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	 Ce:CsCl transparent ceramics doped with different concentrations of Ce (0.01, 0.1, and 
1 mol.%) were synthesized by spark plasma sintering, and their optical, scintillation and 
dosimetric properties were investigated.  Regarding the scintillation properties, X-ray-induced 
scintillation spectra of the samples consisted of three emission peaks at around 280, 380, and 
400 nm, which were due to the Auger-free luminescence and 5d→4f (2F5/2 and 2F7/2) transitions 
of Ce3+, respectively.  In addition, the samples showed thermally stimulated luminescence (TSL) 
and optically stimulated luminescence (OSL) with emission peaks centering at around 400 
and 480 nm, in which the origins were attributed to the 5d–4f transitions of Ce3+ and the host, 
respectively.  In particular, the TSL was sensitive to X-rays, and the TSL signals as low as 0.1 
mGy were measurable, while a linear response was confirmed up to 100 mGy.

1.	 Introduction

	 Phosphor materials are often used in radiation detectors, and such phosphors are classified 
into two types: scintillator and storage phosphors.  Scintillators can immediately convert 
energy of the absorbed ionizing radiation into a large number of low-energy photons, and they 
have been widely used in fields requiring radiation detection, such as medicine,(1) security,(2) 
environmental monitoring,(3) and high-energy physics.(4)  In general, the required properties 
of scintillators include high light yield, short decay time, and low afterglow.  In contrast, 
storage phosphors store the absorbed energy of ionizing radiation.  The energy is stored in the 
form of carriers trapped at localized centers.  The trapped electrons and holes can be released 
by heat or light stimulation to emit photons.  The resultant luminescence is called thermally 
stimulated luminescence (TSL) and optically stimulated luminescence (OSL), respectively.  
The luminescence intensity is proportional to the radiation dose; therefore, such storage 
phosphors are utilized in dosimetry applications.  For this reason, they are often referred to as 
dosimeters.  The materials showing TSL and OSL have been mainly used in individual radiation 
monitoring(5–7) and imaging plates (IPs).(8,9)  
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	 The recent trend of development of scintillators is based on a combination of inorganic 
materials as the host and rare-earth ions as emission centers, e.g., Ce:Tb3Al5O12

(10) and 
Ce:Gd2SiO5.(11)  The host has the role of absorbing ionizing radiation effectively, while the 
emission center emits photons.  Among such rare-earth ions, Ce3+ is often used in scintillators 
because of the fast emission due to the 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+.  Some Ce-
doped chlorides are known to show high light yields, such as Ce:LaCl3 (61000 ph/MeV)(12) and 
Ce:Cs2LiYCl6 (70000 ph/MeV).(13)  CsCl is one of the chlorides, and it is potentially applicable 
to radiation detectors.  CsCl has a high effective atomic number (Zeff = 51.9) close to those of 
conventional scintillators such as CsI (Zeff = 54.1) and NaI (Zeff = 50.8), so CsCl can be applied 
in X- and gamma-ray detectors as the dosimeter material of scintillator and IPs.  Ce:CsCl 
is known to show emission peaks at around 250, 360, and 380 nm, which are due to Auger-
free luminescence (AFL) and 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+,(14) respectively.  The 
decay time constants of the AFL at 8 K and the 5d–4f transitions of Ce3+ at room temperature 
are known to be ~2 and ~20 ns,(14,15) respectively.  Up to now, some scintillation properties of 
Ce:CsCl have been reported in the literature; however, most studies were carried out on bulk 
single crystals, and no reports can be found for transparent ceramics.  
	 Conventionally, most scintillator and dosimeter materials have been used mainly in the 
form of bulk single crystals because of their high optical qualities, even though single crystals 
have some industrial disadvantages such as low mechanical strength, high cost, and difficulty 
of upsizing.  As an alternative, the use of transparent ceramics has recently attracted attention 
in the field of ionizing radiation detectors in order to overcome the above disadvantages.  In 
addition, some transparent ceramics such as Ce:Gd3(Al, Ga)5O12

(16) and Ce:Y3Al5O12
(17) are 

known to show higher scintillation light yields than the single crystals.
	 In this study, we developed Ce:CsCl in the form of a transparent ceramic by spark plasma 
sintering (SPS) and then evaluated its optical, scintillation, and dosimeter properties.  In recent 
years, it has been clarified that the scintillation and dosimetric properties of some materials 
are complementarily related.(18)  Therefore, evaluations of both scintillation and dosimetric 
properties are important in order to comprehensively understand the luminescence phenomena 
induced by ionizing radiations.

