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 The autofocus (AF) system has gained popularity in over 40 years.  Embedded in a camera, 
it can bring the best focused image to the viewer within a few seconds, which frees users from 
focusing manually.  An AF system usually consists of a motor, a lens, and the processing and 
control units.  Within years of development, the AF system has become mature in terms of 
both technology and market, and many fast and accurate AF systems have been introduced and 
widely installed in compact cameras and digital single lens reflex (DSLR) cameras.  On the 
other hand, the market for thermal infrared cameras has been increasingly growing in recent 
years owing to their decreasing cost and wide use by both civilians and the military.  The AF 
system in those cameras adopted similar but more complex mechanisms.  This article serves as 
a literature review of the state of the art of the AF system in both visible light digital cameras 
and thermal infrared cameras.  

1. Introduction

 The first mass-produced autofocus (AF) camera was the Konica-C35 AF, which was released 
in November 1977.(1)  Nowadays, the AF system is embedded in almost every compact digital 
camera and digital single lens reflex (DSLR) camera, and some smartphones and tablets also 
incorporated the AF system.  An AF system in a digital camera is a feedback control system 
normally composed of three parts: (1) a motor that drives a camera lens to move along the 
optical axis iteratively to search for the lens position of the best focus, (2) a group of lenses 
that converge light rays to the image sensor and (3) a processing unit that both carries out 
computation such as focus value per frame and issues control signals to the motor.  Focus 
accuracy and speed are two important indicators for evaluating an AF system.  They are 
affected by the selected algorithm for searching the best focus position, noise level, motor 
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performance, specification of the optics such as f-number, density of the lens, and whether or 
not the subject is moving.  
 AF can be achieved by actively, passively, or a hybrid of the two.  The active method includes 
ultrasonic, infrared,(2) and time-of-flight (TOF) types.  The camera emits a beam of light or 
sound and receives the reflected beam to estimate distance between the camera and the subject.  
For instance, Canon’s “sure-shot” is an infrared-type AF.  It uses a triangulation technique to 
estimate distance to the subject.(3,4)  The passive method is categorized into phase detection and 
contrast detection AF.  The former measures the phase difference between two captured images 
to estimate the focus position.  The latter measures the sharpness of each frame to find the best 
focus position.  Each method has pros and cons.  For example, the active AF works under any 
illumination condition.  However, it cannot “see” through windows and occlusions.  Its accuracy 
is also inferior to that of the passive AF system.(1)  The passive AF can detect and focus on 
subjects behind windows but may fail when the illumination is poor.  In comparison with 
contrast detection, phase detection distinguishes between near and far focus.  It is generally 
faster than contrast detection and adapts to focusing on moving objects.  However, its accuracy 
is inferior to that of the latter.(5)  Some cameras employ a hybrid-type AF, which combines 
active and passive AF, to ensure better performance instead of using active or passive alone, but 
they are more expensive and bulky.  
 Among the three types mentioned above, contrast-based AF has received considerable 
attention because of its good performance and low cost.(6,7)  There are numerous papers and 
patents on contrast-based AF, some of which have already been used in consumer digital 
cameras or mobile phone cameras.  In this paper, we review the literature on contrast-based 
AF from the early years to the state of the art.  In addition, we contribute a section on the AF 
of thermal infrared cameras [also known as long-wave infrared (LWIR) cameras], because the 
LWIR camera has seen rapid growth in recent years in both consumer and military markets.  
Some high-end models incorporate the AF system, whose design is similar to that of digital 
cameras but more challenging.  

