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	 A uric acid biosensor aimed at a simplified determination of salivary uric acid was fabricated 
and utilized for the measurement of the diurnal variation of salivary uric acid.  The biosensor 
measures uric acid as the change in the amount of hydrogen peroxide produced in the uricase 
reaction.  Because uric acid is oxidized as easily as hydrogen peroxide, the osmium-HRP redox 
reaction was employed.  The sensitivity of the biosensor was 170 nA/mM, which was sufficient 
for salivary uric acid determination.  For simplified measurement of a saliva sample, a paper-
based saliva sampling device, which enables the sample collection of a regulated amount of 
saliva in 5 s, was used.  As a test using an actual sample, the diurnal variation of salivary uric 
acid was measured.  The result indicated that salivary lactic acid increased in the morning.  
The total measurement time for the saliva measurement was approximately 3 min, which was 
sufficiently fast for the purpose of daily health management.  The proposed method is expected 
to be used not only in gout treatment but also possibly in the measurement of other substances 
contained in saliva.

1.	 Introduction

	 Gout is a kind of arthritis caused by the crystallization of uric acid in serum, which can be 
associated with hyperuricemia (high levels of uric acid in the blood), in the joints.  This causes 
an attack of sudden severe pain, stiffness, and swelling.  The favorite site for gouty arthritis 
is the first metatarsophalangeal joint (the joint on the thumb of the foot) but any joint may be 
involved in a gout attack.  Uric acid is the end product of the metabolic breakdown of purine 
nucleotides.  Although uric acid contained in food is less than that synthesized in the body, the 
ingestion of foods rich in purines, such as cooked or processed food especially from animals 
and seafood, is a key element in the increase of uric acid precursors.(1)  Alcohol intake also 
leads to an increase in the blood uric acid level.  Alcoholic beverages enhance the synthesis of 
uric acid in the body although they do not contain much purine.  The deposition of monosodium 
urate crystals in tissues can be found in hyperuricemia (6.8 mg/dl).(2)  Because gout occurs 
mainly in middle-aged or elderly men, items related to their blood uric acid levels and dietary 
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habits are one of the common daily topics in Japan.  In addition, gout has recently been seen in 
young people, and it has been reported that the number of patients with gout is increasing.(3)

	 In the treatment of gout, dietary therapy(4,5) and medication to suppress the uric acid 
levels(1,2,6) are commonly recommended.  To estimate the efficiency of a treatment, blood 
uric acid measurements, which require blood sampling by needle puncture, are often used.  
Considering the risks and inconveniences of needle puncture (e.g., infection, pain), a noninvasive 
and convenient method to assess blood uric acid levels would be useful to improving the 
quality of life for patients with gout.  Hence, the purpose of our study is to develop a simplified 
self-check device capable of noninvasive blood uric acid assessment.  Usually, noninvasive 
assessment of blood contents can be made by measuring other body fluids that reflect the blood 
content.  For this purpose, we focused on uric acid in saliva, which is reported to be positively 
correlated with blood uric acid levels in the recent literature.(7–11)  Although many of the 
components of saliva, including uric acid, can be analyzed using conventional analyzers such as 
high-performance liquid chromatography (HPLC),(12–15) those methods are not suitable for daily 
personal use because they usually take much time and call for expensive equipment.  Owing 
to the advantages of the simple measurement procedure, short response time, and sufficient 
sensitivity and selectivity, enzyme-based biosensors(16,17) have been competitive devices for 
routine analysis.(18)  Previously, several types of uric acid biosensors using the redox reactions 
of uricase were reported.(19–22)  For simplified measurements, we developed an electrochemical 
biosensor with a reaction cell for measuring uric acid contained in saliva that does not require 
any pretreatment.  The novelty of our simplified salivary uric acid biosensor is the capability 
of fast self-check owing to the use of a paper-based saliva sampling device.  With our paper-
based sampling device, a certain amount of a saliva sample can be collected by contacting the 
sampling device to the salivary grand.  In this paper, we report the structure and characteristics 
of our device.  Also, the first result of salivary uric acid determination is reported.

