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 Nowadays, passwords have become closely associated with our daily activities.  However, 
the development of technology also increases the risk of password leak.  For example, the 
graphics processing unit (GPU)-parallel-computing-based brute force attack and birthday 
attack algorithms have greatly reduced password security; in addition, passwords are usually 
transmitted through wired or wireless communication media and thus are vulnerable to attack 
and easily exposed to illegal users.  In this study, we propose a biometric authentication 
method to identify and block illegal users, even if the entire password is exposed.  Our method 
simultaneously records scan codes and the keystroke sequence of passwords; furthermore, by 
deep learning of convolutional neural networks (CNNs), it can effectively distinguish legal 
users from illegal users.  We first compare recognition rates between the CNN and the neural 
network (NN) and prove that the CNN is the better choice.  The experimental results show that 
the proposed CNN model can block all illegal users even if the password is known by them.  
By using equal amounts of password data from legal and illegal users, the average login failure 
rate of legal users is 6%, and they can always enter passwords again to be admitted.  Finally, by 
GPU parallel computing, we further accelerate the system performance by 4.45 times.

1. Introduction

 With the rapid development of technology, the use of passwords has become inseparable 
in our daily life; however, the development of technology also accelerates the cracking of 
passwords.  For example, brute force methods and birthday attack algorithms using the 
graphics processing unit (GPU) parallel computing have considerably decreased the security 
of passwords.  Moreover, information of any complex passwords could be leaked owing 
to carelessness or negligence of users.  Additionally, smartwatches equipped with motion 
recognition sensors worn by users may pose security threats of password leakage.  By analyzing 
the patterns of the wrist movements exposed to motion recognition sensors, attackers can 
estimate the passwords entered by the users.(1)
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 In this study, we present an identification method that can block most illegal users who know 
the complete password.  We use a person’s typing habits, i.e., keystroke dynamics, as biometric 
features, which are used as input for a machine learning system that can differentiate between 
legitimate users and illegal users.(2)  At first glance, the differences in typing habits between 
individuals are extremely small, but, in fact, this is not the case.  Users can have different typing 
habits in typing passwords; these habits could be differences between two key-press times or 
the use of left shift or right shift keys, and they increase distinctiveness for typing passwords.(3,4)  
By taking advantage of those unique habits, one can distinguish between legal and illegal 
users.  However, these biological characteristics are unlikely to be seen by the naked eye or with 
general decision-making techniques in programming.  Hence, in this study, we use the powerful 
capability of machine learning, and via several numbers of learning processes, the proposed 
system can ultimately distinguish between legal and illegal users.(5–10)

 Machine learning is a kind of artificial intelligence; it finds an approximate solution of a 
problem through reasoning and induction, and modifies the solution from learning experiences, 
such that the solution will gradually approach the correct value.  In this study, we discuss two 
different models of machine learning: neural networks (NNs) and convolutional neural networks 
(CNNs).  Both models can use input features to analyze or predict the results.  The difference 
is that when performing feature analysis, the CNN cascades multiple features to let features 
associate with one another, and thus it can significantly enhance the accuracy of the analysis 
or prediction.(11–13)  However, the CNN often leads to overfitting because its learning ability is 
very strong.  Overfitting refers to the distortion of analysis curves caused by too much learning 
in the machine learning process, so that the result is not as expected.  To avoid this situation, in 
this paper, we added a dropout regularization condition, which can appropriately ignore parts of 
the neuron weights and greatly reduce overfitting chances.(14)  In the experiments, we compared 
the execution results in different situations, and identified the best learning model, significantly 
reducing the risk of accounts being compromised.  In addition, we also performed experiments 
designed for a real world scenario, in which the data of illegal users is limited; the system still 
has more than 80% accuracy for this setting.  Finally, we added GPU parallel computing into 
our system and significantly optimized the system performance.

2. Background

 In this section, we provide overviews of background technologies and related studies.

