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 This paper presents studies on a capacitive incremental displacement microsensor particularly 
for	 micro/nanopositioning	 applications.	 	 An	 incremental	 capacitive	 microsensor	 is	 capable	 of	
achieving large-scale, high-precision X–Y	linear	positioning;	however,	some	inevitable	static	errors	
and	dynamic	disturbances	in	reality	affect	the	linearity	of	the	X–Y signal in the form of roll, yaw, 
and pitch movements.  To realize high-precision X–Y linear positioning, a symmetrical sensor 
modeling scheme and a novel signal processing scheme are developed to compensate for signal 
nonlinearity	 caused	 by	 rotational	 disturbances.	 	 At	 the	 same	 time,	 roll,	 yaw,	 and	 pitch	 signals	
are decoupled from X–Y	 linear	 signals	 for	possible	 feedback	control	purposes.	 	A	printed	circuit	
board	microsensor	 prototype	 for	 testing	 is	 constructed	with	 a	 design	 featuring	 a	 20	mm	 linear	
stroke,	a	2	mm	electrode	pitch,	and	a	0.5	mm	gap	distance.		The	measured	X–Y signal nonlinearity 
is	 decreased	 to	 0.5%	with	 a	 4	mm	 stroke,	 while	 signal	 errors	 of	 rotational	 disturbances	 are	 no	
larger	 than	 0.01°.	 	 The	 feasibility	 of	 a	 five-dimensional	 displacement	measurement,	 including	 a	
large	 stroke,	 the	 high-precision	 acquisition	 of	X–Y linear displacement, and roll, yaw, and pitch 
movements, is experimentally validated.

1. Introduction

	 During	 the	 past	 few	 decades,	 precise	 micro/nanopositioning	 has	 been	 required	 during	 the	
processes	of	micromachining	and	manipulation,	such	as	 in	 the	 fabrication	of	optical	devices	and	
semiconductors,	 cell	 manipulation,	 portable	 probe	 storage	 systems,	 and	 others.(1–4)	 For	 better	
control	 of	 stability,	 a	 typical	 precise	 positioning	 test	 bench	 for	 these	 applications	 is	 usually	 a	
prototype with multidegrees of freedom.  The conventional scheme of realizing measurements 
with	multidegrees	 of	 freedom	 involves	 the	 stacking	 of	multiple	 single-axis	 positioning	 systems,	
which	 results	 in	 a	 bulky	 and	 complicated	 structure	 involving	 unpredictable	 abbe	 errors	 and	
cumulative misalignment errors.  To overcome these shortcomings, a planar positioning system as 
an	alternative	to	achieve	measurements	with	multi-degrees	of	freedom	has	been	proposed.
	 Interferometers	are	usually	used	as	measuring	probes	for	a	planar	positioning	system,	because	
they	 offer	 the	 advantage	 of	 high	 resolution,	 but	 they	 suffer	 from	 bulkiness	 and	 sensitivity	 to	
measurement conditions such as air pressure, temperature, and humidity.(1,2)  Planar positioning 
systems	can	also	be	patterned	in	capacitor	mechanisms.		Huang	et al. presented a microcapacitive 
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position sensor for nanopositioning applications, which provided two linear position signals and 
one rotational position signal.(4)		The	linear	stroke	was	limited	to	300	μm	peak-to-peak.(3)  Ahn and  
Jeon proposed a new smart sensor system that can measure five-dimensional motions.(1)  However, 
this sensor structure was mainly applied to a rotating machinery.(4)  Although capacitive sensing 
arrays may suffer from external noise, the capacitive approach still has some intrinsic advantages, 
such	as	fast	response,	high	repeatability,	and	insensitivity	to	temperature	variation.
	 The	 authors	 have	 developed	 a	 planar	 capacitive	 sensor	 capable	 of	 two-dimensional	
measurement.  The interpretation of displacement depends on the results of measuring the periodic 
variation	 in	 capacitance	 caused	 by	 the	 change	 in	 the	 overlapping	 area	 of	 sensing	 electrodes.		
However, the main shortcomings of the proposed sensor are the impact from static errors (mainly 
as	misalignment	errors)	and	dynamic	disturbances	(kinematic	and	vibration	errors)	in	the	forms	of	
sensitivity differences and phase-shift errors.
 This paper presents an improved capacitive incremental displacement microsensor.  To achieve 
high-precision X–Y linear positioning, a symmetrical sensor modeling scheme and a phase-shift 
arctangent	 processing	 scheme	were	 developed	 to	 compensate	 for	 signal	 deformations	 caused	 by	
rotational	disturbances,	while	at	the	same	time,	three	rotational	signals	were	decoupled	from	X–Y 
signals	for	latter	feedback	control	purposes.
	 This	 paper	 is	 organized	 as	 follows.	 	 A	 complete	 description	 of	 the	 basic	 sensor	 structure	 is	
presented in Sect. 2.	In	Sect.	3,	the	sensor	mode	is	analyzed	with	respect	to	harmonic	errors.		In	
Sect. 4, a novel scheme of five-dimensional displacement measurements is proposed for enhancing 
linearity and deriving three rotational signals.  After a detailed description of the sensor system 
prototype in Sect. 5, extensive experimental results are presented.