2. Contrast-based AF

2.1 Focus measure function (FMF)

 In an AF system, the FMF calculates the focus value for each frame.  The conventional AF 
system searches for the peak of the focus values or the highest frequency component as the lens 
moves from out-of-focus to in-focus position.(8,9)  For example, Fig. 1 shows some video frames 
captured during the AF process using an thermal infrared camera.  The corresponding curves 
at the bottom are calculated at each frame using Gaussian focus measure (GFM).  A good 
FMF should possess the following properties: (1) independent of the scene being captured; (2) 
fast and accurate; (3) has good reproducibility;(10) and (4) less affected by noise, which results 
in local maxima.  Many FMFs were proposed in the 1970s–80s for microscopes.(11–15)  Later, 
researchers found that some of the old FMFs are not suitable for digital cameras.(16)  Therefore, 
many improved algorithms were introduced.  
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 A comprehensive study about FMF was published in 1985.(10)  The authors compared 11 
different FMFs, and evaluated three different types of images.  Results show that the squared 
gradient, Laplacian, and normalized variance outperform the other 8 FMFs for all three images.  
However, the number of images used for evaluation is small so it is still difficult to tell which 
FMF is superior.  
 Mir et al.(16) summarized the FMF into many categories: (1) first-order derivatives, such 
as the absolute gradient,(14) Prewitt operator,(17) Robert operator,(8) and Sobel operator;(8,17–20) 
(2) second-order derivatives, such as the Laplacian operator;(8,10,20–27) and (3) histogram- 
based,(11,12,18,20,21,28–30) (4) image-statistics-based,(8,10,12,17,18,20,21,26,28,29) (5) correlation-
based,(31,32) and (6) data-compression-based(33) FMFs.  They also divided the literature into AF 
methods for microscopy and digital photography and showed that some FMFs perform well on 
the former but poorly on the latter.  They evaluated over 30 FMFs using a tremendous amount 
of real scene images (4303 in total) under many categories captured by a Canon DSLR.  They 
found that the two first-order derivative methods, namely, Brenner et al.’s method(13) and the 
squared gradient function,(24–26,28) outperform others in terms of precision, recall, and the mean 
absolute error for the selected 4303 images.  However, they did not show which method is less 
vulnerable to noise that usually increases under low light condition.  Moreover, the AF speed 
was also not compared.  
 The same team in Ref. 16 conducted further research in 2015.(34)  They expanded the image 
sets to 32 benchmarks for evaluation, a total of 5344 images.  Additionally, 11 more sets were 
captured in a dark room to evaluate FMFs under low light condition.  This is by far the largest 
image set used for evaluating an AF system as far as we know.  However, they evaluated only 

Fig. 1. (Color online) Video frames captured during AF process using a thermal infrared camera.  For each of 
the three scenes, GFM is used to calculate focus value at each frame.  Two peaks corresponding to two in-focus 
positions are detected as shown in the curves.
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the squared gradient(24–26,28) and GFM,(18,35–37) and found that the latter is significantly better 
than the former under low light condition.  This is because the GFM adds a smoothing effect 
to the input image before taking the first-order derivatives.  This filters out a lot of noise such 
that it will not contribute to the focus measure.  Other publications(38,39) also discussed the 
effectiveness of the GFM under low light conditions.
 Another FMF that has been reported to be effective in reducing noise under low light 
condition is the frequency selective weighted median (FSWM).(40)  Choi et al. proposed this 
filter as an FMF for the AF system.(41)  It was based on previous research on weighted median 
filters.(42)  The FSWM filter can extract high-frequency components from an image and 
reduce impulsive noise as well.  The authors used 11 indoor and 3 outdoor scenes, a total of 
2100 images for evaluating the proposed FSWM filter and compared with three other FMFs: 
one first-order derivative, one Laplacian, and one absolute gradient.  As to the noise reduction 
ability, FSWM beat all the other three methods by effectively eliminating impulsive noise 
while keeping the useful high-frequency components such as edges and corners unchanged.  
However, the author did not compare the FSWM with GFM, which also demonstrates good 
noise reduction ability.  
 Some other methods have also been proposed to tackle noise problem under low 
contrast conditions.  Many studies used variance-based methods employing discrete cosine 
transformation (DCT).  Xu(43) et al. cited some traditional DCT-based methods that are 
vulnerable to noise and also some modified methods that are effective for noisy scenes.  
 A quantitative evaluation of the noise sensitivity of FMF was documented by Subbarao and 
Tyan.(35)  They used standard deviation and root-mean-square error to evaluate noise sensitivity.  
Results showed that the best focus measure is dependent on both noise level and image texture.  