2.1 NN

 An NN is formed by one or more types of neurons, and can be divided into the input layer, 
hidden layer, and output layer.  The input layer does not have neurons.  After training and 
teaching these neurons using different algorithms, the NN, like a human brain, can output 
expected results.
 Figure 1 shows a schematic of an NN, in which x represents a component of the input vector, 
which has a total of n inputs; w is the link value, i.e., the weight of each link, since the most 
important task of NNs is learning to adjust the link values through constant training; b is the 
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bias; s is the summation unit, which adds up each value of neuron input timed with the link 
value; f is activation function, which is a linear or nonlinear function to convert s to the wanted 
answers; o is the output vector from the output neurons.
 In this study, we use two activation functions as follows:

 f (x) = max(0,wT x + b) . (1)

Here, w is the weight of each link, x is a component of the input vector, and b is the bias.

 σ(z) j =
ez j

∑K
k=1 ezk

for j = 1, ...,K  (2)

Here, z is a K-dimensional vector input, and j indexes the K-dimensional vector output σ(z).
 The activation function in Eq. (1) is called the Rectified Linear Unit (ReLU), which can 
change the threshold of neurons; when the result of any neuron is negative, it converts the result to 0; 
otherwise, it keeps the raw result.  Since neurons with results of 0 will have no effect on the 
output of the entire NN, this equation can control the activity of each neuron in the NN model.(15)

 The softmax activation function, or normalized exponential function, in Eq. (2) uses the 
natural logarithm conversion to convert the value of the neuron between 0 and 1.  As a result, it 
can compare the value of each neuron, and is important for classification or decision analysis, 
so in this paper, we use the softmax activation function to distinguish between valid and invalid 
users.(15)

2.2 CNN

 The CNN is a neural-network-based model with excellent performance for image processing; 
it has largely the same architecture as the NN, except that it has one or more convolutional 
layers and pooling layers, as shown in Fig. 2.
 Convolutional layer: Each convolutional layer consists of several convolution units, which 
can extract parts of the input arrays and send the extracted arrays to the NN to perform analysis; 
in contrast to traditional NNs, the convolutional layer enables the NN to read more than one 
feature at a time.

Fig. 1. Schematic of NN.
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 Pooling layer:  One important concept for CNNs is to compress the input features.  The 
compressing process will keep the main features to narrow the range of features, reduce 
computational complexity, and highlight the main features.
 Figure 2 depicts the relationship between the convolutional layer and the pooling layer.  The 
input image is processed by the convolutional layer and pooling layer to reduce its length and 
width but increase its thickness.  The pooling layer helps retain the features while the length 
and width of the image are reduced.  By adding the convolutional layer and the pooling layer, 
the whole network no longer uses a feature for a neuron, but several features for a neuron in 
data analysis; and by changes in weights, the correlation between features can be found, thereby 
significantly enhancing the accuracy of analysis or prediction.  CNNs are widely used in areas 
such as image processing and natural language analysis.(11,13–17)

2.3	 Compute	unified	device	architecture	(CUDA)

 CUDA is a parallel computing architecture from NVIDIA.  It uses the considerable 
processing power of a GPU to significantly increase operational efficiency.  A GPU is composed 
of several streaming multiprocessors (SMs), and each SM contains many stream processors (SPs).  
Each SP can handle operations independently to achieve parallel processing of data.  CUDA is 
good at dealing with matrix operations, especially for image processing and video processing; 
it significantly accelerates computing speed, and is clearly helpful in enhancing performance.  
The NNs normally have a large number of neurons, and each neuron is an independent 
operation; hence, one can treat neurons as images and use parallel matrix operations to improve 
performance.(18,19)

3.	 Experimental	Design

 The proposed biometric authentication system consists of two parts: biological features 
extraction and biological features analysis, as described in detail below.

3.1	 Biological	features	extraction

 At this stage, we record the typing actions of the users when they enter passwords on 
the keyboard, containing not only the scan codes of the keys, but also the time points of key 

Fig. 2. Schematic of convolutional layer and pooling layer.
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pressing and releasing, which are used to analyze the sequence and interval of pressed keys.  
The scan codes of pressed keys are recorded, since each key on the keyboard has a unique scan 
code, whereas, the same characters, such as digital numbers and function keys (Shift, Ctrl, etc.) 
may be found at two places on the keyboard.