2. Basic Sensor Structure

	 The	basic	sensor	structure	of	a	typical	capacitive	planar	positioning	system	is	illustrated	in	Fig.	
1.	The	sensor	has	a	periodic	electrode	pattern	on	both	a	moving	plate	(MP)	and	a	fixed	plate	(FP)	
to maximize capacitance change.  In the figure, w is the common electrode width, l is the sensing 
electrode length, g is the gap distance, and L is the vertical distance from the sensing electrodes to 
the assumed center.
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Fig. 1. (Color online) Basic sensor structure of a typical capacitive planar positioning system.
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	 Furthermore,	 there	 is	 a	 pair	 of	 normal	 and	quadrature	 sensing	 electrodes	on	 the	FP	 for	 both	
X and Y displacement demodulations, namely, SXN, SXQ, SYN, and SYQ.  Setting aside fringe 
effects, signals from sensing electrodes are all in perfect periodic triangular waveforms given 
that the common electrodes on the MP are parallel.  However, in reality, fringe effects would 
introduce a severe uncertain distortion to signal waveforms.  To clarify the fringe effects on signal 
nonlinearity,	a	full	capacitance	model	was	calculated	firstly	using	Maxwell’s	equation:(5)

 C(x) =
Q

Vinput
= −ε0εrw


w
2g
−
∑

n=odd

4
knw sinh (kng)

cos(knx)

, (1)

where kn =
nπ
w

.
	 As	in	Eq.	(1),	electrode	width	is	implied	to	be	a	key	factor	that	determines	the	ratio	of	sensor	
waveform nonlinearity to gap distance (w/g).  Figure 2 illustrates a comparison of the standard 
deviations of the waveform deformation errors of the proposed sensor signals to ideal triangular 
and sinusoidal waveforms for different w/g ratios.  The comparison indicates that the actual 
waveform is more closely dependent on sinusoidal waveforms.  Thus, in the actual sensor model, 
signals are considered sinusoidal waveforms.  Nevertheless, an improvement in modeling can 
be	 attempted	 using	 a	 numerical	 approach	 and	 a	 more	 elaborate	 curve	 fitting.	 	 Based	 on	 these	
conclusions,	both	X and Y	positions	are	retrieved	by	a	standard	arctangent	operation.

 DX =
w
π

arctan(
−XQ

XN
), DY =

w
π

arctan(
YQ

YN
)  (2)

3. Sensor Model with Respect to Harmonic Errors

	 Harmonic	errors	can	be	caused	by	various	sources,	for	 instance,	static	misalignment	between	
MP	and	FP	electrodes	during	 system	 integration,	dynamic	coupling	between	 the	X–Y linear and 
rotational	directions,	and	external	disturbances	such	as	shock	and	vibration,	which	affect	the	sensor	
system in the form of roll, yaw, and pitch movements.  
	 Those	harmonic	disturbances	are	usually	minimal.	 	 In	Fig.	3,	yaw	movement	can	be	 seen	as	
a	 combination	 of	 two	 separate	 linear	movements	 in	 the	X and Y directions.  Linear movements 

Fig. 2. (Color online) Comparison of standard 
deviations of waveform deformation errors for 
different	w/g ratios.
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Fig.	3.	 (Color	 online)	 Sensor	 model	 considering	
yaw	rotational	disturbance.
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of SXN and SXQ in the X	 direction	 cause	 each	 to	 have	 a	 phase-shift	 error	 as	 shown	 in	Eq.	 (3).		
Similarly, linear movements of SYN and SYQ in the Y direction cause each to have a phase-shift 
error	as	shown	in	Eq.	(4).

