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 When students feel depressed, their performance will decline, and they will not attend 
the university.  To prevent non-attendance in the university, we propose a system of mood 
prediction using the majority vote based on a certainty factor (MVCF).  When part of the data 
cannot be obtained, MVCF predicts the future mood from available data.  Moreover, MVCF 
predicts four types of mood, namely, excitement, relaxedness, depression, and nervousness.  
Experimental results show that MVCF can predict moods from the next day until two weeks 
with 0.7 ± 0.1 accuracy.  We clarified that weather and scheduled events contribute to predicting 
the future mood.  MVCF predicts more types of mood than the existing system.  Moreover, the 
accuracy of MVCF is equal to that of the existing system.

1. Introduction

 When students feel depressed, their grade point average decreases(1) and they will not attend 
the university.(2,3)  The mood maintains a positive or negative value for a long time.(4)  People 
who have depression in their youth are more likely to suffer depression after getting a job.(5)  
Therefore, it is important that school doctors discover the early depression risks of students 
and treat depression.  However, it is difficult to discover early the depression risks of students, 
because the number of school doctors is small.  Therefore, students should take care of their 
mental state so that they maintain a positive mood.  
 Kim et al.(6) asked students to answer a questionnaire via the Internet and grasp the state of 
their mind.  Grasping the current mood helps transform a negative mood to a positive mood.  
However, it is difficult to completely prevent depression simply by grasping the current mood, 
because students may feel a negative mood in the future owing to scheduled events and changes 
in the environment.  In addition to grasping their current mood, students need to predict their 
future mood on the basis of scheduled events and changes in the environment.  However, since 
there are many scheduled events and changes in the environment, it is not easy for students to 
predict their future mood.  
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 To solve the problem, previous research studies(7,8) predicted the future mood and visualize 
it.  Such studies(7,8) clarified that the number of sunlight hours is an important variable for 
predicting the future mood.  The previous research study(8) predicted positive and negative 
moods with 0.7 accuracy from the next day until two weeks by inputting yesterday’s mood, 
weather, and vital signs into deep neural networks (DNNs).  However, even though there are 
many types of mood, the previous studies only predicted two types of mood, namely, positive 
and negative moods.  Moreover, when part of the data cannot be obtained, the previous 
system(7,8) cannot predict the future mood.  The students often forget to measure mood and vital 
signs such as pulse and blood pressure.  In addition, they often forget to charge the battery of 
the measurement device.  In the above case, we lose some data.  
 We propose the use of the majority vote based on a certainty factor (MVCF).  MVCF 
predicts the future mood from the majority vote of prediction candidates.  When the certainty 
factor of the prediction result is large, the prediction result is selected as a prediction candidate.  
The prediction results are outputted by many DNNs.  DNNs learn pulse, scheduled events, 
weather, or the current mood.  When we lose some data, MVCF can predict the future mood 
from available data.  When the number of prediction candidates is large, MVCF outputs the 
future mood from the next day until 14 days.  Otherwise, MVCF does not predict the future 
mood as the unpredictable data.  When the unpredictable data is outputted, we cannot grasp 
the mood of that day.  When the prediction system outputs incorrect prediction results, it loses 
reliability.  When the prediction system outputs many unpredictable data, it loses practicability.  
Therefore, MVCF predicts the future mood by maximizing the certainty factor calculated from 
the accuracy of prediction and the percentage of predictable data.  Experimental results show 
that MVCF predicts four types of mood, namely, excitement, relaxedness, depression, and 
nervousness from the next day until two weeks.  It also predicts more types of mood than the 
existing system.  The accuracy of MVCF is equal to that of the existing system.(7,8)  When there 
is a missing value in the measurement data, MVCF can still predict the future mood.  
 In Sect. 2, we explain how to obtain data, how to calculate feature vectors, and how to 
construct MVCF.  In Sect. 3, experimental results show that MVCF works properly and 
effectively.  In Sect. 4, we discuss the accuracy of the prediction and percentage of unpredictable 
data when thresholds of certainty factor change.  In Sect. 5, we present our future works.  