3.2	 Biological	features	analysis

 The proposed system uses the CNN model for machine learning, since the powerful feature 
association capability of the CNN makes it very suitable for analysis applications with a subtle 
difference.  
 We used a total of 64 features, divided into six segments, as shown in detail in Table 1.  The 
duration of each key press time for the 10 keys can be computed by subtracting the values in 
segment c by the corresponding ones in segment b.  Time gaps between the previous key and 
current key are recorded in segment f.  The zero padding in segment e is used as a reserved 
space for the possible length extension of passwords in the future.  Besides, in the machine 
learning process, the computer will find that these zero padding features have no effect on 
the results no matter how their corresponding weights are changed; hence, the computer will 
automatically ignore these zero padding features.
 The proposed CNN architecture consists of 7 stages A–H, as shown in Fig. 3.  
Stage A: This stage is the data input layer; the input data is the retrieved biometric feature array 

with a size of 1 × 64; the system will transform the input array into a 16 × 4 matrix in 
analysis.

Fig. 3. CNN architecture.

Table 1
Content of input array features.
Segment Features Length
a Scan codes of 10 keys 10
b Key pressed time point of 10 keys 10
c Key released time point of 10 keys 10

d Check if each of ten inputs of 10 keys matched 
with the corresponding valid passwords 10

e Zero padding 15
f Time gap between previous key and current key  9

Convolution part NN part
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Stage B : This stage consists of the convolutional layer C1, the first convolutional layer used 
in the model; it extracts features from the input layer; the extracting range is a two-
dimensional 2 × 4 matrix; the height is 32.  The activation function is ReLU, which 
replaces negative values with 0 and retains positive values to ensure no negative 
output.

Stage C: Stage C: This stage consists of the pooling layer P1, the first pooling layer used in 
the model.  The pooling range is a 2 × 2 matrix; it is used to avoid too much data loss 
from overstriding.

Stage D: This stage consists of the convolutional layer C2, the second convolutional layer used 
in the model; it is mostly similar to Stage B, except that the range of feature extraction 
is a 6 × 4 matrix and the transformation height is 64.  The height is increased to 
expand the diversity of features again.

Stage E: This stage consists of the convolutional layer P2, the second pooling layer used in the 
model; it is similar to Stage C.

Stage F: This stage consists of the input array I–L of the NN in the model.  The input values, 
a two-dimensional array, are outputs of Stage E.  The activation function used in this 
stage is still ReLU.  It is worth noting that at this stage a dropout function is added; 
this function enables machine learning to ignore part (30%) of the neuron weights to 
avoid the overfitting problem.  The output array has a size of 128.

Stage G: This stage consists of the hidden array H–L of the NN in the model.  The number of 
neurons is 128, and the output array size is 2.  The softmax activation function is used 
to set the output value of this stage to be between 0 and 1 as input for classification 
criteria at the next stage.

Stage H: This is the last stage, i.e., the output layer in the model.  At this stage, the machine 
learning model filters the input values, setting maximum values to be 1, and all the 
rest to be 0, and thus, it can distinguish valid from invalid users.

 As shown in Fig. 4, overfitting is a common problem in machine learning.  The main reason 
for it is overtraining of the machine, resulting in machine learning results being too fit with the 
training data; this will cause the machine to misjudge new data.  Many methods can be used to 
solve this problem.  In this study, we chose to ignore part of weights of the neuron as described 
in Stage F.

Fig. 4. Schematic of overfitting.  The black and white circles represent two types of data; the solid line gives the 
expected solution and the dotted line shows overfitting.
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4.	 Experimental	Results	and	Analyses

 In this section, the experimental results of different application scenarios are presented 
and discussed.  The proposed biometric authentication system can prevent illegal users from 
successful login even if the complete password has been exposed to them.  To verify the 
reliability of the proposed method, experiments of various testing scenarios were designed.  The 
specifications of the hardware and software used in the test environment are listed in Table 2.
 We adopted supervised learning in machine learning.  The practice data used in the 
experiment were recorded from 10 different users, i.e., Users A–J, respectively.  The password 
used by User A had been exposed to the other users, i.e., Users B–J.
 All the users repeatedly typed User A’s password 100 times.  From the 100 recorded 
password data of each user, we randomly selected 10 recorded password data to use as test data 
and used the rest as training data.  Therefore, there were 100 (10 from User A and 90 from other 
users) test data and 900 (90 from User A and 810 from other users) training data in total.
 We used the false acceptance rate (FAR) and the false rejection rate (FRR) as the evaluation 
criteria, in which FAR represents the ratio of successful login by an illegal user, while FRR, the 
ratio of unsuccessful login by a legal user.  