2.2 Search algorithm

 The search algorithm is the basis for all contrast-based AF systems.  It directly relates to AF 
speed and accuracy.  It can be divided into hill climbing search (HCS),(9) Fibonacci search,(19,44) 
curve fitting search,(44,45) binary search,(46) and a combination of the above-mentioned search 
methods.  The conventional hill climbing algorithm without noise reduction results in a local 
maximum.  It also depends on the FMF.  

2.2.1 Global search

 The simplest search algorithm is the global search, which means that the AF system 
measures the focus value at every lens step.(46)  This is not efficient because it searches the 
entire lens range for the peak using the same speed.  Some highly blurred frames captured 
during the AF process are not likely surrounded by a sharp frame, which is probably the in-
focus position.  The lens at these positions can move faster by taking large steps instead of 
taking the same steps.
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2.2.2 Rule-based search

 Therefore, a rule-based search algorithm was proposed by Kehtarnavaz and Oh.(46)  They 
divided the search range into coarse, middle, and fine regions.  The fine region corresponds 
to the lens positions, which probably includes the global peak, so that the motor stops at every 
step to calculate the focus value.  In the middle and coarse regions, the motor stops at three to 
four and seven to ten steps, respectively.  The authors compared their rule-based algorithm with 
global search and binary search algorithms and showed the fastest speed in both the number of 
iterations and steps.  Although the rule-based search is faster than the other two, it still requires 
a full sweep of the lens focus range.

2.2.3 Model-based search

 The model-based method has also been reported.  Chen et al. proposed a method by combing 
a discrete difference equation prediction model (DDEPM) and a bisection search algorithm to 
search the best focus position.(47)  The DDEPM can predict the trend of the focus value curve 
and locate the neighbors of the in-focus position quickly.  Their method achieved real-time AF, 
which is 384.2 ms on average for 10 evaluations and showed good accuracy.  

2.2.4	 Coarse	to	fine	search

 The majority of the AF method(34,45–49) employs a coarse to fine search scheme.  As 
mentioned above, this scheme can effectively reduce the time for searching the best focus 
position.  The FLIR system has proposed a two-step searching algorithm.(45)  The first step 
uses a coarse but fast search method based on the low spatial frequencies of the image, which 
followed by a fine but slower search method based on the high frequencies of the image.  Chen 
et al.(34) followed He et al.(48) and Li’s(49) work but they employed two additional fine steps at 
the beginning to predict the direction where a peak most probably exists.

2.2.5	 Curve-fitting-based	methods	

 The curve fitting method fits the focus data to a curve such as a polynomial or Gaussian 
equation, then calculates the maximum on the curve and finds the corresponding lens position.  
During the AF process, it only needs three or four initial focus values to be calculated in order 
to locate the best focus position.  Therefore, it reduces AF time.  As mentioned earlier, the FLIR 
system uses a two-step search algorithm.(45)  During the fine search stage, they adopted a curve 
fitting method to locate the best focus position.  Chen et al. used four initial lens positions(47) to 
predict the best focus position using a DDEPM.  However, it is said that the curve fitting search 
algorithm is highly dependent on the acquired data around the peak.  If the noise level is high, 
such as under low light conditions, local maxima appear.  In this case, the algorithm may fail to 
locate the correct in-focus position.  
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2.2.6 Machine-learning-based methods