2. Prediction of Future Mood

 A user treats a negative mood by considering his/her current mood and maintains a positive 
mood by considering his/her future mood predicted by MVCF (Fig. 1).  First, the user uploads 
the pulse, current mood, and scheduled events to the cloud.  The pulse is obtained from the 
pulse monitor attached to the user.  The current mood is obtained by the user by inputting 
it to the interface on a smartphone.  Second, weather is obtained for free from the Japan 
Meteorological Agency website.(9)  Third, the user treats his/her mental state on the basis of 
his/her current mood.  Fourth, MVCF predicts the future mood.  Fifth, the user treats his/her 
mental state by considering the future mood before feeling a negative mood and maintains his/
her mental health.  
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 MVCF is composed of many DNNs (Fig. 2).  First, each feature vector is calculated from 
the pulse, scheduled events, current mood, or weather.  Second, DNNv,α(h,w) (v = γ, Ω, η, ζ)  
learns the feature vectors of a user.  h ∈	ℕ	is	the	number	of	hidden	layers	in	DNNs,	w ∈	ℕ		is	
the number of units in the hidden layers, and α in qualitative variables is the type of activation 
function in DNNs.  DNNv,α(h,w) outputs a class probability.  The class probability implies the 
difficulty in prediction.  When the class probability is greater than the threshold, MVCF outputs 
a prediction candidate.  Otherwise, MVCF rejects the prediction of DNNv,α(h,w).  Third, MVCF 
outputs the future mood or unpredictable data.  MVCF votes the predictable candidates for 
each objective variable.  When the number of prediction candidates is large, MVCF outputs a 
future mood after s day.  Otherwise, MVCF does not predict the future mood after s day as the 
unpredictable data.  We define the future day as s ∈	ℕ.		
 The reason for selecting DNNs as a predictor is that various hyperplanes can be described 
by changing parameters.  In this research study, many machine learnings learn each feature 
vector, predicting the future mood through MVCF that machine learning outputted.  To predict 
the future mood with large accuracy from the majority vote, many prediction candidates 
are necessary.  However, we cannot stably evaluate reliability and practicability from the 
certainty factor when we combine predictors with different machine learning models such as 
classification and regression tree (CART), C4.5, RandomForest, and support vector machine 
(SVM), because machine learning models differently calculate the class probability of the 
prediction result.  Therefore, we use DNNs that can describe various hyperplanes.  In addition, 
we often lose some data by unmounting and recharging the wearable device.  When DNNs 
input noisy and missing data, the prediction accuracy decreases.  
 MVCF does not necessarily predict the future mood from noisy data.  MVCF copes with 
noisy data by setting the threshold to the f-measure of DNNv,α(h,w).  MVCF copes with the 
missing data by voting the prediction candidates.  With this process, MVCF predicts moods 
with greater accuracy than previously reported systems.

Fig. 1. A user treats a negative mood considering his/her current mood and maintains a positive mood considering 
his/her future mood that is predicted by MVCF. 
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2.1 Input data

 The previous research studies(7,8) predicted the future mood by inputting the vital signs, 
weather, and current mood to a machine learning model.  According to the National Institute 
for Occupational Safety and Health (NIOSH) model of job stress,(10) the mood of the worker is 
changed by events such as workload, the quality of the work, relationship, and rest.  Therefore, 
MVCF predicts the future mood by inputting the pulse, the current mood, scheduled events, 
and the weather to DNNs.  A user wears a wristwatch-type pulse monitor and measures the 
pulse.  The pulse is sent to a smartphone via wireless networks.  A user inputs his/her current 
mood into the input interface on the smartphone.  We implement the input interface on the 
basis of the circumplex model of affect(11) (Fig. 3).  The circumplex model of affect is composed 
of the pleasant and activation axes.  The two axes classify the type of mood as excitement, 
relaxedness, depression, or nervousness.  The input interface is displayed on the touch screen 
of the smartphone.  A user can easily input his/her current mood by tapping on the excitement, 
relaxedness, depression, or nervousness.  The input interface obtains the coordinates on the 
circumplex model.  The pulse and his/her current mood are uploaded to the cloud via the 
smartphone.  Scheduled events are obtained with an application on the cloud.  University 
students usually experience events in daily lives.  The types of event are mainly studying, 
participating in club activities, working part time, and rest.  The studying, club activities, 
and working are equivalent to the workload in the NIOSH model.  Therefore, we obtain the 
studying, club activities, working, and rest.  Weather is obtained for free from the Japan 
Meteorological Agency website.(9)

2.2 Feature vector

 Each feature vector is calculated from the pulse, weather, scheduled events, or current 
mood.  The pulse vector is a state transition matrix.  The state transition matrix is outputted by 
the hidden Markov model (HMM).  HMM inputs the pulse obtained the day before.(12)  HMM 

