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 Photoluminescence (PL) and radiation-induced luminescence properties of Sn-doped zinc 
phosphate (SZP) glasses prepared with different cooling rates are investigated and associated with 
their glass structures.  Although the shape of the PL spectrum is independent of the cooling rate, 
the emission intensity effectively changes with the cooling rate.  The radial distribution functions 
of Sn in the SZP glasses prepared with different cooling rates coincide with each other.  Electron 
spin resonance (ESR) measurement supports the fact that the trap density of slowly cooled glasses 
is higher than that of rapidly cooled glasses, and this fact is also suggested by the radiation-induced 
luminescence properties.  Therefore, it is expected that these traps will work as storage sites 
associated with the radiation-induced luminescence.  

1. Introduction

 A melt quenching method is one of the most common methods for preparing glasses.  In this 
method, a glass melt at a high temperature is continuously cooled down without crystallization 
at its melting temperature to convert it into the supercooled liquid state, and then frozen into 
the glassy state.  This temperature has been defined as fictive temperature by Tool.(1)  Fictive 
temperature has been regarded as a parameter reflecting random structures; in other words, glasses 
exhibiting different fictive temperatures show different physical and chemical properties such as  
mechanical strength.(1,2)  Stebbins et al. have revealed that the CaAl2Si2O8 glass prepared with a 
high quenching rate consists of high concentrations of nonbridging oxygens and five-coordinated 
Al.(3)  They have also reported that the coordination number of boron atoms changes depending 
on the cooling rate in other aluminoborosilicate glasses.(4,5)  To the best of our knowledge, the 
correlation between the structure prepared with different cooling rates and the emission properties 
of the doped activators has rarely been investigated.  The aggregation of Sn2+ is more likely to be 
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induced in the SrO–B2O3 glasses prepared with low cooling rates.(6)  It goes without saying that 
glass structural properties, for example, the ratio of 3-coordinated borons/4-coordinated borons, 
the free volume, and so on, depend on the cooling rate.  Consequently, there is a correlation among 
the cooling rate in the synthesis, glass structure, and emission properties.
 In this paper, we focus on Sn-doped ZnO–P2O5 (SZP) glasses because their composition is 
well investigated.(7–12)  Sn2+ centers belong to the group of ns2-type (n ≥ 4) emission centers,(13) 
whose electrons in the outermost shell contribute to the emission process.  This means that the 
emission properties are strongly affected by the coordination states of ns2-type emission centers.  
As reported in a previous paper, the quantum yield (QY) of SZP glasses is as high as that of rare-
earth ion-doped glasses and MgWO4.(10)  Furthermore, it has been revealed that the melting in Ar 
atmosphere is effective in suppressing the oxidation of Sn2+ to Sn4+, and hence QY increases.(10,11,14,15)  
Photoluminescence (PL) properties are related to the local structure of Sn2+; in contrast, radiation-
induced luminescence properties are affected by both the host and local structures of Sn2+ centers.  
This is because the energy transfer from the host matrix to the emission centers occurs only in the 
radiation-induced luminescence process.  Thus far, many researchers have reported on persistent 
luminescence and afterglow luminescence materials regardless of host materials.(16–18)  Thermally 
stimulated luminescence (TSL) and optically stimulated luminescence (OSL) properties were 
thoroughly investigated in order to discuss the energy levels and the density of traps.(16–18)  In 
a previous study, it was demonstrated that the addition of carbon to a glass batch is effective 
in obtaining a reducing atmosphere during the melting process; therefore, the reduced state of 
emission centers is increased.(19)  Moreover, it has been reported that the number of defect sites 
are increased in glasses and crystal systems.(20,21)  We assume that traps are an important factor of 
radiation-induced luminescence, especially in storage luminescence (TSL and OSL).  Therefore, 
we believe that further investigation of such correlations between radiation-induced luminescence 
properties and the glass structure should be helpful in designing novel optical materials, 
scintillators, and dosimeters.  
 The objective of this study is to examine the correlation between the glass structure and the 
PL and radiation-induced luminescence properties of SZP glasses prepared with different cooling 
rates.  To develop superior devices for X-ray detection (i.e., scintillators and dosimeters), much 
research has been intensively conducted.(22–26)  

2. Methods

2.1 Sample preparation

 Hereinafter, the glasses of xSnO–60ZnO–40P2O5 (x = 0, 0.1, 0.5, and 1.0 mol%) prepared with 
low and high cooling rates are denoted as “xSZP:l” and “xSZP:h”, respectively.  First, ZnO and 
(NH4)2HPO4 were mixed and calcined according to a previous paper.(12)  Second, a stoichiometric 
amount of SnO was added to the powdered calcined sample.  The conventional melt quenching 
method was employed to prepare the SZP glass with a high cooling rate, according to a previous 
paper.(12)  The heating program of the glasses prepared with a low cooling rate is as follows: (1) 
The mixed sample was heated from room temperature (r.t.) to 1100 °C for 3 h.  (2) The temperature 
was kept at 1100 °C for 1 h in Ar atmosphere.  (3) The sample was cooled from 1100 °C to r.t. for 3 
h.  Then, both glasses were cut into pieces with dimensions of 10 × 10 × 1 mm3 and mechanically 
polished to obtain a mirror plane.  
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2.2 Analysis