 XN = cos[π
(DX + DθZ)

w
] XQ = − sin[π

(DX − DθZ)
w

] (3)

 YN = cos[π
(DY − DθZ)

w
] YQ = sin[π

(DY + DθZ)
w

] (4)

 DθZ = L sin θZ = LθZ  (5)

Here, θZ is the yaw angle of the MP and Dθz	 is	the	equivalent	linear	movement	of	the	MP	in	the	
measuring	direction	induced	by	the	yaw	angle.		
	 Movements	 caused	by	 roll	 and	pitch	angles	 can	also	be	considered	a	 combination	of	 a	 linear	
movement in the Z direction and another in the X or Y direction as shown in Fig. 4. However, 
linear movements in the X and Y	 directions	 in	 this	 study	 are	 neglected	 because	 they	 are	 very	
small compared with the linear movement in the Z direction.  Thus, influences of roll and pitch 
movements are considered the same as vertical movements, affecting only the amplitude of a sensor 
signal.		Then,	the	actual	signal	models	against	roll,	yaw,	and	pitch	disturbances	are	illustrated	by	
Eqs.	(6)	and	(7).

 X′N =
g

g + Lθx
cos[π

(DX + DθZ)
w

] X′Q = −
g

g − Lθx
sin[π

(DX − DθZ)
w

] (6)

 Y ′N =
g

g + Lθy
cos[π

(DY − DθZ)
w

] Y ′Q = −
g

g − Lθy
sin[π

(DY + DθZ)
w

] (7)

	 Under	 these	 circumstances,	 if	 the	 actual	 signal	 models	 described	 by	 Eqs.	 (6)	 and	 (7)	 are	
substituted	 into	 Eq.	 (2)	 to	 calculate	 X–Y	 displacement	 of	 the	 MP,	 a	 harmonic	 error	 will	 be	
introduced	into	signal	processing,	thereby	drastically	reducing	signal	linearity.

4. Five-Dimensional Sensor Prototype System

 Figure 5 presents the schematic structure of the proposed five-dimensional capacitive 
displacement microsensor system.  Common electrodes on the MP are in a similar periodic pattern 
to those of other capacitive planar positioning systems.  However, what is different on the FP is that 
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Fig.	4.	 (Color	online)	Sensor	model	considering	roll	and	pitch	angular	disturbances.
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there are eight sensing electrodes on the FP symmetrically positioned around the rotational center O (an 
assumed origin), namely, SX1N, SX1Q, SX2N, SX2Q, SY1N, SY1Q, SY2N, and SY2Q.  In the figure, w 
is the electrode width, l is the sensing electrode length, LN and LQ are the distances of the sensing 
electrodes SN and SQ from the rotational center along their measuring direction, respectively, and 
LS is the distance from the sensing electrodes to the rotational center in a direction perpendicular 
to the measuring direction.  
	 Based	on	the	analysis	results	in	Sect.	3,	we	consider	the	following	mathematical	signal	model	of	
the	sensing	system	in	Fig.	5:

 
X′1N = KX1N X1N

X′1Q = KX1QX1Q
  

X′2N = KX2N X2N

X′2Q = KX2QX2Q
  

Y ′1N = KY1NY1N

Y ′1Q = KY1QY1Q
  

Y ′2N = KY2NY2N

Y ′2Q = KY2QY2Q,
 (8)

where KX1N, KX1Q, KX2N, KX2Q, KY1N, KY1Q, KY2N, and KY2Q are the approximate relationships of 
sensor sensitivity to roll and pitch angles, and

 
X1N = cos[π(DX + DθZ)/w]

X1Q = − sin[π(DX − DθZ)/w]
  

X2N = cos[π(DX − DθZ)/w]

X2Q = sin[π(DX + DθZ)/w] ,
 (9)

 
Y1N = cos[π(DY + DθZ)/w]

Y1Q = − sin[π(DY − DθZ)/w]
  

Y2N = cos[π(DY − DθZ)/w]

Y2Q = sin[π(DY + DθZ)/w] ,
 (10)
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g
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g
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KX2Q =

g
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g

g + LNθx − LS θy
KY1Q =

g
g + LQθx + LS θy

KY2N =
g

g − LNθx + LS θy
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g
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.