Fig. 2. Majority vote based on certainty factor.
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converts time series data into the transition of steady states using the Baum Welch and Viterbi 
algorithms.  The Baum Welch algorithm(13) estimates the parameters of HMM.  The Viterbi 
algorithm(14) calculates the state transition matrix on the basis of the parameters of HMM.  The 
pulse in the daily lives changes according to rapid eye movement (REM) sleep, non-REM (NREM) 
sleep, activity state, and resting state.  Therefore, the number of steady states is set to four.  The 
pulse vector is a 4 × 4 state transition matrix.  The weather vector is an average of the weather 
from the s day until the s	−	1	day.		The	event	vector	is	the	number	of	each	of	the	events	from	
the s	−	5	day	until	the	s	−	1	day.		The	mood	vector	is	the	current	mood	of	the	coordinates	on	the	
circumplex model.

2.3 MVCF

2.3.1 Prediction of future mood

 Each feature vector is inputted to DNNv,α(h,w).  DNNv,α(h,w) outputs the class probability 
of objective variables.  The objective variables are excitement, relaxedness, depression, and 
nervousness after the s day.  The class probability implies the difficulty in prediction.  DNN 
is composed of hidden layers.  Each hidden layer has some units.  Each unit has an activation 
function.  The activation function describes various hyperplanes with linearity or nonlinearity.  
First, DNN learns explanatory variables by pretraining in unsupervised learning with an 
autoencoder.  Second, DNN is adjusted by fine-tuning in supervised learning with dropout.  
DNNv,α(h,w) outputs the class probability of the objective variables as

 ( ), , , 1,v y
y

c h wα =∑  (1) 

where cv,α,y(h,w) ∈	ℝ	is	the	class	probability	in	DNNv,α(h,w), and y is an objective variable.  The 
prediction candidate is selected as

Fig.	3.	 Input	interface	based	on	a	circumplex	model	of	affect.
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 ( ) ( ), , ,, arg max , ,α α
c
v v yy

y h w c h w=  (2) 

where ,α
c
vy (h,w) outputs the prediction candidate.  The prediction candidate is the estimated 

objective variable.  Each DNN has a different parameter.  The number of DNNs is equal to 
that of parameter combinations.  Therefore, the maximum number of prediction candidates is 
attached as H × W × (number of activation functions) × (number of feature vectors).  
 According to the following formula, MVCF selects reliable prediction candidates by 
threshold processing and from the voting for each objective variable.

 ( , ),y
h w v

q h w
α

δ=∑∑∑∑  (3) 
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where ,
c

vT α(h,w) is the threshold of ,
a

v
m xc α (h,w), T f is the threshold of DNNv,α(h,w), qy ∈	 ℤ	 is	

the number of votes for each objective variable, δ(h,w) is the result of threshold processing, 

,
N

v
D Nf α (h,w) ∈	ℝ	is	the	f-measure of DNNv,α(h,w) when ,

c
vT α(h,w) is set, and ,

a
v
m xc α (h,w) ∈	ℝ	is	the	

maximum class probability.  
 According to the following formula, MVCF selects the reliability vote by threshold 
processing for qy.
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where yvote is the result of prediction, dy ∈ ℤ	 is	 the	 percentage	 of	 votes	 for	 each	 objective	
variable, and T d ∈	ℝ	is	the	threshold	of	dy.  When yvote is 0, MVCF outputs the unpredictable 
data.  Otherwise, MVCF outputs the future mood.

2.3.2 Determination of threshold

 When ,
a

v
m xc α (h,w) is greater than ,

c
vT α(h,w), MVCF selects the prediction candidate.  Otherwise, 

MVCF rejects the prediction candidate.  ,
c

vT α(h,w) ∈	ℝ	is	determined	by	the	maximum	f-measure 
in DNNv,α(h,w) and T u as 



Sensors and Materials, Vol. 30, No. 7 (2018) 1479

 ( ), ,
[0,1]

