( ) ( 1)n k k n k n k= − − − −e d x w , (n = 0, 1, ..., L),

where 2
vσ  is the measurement noise power, and [ ]Tr •  means the matrix trace.  Assuming that 

the diagonal elements of XT(k)X(k) are much larger than the off-diagonal ones, the off-diagonal 
components are ignored to simplify the computation burden in each iteration.  If 2 ( )n ke  is larger 
than 2 12 (2 )vσ µ −− , x(k − n) can maximize ∆ .  The weight update needs to be carried out 
with the input vector satisfying 2 2 1( ) 2 (2 )n vk −> −σ µe  at every iteration for the largest MSD 
reduction.  The update equation can be expressed as 

 Initialization: [ ](0) 0 0 0= �w . (27)

For k ∈ {1, ..., ∞},

 ( )( ) ( ) ( ) ( )

1T
( 1), ( ) 0

( ) ( 1) ( ) ( ) ( ) ( ), otherwise
k k k kS S S S

k k
k k k k k k

−
 − == − +

µ
K K K K

w K
w w X X X e  (28)

with 
( )

T
1 2 ( )( ) ( ) ( ) ( )

kS kk k t k t k t = − − −  �
K KX x x x , 

( ) 1 2 ( )

T
( ) ( ) ( ) ( )

k kS t t tk k k k =   
�

K K
e e e e .

 The input vectors are selected when each input vector satisfies the following criterion: 
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 ( )
iS thk >e e , 2 12 (2 )th vm −> −σ µe , 1, 2, ..., ( )i k= K , 0 ( )k L< <K , (29)

where m is the tuning parameter, and 2
vσ  is the noise power, which can be estimated from the 

GPS signal power and thermal noise power.  From the received signal model, it is assumed that 
SL1i(k), j(k), and n(k) are statistically independent, and the filter outputs ys(k), yn(k), and yj(k) 
are also statistically independent.  At the affine projection filter outputs, the disturbance due to 
noise and signal components can be expressed as the sum of ys(k) and yn(k).  The output signal 
of the DS-APA filter can be represented as 

 [ ]T T
1( ) ( ) ( ) ( ) ( ) ( ) ( )L iy k k k k k n k j k= = + +w x w s ( ) ( ) ( )s n jy k y k y k= + + . (30)

The average power of the disturbance, for a given signal with parameters w(k), can be calculated 
as

 1

1

2 2 2

T T T
1

2 2 2

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) .

L i

L i

v s n

L i

n

k E y k y k

k E k k k k k

k E s k k

 = +  
 = +  
  = +    

σ

σ

w s s n n w

w

 (31)

The received signal levels are not expected to exceed 153 dBW for the C/A code components 
on the L1 channels.(2,3)  Typically, the signal power for an SV is from 1 to 5 dB higher than the 
minimum specified levels, depending on the elevation angle and SV block.  The disturbance 
bounds of signal level and noise level can be estimated from the GPS signal specification, and 
the noise level can be utilized in the DS-APA filter.

4. Simulation Results

 The results of the simulating adaptive APA-based filtering methods are obtained to confirm 
the jamming rejection characteristics and properties, and our proposed method can adjust the 
filter effectively to track the interfering signal.  Two indices are employed to demonstrate the 
performances.  They are the SNR improvement ratio and mean-squared prediction error (MSPE).  
The definitions are as follows.
(1) SNR improvement: The metric adopted to verify the steady-state performance is the “SNR 
improvement,” which is defined in Ref. 4 and given by 

 2 2
1 110log ( ) ( ) ( ) ( )  (dB)improvement L i L iSNR E x k S k E z k S k = − −  

. (32)

(2) Average MSPE: The MSPE is used as an index to evaluate the convergence rate of transient 
responses for various algorithms.  It is defined as
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 2

1

1( ) ( )
numSIM

i
num i

M k e k
SIM =

 
=   

 
∑ , (33)