2.	 Materials and Methods

2.1	 Reagents and materials

	 Uricase from Candida sp. (218-00721, 3.0–6.5 units/mg, EC. 1.7.3.3) and osmium-wired 
horseradish peroxidase (Os-HRP) redox polymer (002096) were obtained from Wako (Japan) 
and Bioanalytical Systems (USA), respectively.  Polydimethylsiloxane (PDMS: SYLGARD184 
Silicone Elastomer Kit) was purchased from Dow Corning Co. (USA).  For the purpose of 
enzyme immobilization, an UV curable polymer (Biosurfine-AWP-MRH, Tokyo Gosei Kogyo 
Co., Japan) was employed.  A standard uric acid solution was prepared by diluting uric acid 
(216-00222, Wako, Japan) with phosphate buffer saline [PBS: pH 7.4, 50 mM (PO4)].  Both 
carbon graphite paste (C2030519P4) and silver/silver chloride paste (C2130809D5) were 
purchased from Gwent Electronic Materials Co. (UK).  Polyethylene terephthalate (PET) sheets 
(thickness: 100 µm, N0791400) and polyvinyl chloride (PVC) adhesive sheets (SX-00Z) were 
products of Featherfield Co. (Japan) and Europort Co. (Japan), respectively.  Mesh screens for 
screen printing (SR-260, #225) were obtained from Sunhayato Co. (Japan).
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2.2	 Fabrication and characterization of uric acid sensor

2.2.1	 Uric acid biosensor

	 As shown in Fig. 1, uricase catalyzes the oxidation of uric acid to allantoin, and hydrogen 
peroxide and carbon dioxide are also produced at the same time.  Therefore, the biosensor 
measures uric acid as changes in hydrogen peroxide concentration.  However, uric acid is 
oxidized as easily as hydrogen peroxide.  Therefore, hydrogen peroxide is specifically converted 
to water by the redox reaction of HRP, and an osmium complex is used as a mediator to transfer 
electrons from the electrode to HRP.  By this reaction, the operating potential is reduced so that 
uric acid is not oxidized unexpectedly by the potential of the electrodes.
	 The uric acid biosensor was fabricated by conventional screen printing techniques.  Carbon 
graphite and silver/silver chloride pastes were printed on a 100-μm-thick PET substrate using a 
225-mesh screen.  After printing, the pastes were cured at 130 °C for 30 min.  Os-HRP redox 
polymer (0.3 μL) was coated on the sensing region of the working electrodes, and uricase 
was immobilized on the sensing region by adding 0.2 μL of PBS that contained uricase (50 
units/mL).  Then, a reaction cell fabricated by conventional PDMS (inner diameter: 8 mm) 
molding was set on the electrode and the reaction cell was tightly fixed with a polymethyl 
methacrylate (PMMA) casing (Fig. 2).  

Fig. 1.	 Principle of salivary uric acid determination.

Fig. 2.	 (Color online) (a) Structure, (b) appearance, and (c) paper-based sampling device of the salivary UA 
sensor.  The contact pads were arranged from the left in order of the counter electrode, the working electrode, the 
reference electrode and the dummy.  To make it easier to visualize the region used in sampling, the sampling device 
was wetted with a colored solution.

(a) (b) (c)
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2.2.2	 Sampling device

	 The most important requirements for the purpose of salivary uric acid measurement are the 
accuracy of sampling volume and a simplified sampling method.  To satisfy these requirements, 
we developed a paper-based sampling device.  Prior to preparing the sampling device, materials 
suitable for saliva sampling were investigated.  Materials used for saliva collection in our system 
are required to absorb a specific volume with sufficient reproducibility rather than merely 
absorbing a large amount of water.  Hence, we compared the water contents of a commercially 
available coffee filter (VCF-01-100MK, Hario Co.) and two kinds of paper filters with similar 
particle retention for scientific experiments: Grade 3 (Whatman Co., particle retention: 6 μm) 
and No 1 (Advantec Co., particle retention: 6 μm).  The sampling device was 5 mm wide × 3 cm 
long and the sampling region was 5 × 5 mm2, as shown in Fig. 2(c).  The size of the sampling 
device was determined for ease of saliva collection from the sublingual gland.  To control the 
collecting region, the filter paper was coated with PDMS, except for the sampling region.

2.2.3	 Characterization of biosensor

	 The characterization of the biosensor was carried out using amperometric techniques.  First 
of all, the reaction cell was filled with 60 μL PBS and a constant potential of 0 V vs Ag/AgCl  
was applied to the working electrode.  Fresh biosensors were used for every measurement.  In 
order to assess the effective characteristics in the measurement of a saliva sample, a standard 
uric acid sample was added using the sampling device.  The sampling device was wetted in 
standard uric acid solution for 5 s and immediately put into the reaction cell.  The output current 
was recorded continuously throughout the measurement.