 (11)
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Fig.	5.	 (Color	online)	Schematic	views	of	the	proposed	capacitive	displacement	microsensor	system:	(a)	front	and	(b)	
side views.
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	 By	 substituting	Eq.	 (8)	 into	 Eq.	 (11),	 roll	 and	 pitch	movements	 are	 acquired.	 	 Their	 specific	
values depend closely and only on the amplitude of a readout signal.
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g
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(
1
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− 1
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− 1
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)
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(
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1
KX1Q

− 1
KX2N

− 1
KX2Q

) (12)

	 Furthermore,	 by	 normalizing	 Eq.	 (8),	 impacts	 of	 roll	 and	 pitch	 movements	 are	 decoupled,	
resulting in a set of signals containing only X–Y	linear	movements	and	yaw	movement	as	in	Eqs.	
(9) and (10).  X–Y	displacements	are	obtained	by	a	specific	arctangent	function	as	shown	in	Eq.	(13)	
and,	at	the	same	time,	yaw	movement	is	determined	from	Eq.	(14).		Nominal	X–Y movements and 
yaw	movement	are	decoupled	from	each	completely:

 DX =
w
π

arctan
−X1Q + X2Q

X1N + X2N
DY =

w
π

arctan
−Y1Q + Y2Q

Y1N + Y2N
, (13)
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X2Q
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) + arctan(

X1Q

X2N
)] =

w
2πLS

[arctan(
Y2Q

Y1N
) + arctan(

Y1Q

Y2N
)]. (14)

	 It	is	also	noted	that	the	proposed	Eq.	(13)	considers	a	set	of	quadrature	signals	to	calculate	MP	
displacement	 in	 both	 the	X and Y	 directions,	which	would	balance	 fringe	 effects.	 	The	 analyses	
imply that the waveform nonlinearity of X–Y	movement	signals	caused	by	rotational	disturbances	
can	 effectively	 be	 eliminated.	 	 Also,	 roll,	 yaw,	 and	 pitch	 movements	 can	 be	 generated	 in	 the	
proposed scheme.  