2.	 Experiment

	 Ce:CsCl transparent ceramics doped with different concentrations of Ce (0.01, 0.1, and 1 
mol.%) were synthesized by SPS using Sinter Land LabX-100 in vacuum.  Raw powders of 
CsCl (>99.999%, Mitsuwa Chemical) and CeCl3·xH2O (>99.9%, Kojundo Chemical Laboratory) 
were homogeneously mixed using a mortar and pestle.  Then, the mixture (total mass: 0.5 g) 
was loaded in a cylindrical graphite die (inner diameter: 10.4 mm), in which the mixture was 
held between two graphite punches inserted in the cylinder.  SPS was performed by applying 
uniaxial pressure along the axis of graphite punches while applying a high-current DC pulse.  
The sintering temperature was increased from 20 to 580 ℃ at a rate of 56 ℃/min and then held 
for 20 min while applying a pressure of 25 MPa.  The wide surfaces of the obtained ceramic 
samples were mechanically polished by hand using sandpaper (2000 grits).
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	 To investigate the optical properties, the in-line transmittance spectra were measured using 
a spectrophotometer (V670, JASCO) across the spectral range from 200 to 2700 nm with 1 nm 
intervals.  The photoluminescence (PL) quantum yields and PL excitation/emission spectra were 
obtained using Quantaurus-QY (C11347, Hamamatsu Photonics).  The PL decay curves were 
evaluated using Quantaurus-τ (C11367, Hamamatsu Photonics).
	 As a scintillation property, X-ray-induced scintillation spectra were measured using 
our original setup.(16)  As the radiation source, an X-ray generator (XRB80P&N200X4550, 
Spellman) equipped with a conventional X-ray tube was used.  The X-ray tube had a W anode 
target and was operated with a tube voltage and current of 40 kV and 1.2 mA, respectively.  
During irradiation, the scintillation photons were guided into a spectrometer (Andor DU-420-
BU2 CCD and Shamrock 163 monochromator) through an optical fiber.  X-ray-induced scintillation 
decay curves and afterglow profiles were evaluated using an afterglow characterization system 
equipped with a pulse X-ray tube.  The details of the setup are described elsewhere.(19)

	 As dosimetric properties, TSL and OSL were characterized.  TSL glow curves were 
measured using a TSL reader (TL-2000, Nanogray Inc.)(20) after irradiation with X-rays 
(100 mGy).  Here, the heating rate was 1 ℃/s, and the measurement temperature range was 
from 50 to 350 ℃.  Just before the measurement, the sample was kept at 50 ℃ for 5 min.  
Moreover, to obtain a dose response function, a series of TSL glow curves were measured 
with varying irradiation doses from 0.1 to 100 mGy.  To obtain TSL spectra, the samples after 
X-ray irradiation (~10 Gy) were heated on a ceramic heater system (SCR-SHQ-A, Sakaguchi) 
increasing the temperature at a rate of 1 ℃/s, and then the emission spectrum at 90 ℃ was 
recorded using a spectrometer (QEPro, Ocean Optics).  OSL spectra were measured using 
Quantaurus-τ (C11367, Hamamatsu Photonics) after irradiating the samples with X-rays of 10 
Gy.  The stimulation wavelength was 630 nm.

3.	 Results and Discussion

3.1	 Sample

	 Figure 1 shows photographs of the CsCl transparent ceramic samples doped with different 
concentrations of Ce (0.01, 0.1, and 1%) under (a) room light and (b) UV light (302 nm).  Under 
UV irradiation, we observed a strong blue emission in all the samples.  In addition, it was 

Fig. 1.	 (Color online) Synthesized Ce:CsCl transparent ceramics under (a) room light and (b) UV light (302 nm).

(a)

(b)
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confirmed that transparency was such that the stripe patterns under the samples could be seen.  
The thickness of all the samples was fixed at approximately 1.3 mm.  In-line transmittance 
spectra are illustrated in Fig. 2.  The transmittance of the sample increased with increasing 
Ce concentration.  A possible reason may be that the CeCl3·xH2O was activated as a sintering 
acid and the densification was improved.  The absorption due to 4f–5d transitions of Ce3+ was 
confirmed at around 340 nm.