 Tg was examined by DTA using Thermo Plus 8120 (Rigaku) at a heating rate of 10 °C/min.  
Densities were determined by using an Archimedes method with distilled water as the 
immersion liquid at r.t..  PL and PL excitation (PLE) spectra were recorded on a fluorescence 
spectrophotometer (F-7000, Hitachi).  Slits for achieving an optical resolution of 2.5 mm were used 
for excitation and emission measurements.  QY was measured using Quantaurus-QY (Hamamatsu 
Photonics).  PL decay profiles at r.t. were conducted on Quantaurus-Tau (Hamamatsu Photonics) 
with a 280 nm LED source.  Sn K-edge (29.3 keV) extended X-ray absorption fine structure (EXAFS) 
spectra were recorded at BL14B02 of SPring-8 (Hyogo, Japan).  The storage ring energy source was 
operated at 8 GeV with a typical current of 100 mA.  The measurements were carried out using a 
Si (311) double-crystal monochromator in the transmission mode (Quick Scan method) at r.t.  X-ray 
scintillation spectra at r.t. were obtained with a monochromator equipped with a charge-coupled 
device (CCD, Andor DU-420-BU2).  The irradiated dose was calibrated using an ionization 
chamber.  OSL spectra were recorded by Quantaurus-Tau (Hamamatsu Photonics) and the 
stimulation wavelength of light was 630 nm, equivalent to 1.97 eV.  TSL glow curves were recorded 
using TL-2000 (Nano Gray).  Photons over 500 nm were cut using a thermal radiation cut filter 
and the photomultiplier tube accurately detects photons above approximately 300 nm; therefore, 
the spectral range was from 300 to 500 nm.  The temperature range of the TSL measurement was 
from 50 to 400 °C.  All samples were measured immediately after 10 Gy (40 kV, 5.2 mA, 10 min) 
irradiation in the same manner as X-ray-induced scintillation spectra.  Electron spin resonance (ESR) 
spectra were obtained using an ESR spectrometer (JES X330, JEOL).  The modulation width and 
microwave power were 0.5 mT and 160 mW, respectively.

3. Results and Discussion

 As shown in Fig. 1 (left axis), the xSZP:h (x = 0, 0.1, 0.5, and 1.0) glass showed a higher Tg than 
the xSZP:l (x = 0, 0.1, 0.5, and 1.0) glass, respectively.  This result agrees with the conventional 
tendency: a high cooling rate gives a high fictive temperature.(1)  Tg decreases with increasing 
amount of SnO regardless of the different cooling rates.  The densities of all samples are also 
exhibited in Fig. 1 (right axis).  The rapidly cooled glasses have a lower density than the slowly 
cooled glasses, indicating that a larger free volume exists in the former glasses.  This relationship 
between the density and the cooling rate is also in good agreement with that in a previous paper.(27)

 To discuss more quantitatively, the normalized PL-PLE spectra are presented in Fig. 2 and the 
relative PL intensities are described in parentheses.  A high PL intensity is observed in the rapidly 
cooled glass, in the order 1.0SZP:h > 0.5SZP:h > 0.1SZP:h.  For the slowly cooled glass, the order 
of the PL intensity observed is 0.5SZP:l > 1.0SZP:l > 0.1SZP:l.  The spectral shapes of the glasses 
with the same chemical composition are almost the same even though they are prepared with 
different cooling rates.
 PL decay profiles of all samples monitored with 280 nm excitation are presented in Fig. 3.  
The decay profiles exhibit linearity, therefore indicating that only a single component exists.  
Furthermore, the decay constants accord with the Sn2+ centers.(7–9,11,13,29)  Considering the PL 
spectra and decay curves, the radiative process is almost single, although there exist two different 
excitation states of Sn2+.  Figure 4 shows the QY of both xSZP:l and xSZP:h glasses.  The observed 
tendency is in good agreement with the order of the emission intensity detected in PL-PLE spectra.
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 Judging from the PL properties discussed above, it is predicted that the local structure of Sn2+ 

centers will not be affected by the cooling rate.  We, therefore, conducted EXAFS measurement in 
order to investigate the local structure of Sn2+.  Fourier transforms of EXAFS spectra, equivalent 

(a) (b)

Fig. 3. (Color online) PL decay profiles of xSZP:h (x = 0.1, 0.5, and 1.0) glass.  (b) Decay constants of xSZP (x = 
0.1, 0.5, and 1.0) glass prepared with different cooling rates as a function of SnO amount.

Fig. 4. (Color online) QY of xSZP (x = 0.1, 0.5, and 1.0) glass prepared with different cooling rates.

Fig. 1. (Color online) Tg’s (left axis) and densities 
(right axis) of xSZP (x = 0, 0.1, 0.5, and 1.0) glass 
prepared with different cooling rates.