5. Experimental Results

	 A	 test	 bench	 for	 the	 proposed	 sensor	 system	 is	 constructed	 as	 shown	 in	 Fig.	 6,	 consisting	
of a micromotion stage, a vertical motion stage, two tilting motion stages, a rotational motion 
stage,	a	capacitive	sensor,	and	an	interpolation	system.		The	MP	and	FP	are	fabricated	as	printed	
circuit	 boards.	 	 A	 NANOMOTION® motor with a resolution of 10 nm is applied to provide 
the displacement of the micro-motion stage.  Tilting and rotating stages are mounted to adjust 
installation	errors	and	system	calibration.
	 From	 the	 analysis	 results	 in	 Sect.	 2,	 we	 concluded	 that	 electrode	 width	 is	 a	 key	 factor	 in	
determining the ratio of sensor waveform nonlinearity to gap distance (w/g).  As long as the w/g 
ratio is less than 2, the actual waveform is closely dependent on sinusoidal waveforms.  Minimizing 
the w/g	ratio	optimizes	signal	linearity;	however,	sensor	sensitivity	is	notably	decreased.		To	keep	a	
balance	between	signal	linearity	and	sensor	sensitivity,	the	w/g ratio is set to 4.  Figure 7 shows the 
demodulation outputs of the proposed sensor, namely, X′1N, X′2N, X′1Q, and X′2Q, in a single period.  
To	better	clarify	the	capability	of	a	five-dimensional	displacement	measurement,	four	different	sets	
of	rotational	inputs	are	provided	in	the	tests:	in	set	I,	the	pitch	angle	θy is 0.1° and the yaw angle θz is 0.2°; 
in set II, the values are 0.2 and 0.4°; and in sets III and IV, the values are 0.4 and 0.8°, and 0.8 and 2.0°, 
respectively.  During all tests, the roll angle θx	is	kept	at	0.		As	can	be	seen,	rotational	disturbances	
introduce severe sensitivity differences and phase-shift errors into output waveforms.  
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	 Based	 on	 the	 analysis	 results	 in	 Sect.	 3,	 roll	 and	 pitch	 angles	 affect	 signal	 amplitudes	 only;	
therefore,	 by	 substituting	 the	 amplitudes	 of	 the	 acquired	 signals	 into	 Eq.	 (12),	 roll	 and	 pitch	
disturbances	can	be	determined.		Figure	8	shows	a	plot	of	the	decoupled	rotational	outputs.	 	The	
calculated	results	are	strongly	dependent	on	ideal	inputs.		For	a	0–0.8°	stroke,	roll	and	pitch	angle	
errors	are	no	larger	than	0.01°,	which	is	acceptable	for	possible	closed-loop	control	purposes.
 Figure 9 shows plots of the normalized waveforms X1N, X2N, X1Q, and X2Q, with sensitivity 
differences	removed.		However,	phase-shift	errors	remain.		If	acquired	normalized	waveforms	are	
considered	 ideal	quadrature	waveforms,	 then	phase-shift	errors	diminish	measurement	accuracy.		
Figure	10(a)	shows	a	plot	of	the	arctangent	waveform	directly	from	Eq.	(2).		Acquired	waveforms	
exhibit	a	severe	distortion.		For	sets	I	to	IV,	signal	nonlinearities	range	from	1.02	to	6.75%,	as	yaw	
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Fig.	6.	 (Color	online)	Test	bench	of	the	proposed	five-dimensional	capacitive	displacement	sensor	system.
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inputs	 increase	from	0.2	 to	2°.	 	Apparently,	Eq.	 (2)	does	not	meet	 the	requirements	 for	precision	
measurement,	especially	in	the	case	of	rotational	disturbances.
	 The	decoupling	method	in	Eq.	(13)	removes	the	influences	of	phase-shift	errors.		Figure	10(b)	
shows	the	acquired	nominal	displacement	in	the	X direction.  As yaw inputs increase from 0.2 to 
2°,	signal	nonlinearities	remain	constant,	only	ranging	from	0.39	to	0.56%.		This	result	validates	
the	conclusion	regarding	Eq.	(13).

(a) (b) (c) (d)

(a) (b)



Sensors and Materials, Vol. 29, No. 7 (2017) 913

 Figure 11 shows decoupled yaw angles compared with ideal inputs, the average values of 
which	are	listed	in	Table	1.		As	can	be	seen,	as	the	yaw	input	increases	from	0.2	to	2°,	the	standard	
deviation	of	the	decoupled	output	increases	as	well;	more	gross	errors	must	be	eliminated	before	
the final calculation.  The specific reason for this is that signal waveforms are not actually in 
perfect sinusoidal or cosine model.  Nevertheless, the average decoupled yaw angles within a full 
period	are	quite	cohesive	to	the	ideal	inputs,	which	are	no	larger	than	0.01°.

6. Conclusions

	 In	 this	 paper,	 a	 novel	 five-dimensional	 capacitive	 displacement	 sensor	 is	 proposed.	 	 On	
the	 basis	 of	 the	 dataform	 of	 the	 sensor	 model	 with	 respect	 to	 harmonic	 errors,	 impacts	 of	
rotational	disturbances	on	X–Y linear displacement signals are decoupled, and high precision X–
Y	displacement	measurement	is	achieved,	while	additional	roll,	yaw,	and	pitch	movements	are	acquired.		
Experiments show that waveform nonlinearities in the X–Y displacement signals are decreased to 
only	0.5%,	while	signal	errors	in	the	demodulated	rotational	disturbances	are	no	larger	than	0.01°	
on a 2° scale.  The advantages of the five-dimensional displacement measurement scheme are 
validated.
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Fig. 11. (Color online) Decoupled yaw angles 
compared with ideal inputs.

Table	1
Demodulated yaw angles.
Ideal input (°) Average value (°) Standard deviation (°)

0.2 0.21 0.026
0.4 0.40 0.045
0.8 0.81 0.075
2.0 2.00 0.132