 
*100

(( 1)*100) 1

1( ) log ( )
100

n

MSPE
i n

M n M i
= − +

  
  =

    
∑ , (34)

where SIMnum is the total number of simulations (which is 500 here), and ei(k) is the predicted 
error of the k-th iteration for the i-th run.  In this simulation, the received signal is band-pass- 
filtered, amplified, down-converted to IF, and then digitized.  The intermediate frequency ( fIF) 
is fixed at 4.1304 MHz, and a sampling frequency ( fS) of 16.36 MHz is selected and binomially 
distributed with a value di(k) of ±1, and Ci(k) is randomly selected with uniform probability from 
24 PRN codes of GPS.  The G-Lab tool(17) is used to generate the GPS signal.  The noise power 
can be approximated using thermal noise (=KTEB), where K is Boltzmann’s constant (1.3806E−23 
JK−1), B is the bandwidth in Hz, and TE is the effective noise temperature in Kelvin.  The 
ambient temperature and equipment noise factors are dominant, and a typical effective noise 
temperature for a GPS receiver is 513 K.  This noise power is set to be −138.5 dBW,(3) and the 
power of the signal SL1i(k) is set to −158 dBW.  The simulation results are ensemble-averaged 
over 100 independent runs, and 1500 data points are obtained in each run.
 In this section, we illustrate the results of a computer simulation of an anti-jamming GPS 
sensor system.  Four types of algorithm are compared, namely, NLMS, APA, VS-APA, and 
DS-APA methods.  The following parameters are chosen: (a) NLMS method: The length of 
the tapped delay filter is set to 32, the converge rate μn is set to 0.01, and parameter gamma τ is 
set to 10−11.  (b) APA method: The tap number of the standard APA filter is 32, the data reuse 
parameter L is set to 8, the convergence factor μn is set to 0.01, and the parameter gamma τ is 
set to 4 × 10−11.  (c) DS-APA method: The tap number is set to 32, the data reuse factor L is set 
to 32, the adaptation constant μ is 0.01, and the parameter m is set to 1.  The noise power 2

vσ  
can be estimated from GPS specifications and set to be 1.5849 × 10−14 (=−138.5 dBW), and the 
threshold eth is set to 1.2621 × 10−7.  (d) VS-APA method: The tap number is set to 32, the data 
reuse factor is set to 32, the adaptation constant μmax is 0.5, and the parameter α is set to 0.9.
 The interference suppression performances are described as follows: 
(A) Single-tone CWI: Figures 2 and 3 present the SNR improvements and averaged MSPE for 
single-tone CWI, respectively.  The frequency of the interference signal is set to 0.45 MHz, 
and the input INR is varied from 20 to 50 dB.  Figure 2 shows that the DS-APA schemes are 
superior in terms of SNR improvement compared with other filters over a wide range of INR, 
especially in the case of high interference power.  In the steady-state condition, the average SNR 
improvements of the DS-APA method are 1.39, 3.15, and 8.48 dB higher than those of the APA, 
VS-APA, and NLMS, respectively.  The VS-APA method can also have a better performance 
in case of lower interference power.  From the Figs. 3(a) to 3(d), the averaged MSPE learning 
curves are shown for different INR inputs.  The VS-APA method has a higher convergence 
rate when the INRs are in the range of 20 to 40 dB, but it has a lower convergence speed under 
higher INR conditions.  It is obvious that the proposed DS-APA method indeed provides a 
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better transient response and a shorter convergence time than the other methods.  The NLMS 
is the worst in the convergence comparisons.  The DS-APA method can decline significantly to 
−13 dB in 500 iterations, while the other methods reach the steady state slowly and have larger 
MSPE values.
(B) MCWI: The multi-tone test results are shown in Figs. 4 and 5.  The interfering signal 
considered is a four-tone signal, and the offset frequencies are randomly generated in the range 
of fIF ± 1.023 MHz.  The four offset frequencies are kept constant at fΔi = −0.68, 0.555, 0.63, and 
1.02 MHz, and θi’s are i.i.d. random phases uniformly distributed over the interval [0, 2π).  The 
unknown multi-tone interference, which is commonly encountered in spread spectrum systems, 
provides a stronger variation than the single-tone CWI.  Both DS-APA and VS-APA methods, 
which can vary the number of input vectors and step-size parameters, are always adapted to 

Fig. 3. (Color online) Single-tone CWI suppression performances of averaged MSPE vs number of every 100 
iterations n for (a) INR = 20 dB, (b) INR = 30 dB, (c) INR = 40dB, and (d) INR = 50 dB.

Fig. 2. (Color online) Single-tone CWI suppression performances of SNR improvement vs INR.