 Machine learning has also been used for AF.  Machine-learning-based methods do not 
require the lens to search the entire range but jump to the best focus position based on trained 
results.  This reduces AF time significantly.  The earliest learning-based searching algorithm 
was proposed by Park et al.(50)  They used the depth from defocus (DFD) method to reduce 
the computational cost and AF time because this method searches the best focus position by 
referring to only two prefixed defocused lens positions compared with the depth from focus (DFF) 
method, which uses multiple positions.  A multilayer neural network (MNN) was utilized to 
classify distance from the objects.  However, the author did not mention how fast their method 
is compared with conventional methods such as the rule-based methods.  
 Chen et al.(51) used a well-trained self-organizing map (SOM) neural network to predict the 
best focus position in order to reduce the searching time.  A frequency domain approach called 
“Discrete Wavelet Transformation (DWT)” was proposed in their paper to search for the highest 
frequency from the captured images, which corresponds to the best focus position.  The input 
of the SOM network is three initial focus values.  The output of the network is the lens position 
for the best focus.  Then, a backward search is carried out to search for the best focus position 
more precisely.  Compared with conventional full search methodologies, the SOM-based search 
algorithm increased the AF speed 2.5 times.  
 Similarly, Han et al.(52) also used a training-based method to reduce the searching time, 
but they used the focus value incremental ratio as the feature vector, which they said is less 
vulnerable to texture and illumination changes.  This method also needs only three initial focus 
values to be calculated, so that the AF time is significantly reduced compared with those of 
conventional approaches, for example, 3.2 times faster than the rule-based approach.  
 A recent learning-based approach was proposed by Chen and van Beek.  They introduced 
a supervised machine learning approach,(34) in which two decision tree classifiers are defined 
to decide the state of the focusing process and locate the best focus positions.  They used two 
sets of feature vectors, and each set includes many different features.  While their approach is 
superior to He et al.’s coarse to fine method(48) in AF accuracy, and obtained better accuracy 
even under low light conditions, it showed some decrease in AF speed.  In addition, the authors 
of Refs. 33 and 52 all mentioned that the focus measure itself is not a good choice for the feature 
vector because this value is easily affected by texture and illumination changes.  

2.3 Focus window

 The selection of focus window also affects the AF accuracy and speed.  The focus window 
being too large results in redundant data, thereby increasing the computational load.  In 
contrast, a very small window may not contain the subject that needs to be focused on.(53)  A 
focus window can be defined by users or automatically.(34,46,54,55)  FLIR’s AF system for a 
thermal infrared camera can choose a focusing window by analyzing input images(45) rather 
than routinely choosing the central area, which is sometimes not very informative. Lee et al. 
proposed an AF algorithm by dividing the entire image into multiple windows, each with 40 
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× 40 pixels.  These windows are used in their two-step search scheme.(55)  Compared with 
traditional methods, their method is very effective when multiple objects of different depths 
exist.  Rahman and Kehtarnavaz proposed an AF approach for focusing on the human face.(54)  
Their method performs better than multiple-window AF.

2.4 Focusing on moving subjects

 Focusing on a moving subject is challenging, especially when the subject moves fast.  
Fortunately, camera makers have already incorporated such a feature in some of their high-
end products.  Typical examples are the artificial intelligence (AI) servo of Canon’s DSLR(56,57) 
continuous focus (AF-C) of Nikon’s DSLR,(58) and trap focus(59) and a moving detection device 
to follow the movement of a subject and focus on it simultaneously(45) by FLIR systems.  Zoom 
tracking, a method of continuous focusing on a moving subject along the camera’s optical axis 
during zooming operation,  was also described.(60–62)  