4.1 Experiment 1

 In Experiment 1, the identification rates of the NN and CNN are compared.  We used the 
recorded training data to perform machine learning; the iterations of training were performed 
5000 to 25000 times.  The experimental results are listed in Table 3.  The experimental results 
show that when the number of trainings is less than 7000 times, both the accuracies of the NN 
and CNN are 90%; however, the FRR is 100%, which means that the authentication system 

Table 2
Specifications of the experimental environment.
Device Specification
CPU Intel Q8200 2.33 GHz × 4
Memory 3.9 GB
Operating system Ubuntu 16.04  64-bit
GPU Nvidia GTX 650Ti
Machine learning tool Google tensorflow

Table 3
Comparison of identification accuracies (%) of NN and CNN.
Numbers of training NN accuracy FRR CNN accuracy FRR

5000 90 100 90 100
7000 90 100 90 100
9000 90 100 92 80

11000 90 100 95 50
13000 90 100 95 50
25000 90 100 99 10
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cannot correctly identify the password data typed by the legal user and blocks 100% login 
trials of the legal user.  When the number of trainings increases over 7000 times, the accuracy 
of the CNN increases; nevertheless, the accuracy of the NN shows no improvement.  When 
the number of trainings increases to 25000 times, the accuracy of the CNN improves to 99%, 
and its FRR is only 10%.  From the results, we find that compared with the NN, the CNN has 
stronger feature identification ability.  Hence, we adopted the CNN for biometric authentication 
in the following experiments.

4.2 Experiment 2

 In this experiment, the CNN was used as the analysis tool.  The recorded keystroke data of 
each user were rotationally picked as the training data; in other words, if User A was treated 
as the valid user, then password data of User A were used as the training data, and so on.  The 
number of trainings was 25000 times.  The aim of this experiment is to prove that the biometric 
feature such as keystroke contains certain characteristics that can be used for identification.  
The experimental results are listed in Table 4.
 From Table 4, we observe that biometric features are effective in identifying the user.  The 
FRR of valid User C is worst (40% or 4 out of 10) and it indicates that the sensitivity of the 
machine learning model tends to dismiss valid users as invalid users.  We will further work on 
adjusting the sensitivity of the machine learning model to decrease the FRR of users later in 
Experiment 4.

4.3 Experiment 3

 In this experiment, we used a larger amount of test data in the experiment to verify the 
reliability of the CNN model to identify password data of the valid user.  The test data consisted 
of the 100 recorded password keystroke data from valid User A and 10 × 9 recorded password 
keystroke data from the 9 invalid users, i.e., Users B–J.  The number of trainings was 25000 and 
the test had been performed 10 times.  The experimental results are listed in Table 5.

Table 4
Comparison of identif ication accuracies (%) of 
different valid users.
Valid user Accuracy FAR FRR 
A 99 0 10
B 99 0 10
C 96 0 40
D 99 0 10
E 99 0 10
F 97 0 30
G 98 0 20
H 99 0 10
I 98 0 20
J 98 0 20

Table 5
Identification accuracies (%) of the CNN model with 
a larger test data set.
Test FAR FRR Accuracy
 1 0 13 93.157
 2 0 13 93.157
 3 0 13 93.157
 4 0 13 93.157
 5 0 13 93.157
 6 0 13 93.157
 7 0 12 93.684
 8 0 13 93.157
 9 0 13 93.157
10 0 13 93.157
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 From Table 5, we observe that the proposed CNN model has high identification accuracy.  
For example, Test 1 has FAR = 0% and FRR = 13% (13 of 100 test data of valid User A are 
falsely rejected) and accuracy = (1 − 13/190) × 100% = 93.157%.  It shows that the proposed 
method can effectively block illegal users (100%).  However, it is still too sensitive that 13% 
of legal users are blocked.  The legal users can always enter the password to be admitted; the 
probability of being denied twice is merely 1.69%.  We adjusted the training data of the CNN 
model to enhance its accuracy in the following experiment.