, arg max
c

c c
v v

T
T h w fα α

∈
= , (8) 

where ,
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where ,
c
vp α (T c,h,w) ∈	ℝ	is	the	precision	in	applying	 ,

c
vT α(h,w), ,
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vf α (T c,h,w), ,
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vp α(T c,h,w), and ,

c
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candidates. ,
c
vn α(T c,h,w) ∈	ℝ	 is	 the	percentage	of	 the	predictable	 candidate	 in	 all	 the	 samples	

when ,
c

vT α(h,w) is applied.  ,
c
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where ,
c
vo α(T c,h,w) is the number of predictable candidates in applying ,

c
vT α(h,w), and ,α

c
vu (T c,h,w) 

is the number of rejected votes in applying ,
c

vT α(h,w).  ,
c

vT α(h,w) is set to the output of each DNN.  
MVCF predicts the future mood from the majority vote using the prediction candidates.  When 
dy is greater than T d, MVCF outputs the vote as a result of prediction.  Otherwise, MVCF 
outputs the unpredictable data.  ,

N
v
D Nf α (h,w) is calculated as
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[0,1]
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c

DNN c c
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T
f h w f T h wα α

∈
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 When the f-measure decreases, system reliability decreases, because the system often 
outputs an incorrect prediction.  When the system outputs a lot of unpredictable data, the system 
loses practicability.  Therefore, MVCF should be evaluated on the basis of the f-measure and 
percentage of unpredictable data.  T u, T f, and T d are determined such that the certainty factor 
maximizes as

 ,, ,( ) , ,( ),( )vote vote vote u f d vote u f dE f n f T T T n T T T=  (12)

where E( f vote,N vote) ∈	ℝ	 is	 the	evaluation	function	of	 the	certainty	factor.	 	 f vote(T u,T f,T d) is 
the f-measure in applying T u, T f, and T d.

 ( ) 2 ( , , ) ( , , ), , ,
( , , ) ( , , )

vote u f d vote u f d
vote u f d

vote u f d vote u f d
p T T T r T T Tf T T T

p T T T r T T T
=

+
 (13)
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where pvote(T u, T f, T d) ∈	ℝ	is	the	precision	in	applying	T u, T f, and T d.  rvote(T u, T f, T d)  ∈	ℝ	
is the recall in applying T u, T f, and T d.  f vote(T u, T f, T d), pvote(T u, T f, T d), and rvote(T u, T f, T d) 
are calculated from predictable data.  N vote(T u, T f, T d) ∈	ℝ	is	the	percentage	of	predictable	data	
in applying T u, T f, and T d as  

 ,
(

( , , )
(, , ) , , )

vote u f d
vote

vote u f d vote u f d
o T T Tn

o T T T n T T T
=

+
 (14) 

where ovote(T u,T f,T d) is the number of predictable data in applying T u, T f, and T d.  
uvote(T u,T f,T d) is the number of unpredictable data in applying T u, T f, and T d.

3. Evaluation of MVCF

 The number of subjects was four.  The subjects were undergraduate students.  The 
experiment period was from October 27, 2015 to December 27, 2015.  The subjects measured 
their pulse with a pulse monitor (Epson Company, PS-100BL).  The number of steady states 
was four.  Therefore, the pulse vector was 16-dimensional.  We ordered the subjects to wear 
the pulse monitor always.  The subjects measured their current mood with the smartphone 
(Sony Company, Xperia z3 compact).  The types of mood considered were excitement 
(EX), relaxedness (RX), nervousness (NV), and depression (DP).  The input interface on 
the smartphone obtained the coordinates of the circumplex model based on the pleasant and 
activation axes.  Therefore, the mood vector was 2-dimensional.  The subjects responded to 
mood during 13:00 and 17:00.  The subjects inputted their scheduled events to the Google 
calendar.  The event vector was the number of events such as studying, working, club activities, 
and rest.  Therefore, the event vector was 4-dimensional.  The event during the experiment was 
inputted before the experiment.  When an event was added after the experiment started, the 
subjects updated the Google calendar every time.  We obtained the weather by considering the 
maximum temperature (MXT), minimum temperature (MNT), precipitation (PN), snowfall 
(SF), snow depth (SD), number of sunshine hours (SH), maximum wind speed (MW), relative 
humidity (RH), mean cloudiness (MC), air pressure (AP), and vapor pressure (VP).  Therefore, 
the weather vector was 11-dimensional.  The weather of Hikone was obtained from the 
Meteorological Agency after the experiment.  MVCF predicted the mood from the next day 
until 14 days (s = 1, 2, …, 14).  The objective variables considered were excitement, relaxedness, 
depression, and nervousness after s day.  Table 1 shows the sample pulse size, current mood, 
scheduled events, and weather.  Table 2 shows the sample mood size.  H and W were set to 4 and 5, 
respectively.  The activation functions considered were maxout, maxout with dropout, rectifier, 

Table 1
Number of days that input data was obtained.