2.3	 Sampling and measurement of salivary uric acid

	 With the approval of the ethical committee of Meiji University (No 17-534), the measurement 
of salivary uric acid was demonstrated.  Saliva samples were collected from adult male 
volunteers.  The sampling procedure is quite simple, as shown in Fig. 3.  The sampling region 
of the device was gently placed on the salivary gland for 5 s.  The sampling device containing 

Fig. 3.	 (Color online) Saliva collection method using the paper-based sampling device.
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the saliva sample was then directly inserted into the reaction cell so that the corners of the 
rectangular sampling device were aligned with the boundary between the bottom and the side 
of the cylindrical reaction cell.  To ensure accuracy of measurement, the output currents for 
standard uric acid solution (100 μM) were also measured with the same sensor, before and after 
the measurement of the saliva sample.  Eating and drinking were restricted for subjects 1 h 
before the measurement.

3.	 Results and Discussion

3.1	 Evaluation of uric acid biosensor

3.1.1	 Selection of material for sampling device

	 Figure 4 shows the deionized (DI) water contents of the coffee filter and two kinds of paper 
filters with similar particle retention for scientific experiments.  The filters were cut into five 
square pieces (5 × 5 mm2).  The x-axis represents the identification number of the filter paper 
before being cut into five pieces.  The weight of the square pieces of the filter were measured 
as soon as they were taken from the water.  As presented in the figure, the Whatman filter 
showed high reproducibility [64.0 ± 4.6 mg/cm2 (8.0 ± 1.2 μL)] compared with the others [52.6 
± 12.3 and 56.4 ± 14.8 mg/cm2 (13.2 ± 3.1 and 14.1 ± 3.7 μL)].  Because of this result, we chose 
the Whatman filter as the saliva collecting material.  Specifications and water absorptions of 
different grades of Whatman filters are also investigated and shown in Table 1.  As clearly 
indicated in Table 1, the grade 4 filter had acceptable reproducibility and relatively high water 
content.  From these results, we chose the grade 4 filter as the material for saliva collection.

3.1.2	 Fundamental characteristics of uric acid sensor

	 The characteristics of the biosensor were investigated using amperometric techniques.  
Figure 5 shows typical responses of the biosensor towards immersion of the sampling device  
containing various concentrations of uric acid, and the calibration curve for uric acid.  Each plot 

Fig. 4.	 (Color online) Water absorbance of various filter papers.  Five numbered filter papers (ID: 1 to 5) were cut  
into five 5 × 5 mm2 square pieces. 
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shown in the calibration curve was the average from 120 to 150 s after immersion of the filter 
paper.  The error bars represent standard deviations for five different samples.  As shown in 
the figure, current increased immediately after immersion of the sampling device and reached 
its peak in approximately 30 s.  The temporal change of the current is thought to reflect the 
process in which the uric acid contained in the sampling device diffused into the reaction cell 
and the concentration reached equilibrium.  The region of the sampling device containing uric 
acid sank automatically into the bottom of the reaction cell.  This also was considered to be one 
of the reasons why the current peaked.  The response time can be improved by miniaturizing 
the reaction cell.  The linear range (10–400 μM) included salivary uric acid levels of patients 
both with and without gout.  The sensitivity for the use of the sampling device was 170 nA/mM, 
which was sufficient for salivary uric acid determination.  Selectivity to possible substances 
found in saliva was also investigated.  As a result, current changes for 50 mM glucose, 
creatinine, and lactic acid were 7.49, 4.25, and 2.67%, respectively compared with that of 50 
mM uric acid.  This suggests that our system is sufficiently specific for uric acid as a result of 
the specific activity of uricase.

Table 1
Water content of Whatman filters with various particle retention capacities.