4.4 Experiment 4

 In Experiments 1 to 3, the training data consists of 90 password data from User A and 810 
password data from other users, i.e., the majority of training data are from illegal users.  The 
high percentage (90%) of illegal users’ data may cause the machine to tend to guess users as 
illegal, resulting in misinterpreting legal users as illegal and thus a higher FRR.  
 In this experiment, the training data consists of 810 password data of User A and 810 
password data from other users, i.e., the same amounts of data used in training are from the 
legal user and the illegal users.  The test data is the same as that in Experiment 3, consisting 
of 100 recorded password keystroke data from valid User A and 10 × 9 recorded password 
keystroke data from the 9 invalid users, i.e., Users B–J.  The number of trainings was 25000 and 
the test was repeated 10 times.  The experimental results are listed in Table 6.  We observe that 
the identification accuracy of the proposed CNN model has been improved to be over 96%, and 
only 6% of legal users are blocked.  We conclude that the structure of the training data affects 
the learning results.  

4.5 Experiment 5

 In this experiment, we consider a more realistic scenario, in which the illegal users’ data 
are difficult to acquire and use in the training data.  Hence, in this experiment, we use 100 
password keystroke data from User A and 90 password keystroke data from one illegal user, e.g., 
User B.  The test data is different from those used in Experiments 3 and 4, since just part of the 
password keystroke data of Users A and B, and no password keystroke data of Users C–J have 
been used in the training data.  In other words, we tested the accuracy of the CNN model to 
defend the illegal users without knowing the data of illegal users beforehand.  The experimental 
results are listed in Table 7.  We observe that the identification accuracy of the proposed CNN 
model is reduced to 80% while 27.78% of illegal users are admitted.

Table 6
Identification accuracy (%) of the CNN model with 
equal amounts of training data from legal and illegal 
users.

FAR FRR Accuracy
0 6 96.842

Table 7
Identif ication accuracy (%) of the CNN model 
when most illegal users’ data are not included in the 
training process.

FAR FRR Accuracy
27.78 13 80
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4.6 Experiment 6

 We did a performance test in this experiment.  For applications with a huge amount of 
training data and training numbers, the proposed model should be further accelerated.  We 
combined the CNN with GPU parallel computing.  The computing times of CPU and GPU and 
the acceleration ratios of the GPU over the CPU are plotted in Fig. 5 and listed in Table 8.  We 
observe that a maximum of 4.45 acceleration ratio is achieved when the number of trainings is 
25000.

5.	 Conclusions

 In this study, we show that the CNNs model for biometric authentication based on keystroke 
dynamics can greatly enhance the strength of passwords against attacks such as the brute force 
attack.  Even if a user password has been leaked, it still can block 100% of illegal users from 
login if the password keystroke data of suspected users are used in the training data, so that the 
account of the legal user is highly protected.  Although the FRR of legal users is 13%, any legal 
user can enter the password again when he/she is falsely blocked to be admitted.  Moreover, 
when the structure of the training data is adjusted to let the CNN model be less sensitive in 
dismissing legal users, the FRR of legal users is improved to 6% and the identification accuracy 
of the CNN model is enhanced to 97%.  In addition, we consider a more realistic scenario, 
in which the password keystroke data of most illegal users are not included in the training.  
The CNN model can still defend 72% of illegal users, and the identification accuracy of the 
CNN model is 80%.  Finally, considering that future applications will have great demands of 
computation performance in the face of a huge amount of data and number of trainings, we 
combine the GPU parallel computing into our CNN model and obtain acceleration ratios about 4.45 
times, making the proposed approach highly practical and feasible.

Fig. 5. Operation time of GPU and CPU with 
various numbers of trainings.

Table 8
Acceleration ratio of GPU over CPU.
Number of 
trainings    CPU (s)    GPU (s) Speedup 

ratio
1000    77.114    27.061  2.849
3000   220.261    79.314  2.777
5000   445.693   131.662  3.385
7000   734.804   183.138  4.012
9000   961.253   235.417  4.083

11000  1149.298   287.582  3.996
13000  1382.495   340.187  4.063
15000  1557.381   391.859  3.974
17000  1851.157   444.683  4.162
19000  2200.956   496.718 4.43
21000  2340.522   549.516  4.259
23000  2598.377   601.671  4.318
25000 2907.79 653.9  4.446
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