3.2	 PL properties

	 Figure 3 shows a PL excitation/emission contour graph of the Ce(0.1%):CsCl transparent 
ceramic sample as a representative example.  The emission seems to consist of two broad band 
peaks at around 380 and 410 nm under an excitation of around 340 nm.  The origins of these are 
attributed to the 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+, respectively.  In a previous study, 
two emission bands at 360 and 380 nm due to the 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+ 
were reported.(14)  Our result is not highly consistent with that in the previous study.  Typically, 
the difference in the energy levels between 2F5/2 and 2F7/2 is ~2000 cm−1.  In fact, our result 
matched this typical energy difference.  The peak position shifted to a longer wavelength than 
that reported previously,(14) as a result of the self-absorption of Ce3+.  In the previous report, 
the sample was synthesized by the Czochralski method, and the Ce concentration was expected 
to be low.  Furthermore, the optimum excitation wavelength agreed well with the absorption 
band observed in Fig. 2.  The PL quantum yields of the samples with 0.01, 0.1, and 1% Ce were 
10.7, 44.6, and 50.0%, respectively.  The low PL QY of the Ce 0.01% sample was attributed 
to the small number of emission centers, and even in the 1% Ce-doped sample, concentration 
quenching did not occur.  
	 PL decay profiles are presented in Fig. 4.  Here, the excitation wavelength was 340 nm 
while the monitored emission wavelength was 400 nm.  All the decay curves of the samples 
were well-approximated by a single exponential decay function.  The decay time constants of 

Fig. 2.	 (Color online) In-line transmittance spectra 
of Ce:CsCl transparent ceramics.

Fig. 3.	 (Color online) PL excitat ion /emission 
contour graph of 0.1% Ce-doped CsCl transparent 
ceramics.  The vertical and horizontal axes represent 
excitation and emission wavelengths, respectively.
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the Ce:CsCl samples doped with 0.01, 0.1, and 1% Ce were 27.8, 30.5, and 31.6 ns, respectively.  
Those decay constants were of a typical order for the 5d–4f transitions of Ce3+.(14)  The decay 
time decreased as the Ce concentration increased.

3.3	 Scintillation properties 

	 Figure 5 shows X-ray-induced scintillation spectra of the Ce:CsCl samples.  It was suggested 
that the emission consists of three bands centered at around 280, 380, and 410 nm.  The origins 
of these emissions were attributed to the AFL and 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+, 
respectively, according to the previous studies of single crystals.(14)  The spectral features 
of Ce3+ were consistent with PL.  Among the present samples, Ce(0.1%):CsCl showed the 
highest intensity.  The emission wavelength is favorable for a typical photomultiplier tube.  The 
emission intensity of the X-ray-induced scintillation spectrum is qualitative since the radiation 
stopping power cannot be accurately corrected; however, compared with Tl- and In-doped 
CsCl,(21) the emission intensity of our samples was weaker.  In addition, a companion with the 
past result of Ce:CsCl(12) was not possible because the light yield under 45 MeV proton beam 
excitation, which is unavailable to us, was evaluated previously.
	 X-ray-induced scintillation decay time profiles of the Ce:CsCl samples are presented in Fig. 
6.  Each scintillation decay curve was well approximated by the sum of two exponential decay 
functions.  The faster decay components of the samples with 0.01, 0.1, and 1% Ce were 1.6, 1.8, 
and 1.8 ns, respectively, and these faster decay components were attributed to the mixture of the 
AFL and instrumental response.  The slower decay time components of the samples with 0.01, 0.1, 
and 1% Ce were 29.3, 32.2, and 32.3 ns, respectively.  These values were of a typical order for 
5d–4f transitions of Ce3+.  The decay time increased with the Ce concentration.  

Fig. 4.	 (Color online) PL decay profiles of Ce:CsCl transparent ceramics.  The monitoring wavelength was 400 
nm while the excitation wavelength was 340 nm.



1560	 Sensors and Materials, Vol. 30, No. 7 (2018)

	 The afterglow curves of the Ce:CsCl samples are shown in Fig. 7.  The afterglow level (A) 
is defined as A (%) = 100 × (I2 – IBG)/(I1 – IBG), where I1 is the signal intensity during X-ray 
irradiation, I2 is that at 2 ms after the termination of irradiation, and IBG is the background.  The 
derived afterglow levels of the samples with 0.01, 0.1, and 1% Ce were 3.45, 4.43, and 1.14%, 
respectively.  The afterglow levels of the current samples were higher than those of common 
scintillators such as Tl:CsI crystal.(22)