A B C D
Pulse 40 17   6 12
Mood 42 22 33 22
Event 62 62 62 62
Weather 62 62 62 62

Table 2
Sample mood size in each of the subjects.
Subject EX NV DP RX
A 5 5 20 12
B 9 2 2 9
C 3 24 2 4
D 7 2 0 13
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rectifier with dropout, tanh, and tanh with dropout.  The number of activation functions was 
six.  The feature vectors considered were the pulse, event, mood, and weather vectors.  The 
number of feature vectors was four.  Therefore, the maximum number of votes was 480.  The 
performance of MVCF was evaluated by leave-one-out cross-validation (LOOCV),(15) where the 
f-measure was calculated.  f avg(T u,T f,T d) was defined as the average f MVCF(s,T u,T f,T d) from 
the next day until 14 days when T u, T f, and T d were set as

 

14

1
( , , , )

,
14

MVCF u f d

avg s
f s T T T

f ==
∑

 (15)

where fMVCF(s,T u,T f,T d) is an f-measure of MVCF when predicting the mood after s day.  
N avg (T u,T f,T d) was defined as the average of nMVCF(s,T u,T f,T d) until 14 days later when T u, 
T f, and T d were set as

 

14

1
( , , , )

( ) ,
1

, ,
4

MVCF u f d

avg u f d s
n s T T T

N T T T ==
∑

 (16)

where nMVCF(s,T u,T f,T d) is the percentage of predictable data of MVCF when predicting the 
mood after s day.  
 Table 3 shows the parameters of the steady state in HMM.  MVCF was set to the same 
parameters of DNN.  There are few days when the weather, event, pulse, and mood could be 
measured.  Therefore, we could not describe the result of inputting all feature vectors into 
DNNs.  We compared MVCF with classifiers with the highest accuracy among the accuracies of 
DNNv,α(h,w).  Figures 4–6 show the average (T u,T f,T d), f avg(T u,T f,T d), and N avg(T u,T f,T d).  
T u, T f, and T d were set as the thresholds when Eq. (12) was maximum.  The error bars in Figs. 
4–6 indicate the standard deviation.  As indicated in Fig. 4, when T u, T f, and T d were set to 
about 0.5, 0.5, and 0.1, respectively, f avg and N avg were maximized.  As indicated in Fig. 5, 
MVCF predicted four types of mood with 0.7 ± 0.1 accuracy.  The f-measure of MVCF is about 
0.1 higher than DNNv,α(h,w).  As indicated in Fig. 6, the average N avg was determined to be 
0.05.  Figures 5 and 6 show that subjects with large f avg values have small N avg values.  Figure 
7 shows the f avg of each mood.  The f avg of DP in subject D was zero because subject D did 
not have DP.  Table 2 and Fig. 7 show that f avg is large in descending order of the number of 
predictable data in Fig. 8.

Table 3
Parameters of the steady state in HMM (mean ± standard deviation).

NREM REM Activate Relaxedness
A 60.0 ± 3.8 71.2 ± 3.9 115 ± 12.4 85.7 ± 6.1
B 65.9 ± 4.0 78.9 ± 4.3 113.2 ± 0.5 92.8 ± 4.9
C 63.0 ± 3.7 63.3 ± 3.8 102.9 ± 14.8 77.9 ± 5.4
D 58.8 ± 3.2 68 ± 2.9 95.3 ± 11.4 77.7 ± 3.9
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Fig. 6. Navg(T u,T f,T d) was set to T u, T f, and T d when Eq. (12) was maximum.

Fig. 7. The f avg(T u,T f,T d) of each type of mood was 
set to T u, T f, and T d when Eq. (12) was maximum.

Fig. 8. Navg(T u,T f,T d) of each type of mood was set 
to T u, T f, and T d when Eq. (12) was maximum.

 Figures 9 and 10 show the effects of missing values on f avg(T u,T f,T d) and N avg(T u,T f,T d) 
that were set to T u, T f, and T d when Eq. (12) is maximum.  M-2 indicates that the mood and 
pulse vectors were lost.  M-1 indicates that the mood or pulse vector was lost.  M-0 indicates 
that all feature vectors were included.  Table 4 shows the sample sizes of M-2, M-1, and 
M-0.  Figures 9 and 10 showed that, as the number of missing values increases, f avg and N  av 
decrease.  The weather and event vectors contribute to the accuracy because f avg in M-2 is 
greater than the random value.  The pulse and mood vectors contribute to the accuracy because 
f avg in M-0 is greater than that in M-2.  Therefore, MVCF with the pulse, weather, scheduled 
events, and current mood is proven to work properly and effectively.  MVCF predicts more 
types of mood than the existing system.(7,8)  Moreover, MVCF can cope with missing values by 
voting a predictable candidate.