(a) (b)

(c) (d)
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track the multi-tone with the higher convergence performance in the steady state.  On average, 
the DS-APA algorithm offers 11.34, 2.37, and 19.14 dB more in terms of SNR improvements 
than APA, VS-APA, and NLMS methods, respectively.  The DS-APA and VS-APA methods can 
perform with faster convergence than both APA and NLMS structures.  The averaged MSPE 
can be reduced markedly to −12.8 dB in 500 iterations, whereas the other approaches reach the 
steady state after 1200 iterations and offer higher MSPE values.
(C) PCWI: The offset frequency is chosen as 0.2 MHz.  The on-interval is during the 1st to the 
650th samples, the off-interval is from the 651st to the 1300th iteration points, and the period NT 

is set at 1300.  A 50% duty cycle is used because it is reported to be the most damaging setting.  
Figure 6 illustrates that the DS-APA and VS-APA methods achieve a lower misadjustment 
behavior in the steady state than the APA and NLMS methods during both the on- and off-

Fig. 5. (Color online) MCWI suppression performances of averaged MSPE vs number of every 100 iterations n for (a) 
INR = 20 dB, (b) INR = 30 dB, (c) INR = 40 dB, and (d) INR = 50 dB.

Fig. 4. (Color online) MCWI suppression performances of SNR improvement vs INR.

(a) (b)

(c) (d)
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intervals.  The DS-APA method can perform 10.84, 0.16, and 18.35 dB more in terms of SNR 
improvements than the APA, VS-APA, and NLMS methods, respectively.  It is shown in Fig. 7 
that the DS-APA and VS-APA methods provide better filtering performance and convergence 
rates than the other methods.  
(D) Linear FM: The simulation results of linear FM interference cancellation are shown in 
Figs. 8 and 9.  The starting frequency is set to 4.1304 MHz, the sweep bandwidth is 5 KHz, 
and the frequency rate αΔ is set to 8.  The DS-APA method can vary the number of selected 
input vectors for the largest MSD reduction and achieve superior performance compared with 
the other schemes in transient and steady states.  On average, the DS-APA method offers 1.30, 
4.31, and 12.87 dB more SNR improvement than the APA, VS-APA, and NLMS methods, 
respectively.  The NLMS method performs poorly at estimating nonstationary interference 

Fig. 7. (Color online) PCWI suppression performances of averaged MSPE vs number of every 100 iterations n for (a) 
INR = 20 dB, (b) INR = 30 dB, (c) INR = 40 dB, and (d) INR = 50 dB.

Fig. 6. (Color online) PCWI suppression performances of SNR improvement vs INR.

(a) (b)

(c) (d)
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signals.  Because the step size of the NLMS filter is constant, the corresponding convergence 
rate is very low and limited.  The VS-APA method with a variable step size can have a high 
convergence rate at low INR values, but it has a larger misadjustment error at high INR values.

5. Conclusions

 In this paper, we present the modified APA-based filtering methods trained with variable 
step-size and dynamic selection methods for GPS sensor interference cancellation.  The variable 
step-size scheme, which is optimized with respect to the reduction of MSD, is applied in an 
APA filter to enhance the convergence speed and improve tracking.  The DS-APA method also 

Fig. 9. (Color online) Linear FM suppression performances of averaged MSPE (dB) vs number of every 100 itera-
tions n for (a) INR = 20 dB, (b) INR = 30 dB, (c) INR =40 dB, and (d) INR = 50 dB.

Fig. 8. (Color online) Linear FM suppression performances of SNR improvement vs INR.

(a) (b)

(c) (d)
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uses the MSD criterion to satisfy the characteristics of fast convergence and low computational 
complexity.  The adaptive filtering algorithms are derived and the corresponding interference 
cancellation performances are presented.  On average, the proposed DS-APA and VS-APA 
filters with powerful learning algorithms can robustly estimate the stationary and nonstationary 
interfering signals, which are single-tone CWI, MCWI, PCWI, and linear FM.  Our proposed 
adaptive filtering schemes indeed achieve improved SNR and prediction error compared 
with those of the traditional filters under various INR conditions.  The APA-based methods 
presented herein can be realized into digital signal processing systems by software and become 
cost-effective implementations.
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