3.4	 Dosimetric properties

	 Figure 8 shows the TSL glow curves of Ce:CsCl transparent ceramic samples measured after 
X-ray irradiation (~100 mGy).  All the samples showed a major glow peak at around 100 ℃.  
The origin of the glow peak is unknown, and we found no literature on the origin of the glow 
peak of Ce:CsCl.  In previous works, more complicated features at a similar peak temperature 
were observed in Ni-doped and Eu-doped CsCl.(23,24)  Therefore, the observed glow peak is 
possibly related to the CsCl host since these materials have only the CsCl host in common.  
TSL dose response functions of the samples are shown in the inset of Fig. 8.  The TSL intensity 
represents the integrated signals between 50 and 190 ℃ of the measured glow curve.  The 
samples showed good linearity from 0.1 to 100 mGy.  The detection limit of 0.1 mGy was 
comparable to those of some commercial dosimeters.  
	 The TSL spectra of Ce:CsCl transparent ceramic samples are presented in Fig. 9.  The 
samples were irradiated with X-rays (~10 Gy) before the measurement, and the spectra were 
measured at 90 ℃.  Each TSL spectrum consists of two emission band peaks at around 400 and 
480 nm.  A previous study demonstrated that the TSL emission of nondoped CsCl appeared 
from 400 to 470 nm.  Therefore, we consider that the origin of the TSL emission is both the 
CsCl host and 5d–4f transitions of Ce3+.(25)

Fig. 5.	 (Color online) X-ray-induced scintillation 
spectra of Ce:CsCl transparent ceramics.

Fig. 6.	 (Color online) Scintillation decay profiles of 
Ce:CsCl transparent ceramics.  
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	 Figure 10 shows OSL spectra of Ce:CsCl transparent ceramic samples.  The samples were 
irradiated with X-rays (~10 Gy) before the measurements.  The optical stimulation wavelength 
was 630 nm.  The OSL spectral features of the samples were in approximate agreement with 
those of PL.  Therefore, the origins of OSL spectra would be the 5d→4f (2F5/2 and 2F7/2) 
transitions of Ce3+.  
	 OSL decay profiles of Ce:CsCl transparent ceramic samples are shown in Fig. 11.  Before the 
measurements, the samples were irradiated with X-rays (~10 Gy).  The monitoring wavelength 
was 400 nm while the stimulation wavelength was 630 nm.  The OSL intensity exponentially 
decreased with time during the stimulation, which was a typical feature of OSL (if the observed 
signal is due to up-conversion, the signal intensity must not decrease with time).  Each decay 
curve was best approximated by a sum of four exponential decay functions.  This finding 
suggests that at least four different detrapping processes were involved.  To the best of our 
knowledge, this is the first report of OSL in Ce:CsCl.

Fig. 7.	 (Color online) Afterglow profiles of Ce:CsCl 
transparent ceramics.  The inset shows the afterglow 
level of all the samples.

Fig. 8.	 (Color online) TSL glow curves of Ce:CsCl 
transparent ceramic samples measured after 100 mGy 
X-ray irradiation.  The inset shows the TSL dose 
response curves of the samples from 0.1 to 100 mGy.

Fig. 9.	 (Color online) TSL spectra of Ce:CsCl transparent ceramic samples measured at 90 ℃ after X-ray 
irradiation (~10 Gy).
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4.	 Conclusions 

	 We synthesized Ce:CsCl transparent ceramics doped with different concentrations of Ce 
(0.01, 0.1, and 1%) by SPS and then investigated their optical, scintillation, and dosimeter 
properties.  The PL spectra of all the samples showed two broad emission band peaks at around 
380 and 410 nm under excitation of around 340 nm.  The decay time constants of the samples 
doped with 0.01, 0.1, and 1% Ce were 27.7, 30.5, and 31.6 ns, respectively, which were of a 
typical order for the 5d–4f transitions of Ce3+.  The X-ray-induced scintillation spectra of all the 
samples contained three emission band peaks at around 280, 380, and 410 nm.  The emission at 
around 280 nm was due to AFL, whereas the emission peaks at around 380 and 410 nm were 
attributed to the 5d→4f (2F5/2 and 2F7/2) transitions of Ce3+, respectively, as in PL.  Concerning 
the dosimetric properties, the samples showed TSL and OSL.  The main emission of both types 
of luminescence was observed at around 400 nm owing to the 5d→4f transitions of Ce3.  In 
particular, the TSL was very sensitive to the X-ray dose, and the TSL signal was measurable at 
as low as 0.1 mGy.
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Fig. 10.	 (Color online) OSL spectra of Ce:CsCl 
transparent ceramic samples measured under 630 nm 
stimulation after X-ray irradiation (~10 Gy).  

Fig. 11.	 (Color online) OSL decay profiles of Ce:CsCl 
transparent ceramic samples after X-ray irradiation (~10 
Gy).  The inset shows the OSL decay time constants 
of all the samples.
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