Fig. 4. The average of T u, T f, and T d was set when 
Eq. (12) was maximum.

Fig. 5. f avg(T u,T f,T d) was set to T u, T f, and T d 
when Eq. (12) was maximum.
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Fig. 9. T h e e f f e c t  o f  m i s s i n g v a l u e s  o n 
f avg(T u,T f,T d) was set to T u, T f, and T d when Eq. (12) 
was maximum.

Fig. 10. T h e e f f e c t  o f  m i s s i n g v a l u e s  o n 
Navg(T u,T f,T d) was set to T u, T f, and T d when Eq. (12) 
was maximum.

Table 4
Sample sizes of M-2, M-1, and M-0.

A B C D
M-2 7 21 18 18
M-1 4 11 27 28
M-0 39 14 6 3

Fig. 11. T u	affected	 ,
c

vf α  (T c,h,w) and ,
c
vn α (T c,h,w) when T u was set from 0 to 1.

4. Discussion

 We discuss the effects of T u, Tf, and T d on f avg and Navg.  When T u was set to large values, 

,
c

vf α (T c,h,w) increased (Fig. 11).  However, ,
c
vn α(T c,h,w) decreased.  Therefore, T u selected 

reliable results in DNNv,α(h,w) as prediction candidates.  Figures 12 and 13 show the effects 
of Tf and T u on f avg and Navg when T d was changed from 0 to 1.  When Tf and T u were set to 
large values, f avg increased and Navg decreased.  Therefore, MVCF increased the reliability and 
decreased the usability by setting Tf and T u to large values.  Figures 14 and 15 show the effects 
Tf and T d on f avg and Navg when T u was changed from 0 to 1.  When T d was set to large values, 
f avg was not changed and Navg decreased.  Figures 16 and 17 show the effects of T u and T d on 
f avg and Navg when Tf was changed from 0 to 1.  When T d was set to large values, f avg was not 
changed and Navg decreased.  Therefore, MVCF was proven to be highly reliable and useful 
when T u and Tf were set to intermediate values and T d was set to small values.
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Fig. 12. T u and T f	 affected	 f avg(T u,T f,T d) when T d 
was changed from 0 to 1.

Fig. 13. T u and T f	 affected	Navg(T u,T f,T d) when T d 
was changed from 0 to 1.

Fig. 14. T f and T d	 affected	 f avg(T u,T f,T d) when T u 
was changed from 0 to 1.

Fig. 15. T f and T d affected N avg(T u,T f,T d) when 
T uwhen Tu was changed from 0 to 1.

Fig. 16. T u and T d affected f avg(T u,T f,T d) when 
T fwas changed from 0 to 1.

Fig. 17. T u and T d affected N avg(T u,T f,T d) when 
T fwas changed from 0 to 1.

5. Conclusions and Future Works

 We proposed MVCF.  Even when there were missing values, MVCF predicted four types of 
mood, namely, excitement, relaxedness, depression, and nervousness with 0.7 ± 0.13 accuracy.  
MVCF predicts more types of mood than the existing system.  Moreover, the accuracy of 
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MVCF is equal to that of the existing system.(7,8)  As a result of analysis, scheduled events and 
weather are considered important variables for predicting the future mood.  We showed that the 
f-measure and the percentage of unpredictable data can be adjusted by changing the thresholds 
T u, T f, and T d.  Students can easily maintain a positive mood by self-control on the basis of 
the visualized mood using MVCF.  The physical burden on the students was small because 
we used wearable devices to measure the pulse.  Even when the pulse and current mood were 
not measured, MVCF predicted the mood from the next day until two weeks with 0.6 ± 0.9 
accuracy by considering the scheduled events and weather.  Therefore, experimental results 
show that MVCF works properly and effectively.  On the other hand, the mood prediction 
system used the observation value of weather, but not the weather forecast.  In addition, MVCF 
is a personal adaptive system.  As future work, we will predict future moods from the weather 
forecast.  Moreover, we would like to develop a method that predicts the mood of an unknown 
user.
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