Fig. 2. (Color online) Normalized PL-PLE spectra 
of xSZP (x = 0.1, 0.5, and 1.0) glass prepared with 
different cooling rates.
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to radial distribution functions, of Sn in the 1.0SZP glasses prepared with different cooling rates 
were in good agreement as shown in Fig. 5.  This confirms that the first coordination sphere 
remains unchanged even if the cooling rate of the glass differs.  Consequently, both PL property 
surveys and EXAFS spectra affirm that the local structure of Sn2+ centers is independent of the 
cooling rate in the SZP glass.
 Figure 6(a) shows the X-ray scintillation spectra of the 0.5SZP:h glass irradiated under different 
X-ray doses (0.01–10 Gy) as a representative sample.  Figure 6(b) presents the emission intensities 
of all samples as a function of irradiation dose.  There is good linearity depending on the Sn2+ 
concentration.  The most notable point is that rapidly cooled glasses tend to show a higher emission 
intensity than slowly cooled glasses as long as the same amount of Sn is added.  This indicates that 
a larger number of trap sites exist in slowly cooled glasses.
 The OSL spectra of the xSZP:l (x = 0, 0.1, 0.5, and 1.0) glass and the OSL intensities of all 
samples as a function of the amount of SnO are denoted in Figs. 7(a) and 7(b), respectively.  We 
measured the OSL spectra by 630 and 590 nm stimulations, and confirmed that no significant 
difference is observed between them.  We therefore assumed that 630 nm stimulation is enough 

Fig. 5. (Color online) Radial distribution functions of Sn in 1.0SZP glasses prepared with different cooling rates.

(a) (b)

Fig. 6. (Color online) (a) X-ray-induced scintillation spectra of 0.5SZP:h glass as a representative.  (b) Emission 
intensity of xSZP glasses (x = 0, 0.1, 0.5, and 1.0) as a function of irradiation dose.
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for the release of the storage energy, and selected the wavelength of 630 nm for the stimulation.  
The slowly cooled glasses show relatively higher emission intensities than the rapidly cooled 
glasses.  Therefore, it is suggested that the number density of traps storing electrons is higher, 
which coincides with the discussion in X-ray scintillation spectra.  More interestingly, the order 
of intensity is as follows; the amount of SnO is 0.1 > 0.5 > 1.0 mol%.  It means that the number 
density of traps changes with the concentration of Sn2+ centers.  The order of the emission intensity 
of the TSL glow curves of all xSZP (x = 0, 0.1, 0.5, and 1.0) glasses [Fig. 8(a)] is the same as that 
in OSL spectra in terms of the cooling rate and the amount of SnO.  The activation energy (i.e., 
thermal energy required to liberate a trapped electron) determined by the initial rise method(30) is 
plotted as a function of SnO amount in Fig. 8(b).  The energy levels of traps in the slowly cooled 
glasses are lower than those in the rapidly cooled glass.

(a) (b)

Fig. 8. (Color online) (a) TSL glow curves of xSZP (x = 0, 0.1, 0.5, and 1.0) glass prepared with different cooling 
rates.  The irradiation dose was 10Gy.  (b) Activation energies of xSZP (x = 0, 0.1, 0.5, and 1.0) glass prepared with 
different cooling rates as a function of SnO amount.

(a) (b)

Fig. 7. (Color online) (a) OSL spectra of xSZP:l (x = 0, 0.1, 0.5, and 1.0) glass after 10 Gy radiation.  (b) 
Emission intensities of xSZP (x = 0, 0.1, 0.5, and 1.0) glass prepared with different cooling rates as a function of 
SnO amount.
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Fig. 9. (Color online) ESR spectra of xSZP:l (x = 0 and 0.1) and 0.1SZP:h glasses.

 It is considered that the host structure depends on the cooling rate on the basis of the radiation-
induced luminescence properties.  No significant difference was observed in both 31P MAS NMR 
and IR spectra.  In the ESR spectra (Fig. 9), however, a notable difference was detected between 
the slowly and rapidly cooled glasses.  Signals are found in the slowly cooled glasses, 0SZP:l 
and 0.1SZP:l.  We attribute the origin of the trap sites that induce the higher emission intensity in 
storage luminescence to some unpaired electron species such as P–Ȯ and Zn–Ȯ.  These unpaired 
electron species are perhaps due to the different cooling rates or materials originating from the 
crucible (i.e., Pt or glassy carbon).

4. Conclusions

 In this study, we have investigated PL and radiation-induced luminescence properties of 
SZP glasses prepared with different cooling rates, and correlated these properties with the glass 
structures.  The PL intensity depends on the cooling rate, whereas the spectral shapes of PL-PLE 
spectra are independent of the cooling rate.  The Sn K-edge EXAFS measurement reveals that the 
first coordination spheres are similar despite the difference in cooling rate.  On the other hand, the 
radiation-induced luminescence properties suggest that a larger number of traps, whose role is to 
store electrons and/or holes, is generated in the slowly cooled glasses than in the rapidly cooled 
glasses.  The ESR measurement confirms that ESR-active defects are generated more effectively in 
the slowly cooled glasses than in the rapidly cooled glasses.  The relationship of cooling rate with 
the storage luminescence properties should be studied in detail in future works.
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