3. AF System for Thermal Infrared Camera

 Thermal infrared (long-wave infrared or LWIR) refers to the spectral band of approximately 
7–14 µm.  Cameras receiving this band of light do not require illumination of the subjects but 
“sense” the energy emitted directly from them.  Therefore, the LWIR camera is very useful for 
night vision, surveillance, and military purposes.  
 There are many thermal imagers available on the market.  Some high-end types employ AF 
feature.  Basically, the thermal infrared camera can use similar FMFs and searching algorithms 
to locate the best focus position to a digital camera.  A recent article about thermal imager AF 
by Srivastava et al. proposed a sharpness evaluation algorithm based on cumulative gradient 
measure.(63)  They evaluated their algorithm under low contrast and noisy conditions as well 
as the effect of focus window on the focusing result.  Cakir and Cetin used a cumulative 
probability of blur detection (CPBD) method to measure the amount of blur in an AF system for 
thermal infrared cameras.(64)  The CPBD serves as an FMF, and the sharpest frame corresponds 
to the highest focus value.  
 One of the problems when designing an AF apparatus for the LWIR camera is the low 
level of energy penetrating to the sensor.(45)  Therefore, the f number of the LWIR camera is 
always smaller than those of visible light cameras, normally between 0.8 and 1.2.  This results 
in a shallow depth of field, which is much harder to focus than visible light cameras.  Another 
issue is the temperature dependence of the optics, which also affects AF performance.(45)  As 
a result, the design of the AF apparatus for the LWIR camera becomes much difficult.  Cakir 
and Cetin(64) also addressed the difficulty when applying the CPBD to thermal imager because 
of its inherent noise problem.  Their countermeasure is to modify CPBD algorithm to increase 
edge quantity rather than edge quality.  Results showed that the modified CPBD outperformed 
conventional CPBD for LWIR imager.  On the other hand, the optical lens of the LWIR camera 
usually adopts Ge as the material, which is highly transmissive to LWIR but has a much higher 
density (5.323 g/cm3)  than a digital camera lens.  It means that the lens becomes very heavy, 
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which cannot be driven by conventional AF motors or driven at a low speed.  Typical methods 
to solve the problem are to choose a lens with a low density (thus low weight), such as silicon (Si, 
2.57 g/cm3); select a motor with a high torque, speed, and accuracy; or move the sensor instead.  
 A thermal image is noisier than a visual image because it has low resolution, typically 
around 320 × 240 or 640 × 480.  Therefore, antinoise is always required for an LWIR camera.  
 It should be mentioned that some exclusive properties of the LWIR camera, e.g., thermal 
difference, can be used for determining the focus window.(45)  This cannot be achieved using 
visual cameras because they do not measure the temperature of subjects.  

4. Evaluation Methodologies

 An AF system is evaluated if the AF performance meets the required criteria such as 
accuracy, speed, and ease of implementation.(17)  Many evaluation methodologies have been 
reported.  
 Shih mentioned the subjectivity of manually choosing the in-focus position in order to 
evaluate the accuracy of AF algorithms.(17)  He compared the results of seven FMFs with 
manually selected in-focus images.  As the manual selection is a subjective process, the author 
suggested collecting evaluation results from a group of observers for each FMF.  
 Chen and van Beek proposed a method of evaluating both accuracy and speed.(34)  The speed 
is defined as the lens steps taken for AF and the accuracy is defined as the percentage where the 
peak is found.  
 Yousefi et al. evaluated the performance of four FMFs using 60 different AF sequences.  For 
each FMF, they defined accuracy as the percentage of cases matching the true in-focus position 
and speed as the averaged time of all 60 sequences in millisecond.(21)  However, they did not 
mention how the true in-focus position is defined.  
 Mir et al. introduced precision, recall, and mean absolute error (MAE)(16) for evaluating 
different FMFs.  In their paper, ground truth is determined by letting a person view the captured 
images on the camera’s display screen.  This, however, may introduce subjectivity.  
   
5. Conclusions

 AF is an indispensable feature for DSLRs, compact digital cameras, and smartphone 
cameras.  A good AF system should be fast, accurate, and adaptable to most scenes.  It not 
only depends on the FMF, search algorithm, and selected focus window, but also the motor 
performance, properties of the optical lens, and processing capability.  It is a feedback control 
system that requires optimization.  In this paper, we mainly reviewed contrast-based algorithms 
and AF evaluation methodologies from the early years to the state of the art.  It is clear that none 
of the reported algorithms can adapt to all scenes under a variety of illumination conditions, 
noise level, texture, and subject motion.  Most of the commercial systems adopt gradient-based 
FMF and hill-climbing search with some modifications, which can adapt to most cases.  In 
addition, we also reviewed AF for thermal infrared cameras, which is more challenging than AF 
for digital cameras.  Although the current commercial AF cameras have reached a satisfactory 
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level, the future AF system could be faster, more accurate, and robust with the advent of new 
algorithms such as learning-based methods.  
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