Grade Particle retention
(μm)

Thickness
(mm)

Weight
(mg)

Water content
 (mg/cm2)

1 11 0.18 2.1 42.1 ± 3.4
2   8 0.19 2.6 43.3 ± 3.8
3   6 0.39 5.5 64.0 ± 4.6
4 20 0.21 2.6 52.9 ± 0.8
5      2.5 0.20 3.0 41.0 ± 1.6
6   3 0.18 2.5 40.7 ± 2.2

Fig. 5.	 (Color online) (a) Typical responses of the biosensor when the sampling device containing uric acid 
solution was inserted into the reaction cell and (b) calibration curve for uric acid obtained using the sampling 
device. The calibration range involved salivary uric acid levels of both patients with and without gout.

(a) (b)
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3.2	 Results of salivary uric acid measurement

	 On the basis of the fundamental characteristics discussed above, salivary uric acid was 
also measured.  First, fluctuation in the quantity of collected saliva owing to individual 
differences was evaluated.  In this test, each of five male volunteers collected their own saliva 
five times using fresh sampling devices each time.  Measured quantities of saliva contained 
in the sampling devices of each subject were 28.4 ± 4.0, 28.1 ± 2.0, 26.8 ± 3.5, 29.2 ± 1.2, 
and 29.6 ± 3.2 mg/cm2 (7.1 ± 4.0, 7.0 ± 0.5, 6.7 ± 0.9, 7.3 ± 0.3, and 7.4 ± 0.8 μL).  The values 
were approximately 53% of the water content shown in Table 1.  Despite the difference in the 
specific weight of saliva and water being less than 1%, it is an interesting result that such a large 
difference in collected amount was found.  Upon further investigation, we considered the reason 
to be as follows.  When evaluating water absorption, the filter paper was soaked in water.  
Therefore, water was absorbed from both sides of the filter paper.  In contrast, when saliva 
was collected, it was brought into contact with the sublingual gland, which was moistened 
with saliva, thus absorbing saliva from only one side.  Consequently, water was stored on the 
surface of the filter paper owing to surface tension, whereas absorption of saliva for 5 s does not 
progress to that extent.  We also confirmed that by turning over the filter paper and collecting 
saliva again after the first sampling, the amount of saliva collected reached about 90% that of 
water.  However, we concluded that collecting saliva from only one side was sufficient for our 
purposes from the point of view of simplicity.
	 The measurement of salivary uric acid was then carried out.  Figure 6(a) represents a typical 
response to a saliva sample.  Although the states of insertion were slightly uneven depending on 
the user, the currents after 120 s converged to a certain value depending on the concentration 
of the uric acid contained in the sampling device.  In contrast to the response to a standard 
solution, the current increased slowly and showed a peak 45 s after the sampling device was 
inserted.  One of the reasons is the effect of saliva viscosity on initial diffusion.  Saliva secreted 

Fig. 6.	 (Color online) (a) Typical response to a saliva sample collected from the salivary grand of a healthy adult 
subject using the paper-based sampling device and (b) the typical diurnal variation of salivary uric acid measured 
using our system.

(a) (b)
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from the sublingual gland is relatively rich in mucin.(23,24)  Therefore, it is more viscous than 
saliva derived from the parotid gland.  The concentration of salivary uric acid was estimated to 
be 92 μM, which is consistent with the salivary uric acid levels reported in the literature.(25)  In 
addition, the diurnal variation of salivary uric acid was measured and the results indicated that 
the level of salivary uric acid was relatively high in the morning compared with that at night, 
as shown in Fig. 6(b).  This is also consistent with the previous report as well as similar to the 
diurnal variations of serum uric acid.(7)  
	 From these results, the feasibility of our simplified method to assess salivary uric acid, 
which would be useful for daily self-checking, was successfully demonstrated.  Salivary uric 
acid is an attractive biomarker that can be measured noninvasively.  This method is expected to 
be acceptable to gout patients and to enhance the quality of their lives.

4.	 Conclusions

	 A simplified determination method of salivary uric acid was demonstrated using a uricase-
based biosensor and a paper-based sampling device.  With the low operating potential derived 
from the redox reaction of osmium and HRP, a highly selective determination of salivary uric 
acid was enabled without any pretreatment.  The sensor had a sufficient sensitivity of 170 
nA/mM and a calibration range that included uric acid levels of both patients with and without 
gout.  Utilizing the sampling device, saliva was easily collected in 5 s and the amount of uric 
acid contained in saliva was successfully measured (92 μM).  The results were consistent with 
previous reports.  The total time for measurement was 3 min and we expect to shorten it by 
miniaturizing the components.  Thus, the proposed method has the potential for use in daily 
self-checks.  
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