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	 The technology for human activity recognition has become an active research topic in recent 
years as it has many potential applications, such as surveillance systems, healthcare systems, and 
human-computer interaction.  In the research of activity recognition, supervised machine learning 
approaches have been widely used for activity recognition.  However, the cost of collecting labeled 
sensor data in new environments is high.  Furthermore, these methods do not work well in a cross-
domain environment using conventional machine learning approaches.  In this study, we proposed 
a transfer learning framework based on principal component analysis (PCA) transformation, Gale–
Shapley similarity measurement, and Jensen–Shannon divergence (JSD) feature mapping.  Transfer 
learning aims to apply new information learned from the source domain to the target domain.  The 
experimental results showed that the proposed approach performs better than the approach merely 
learned in the source environment.  

1.	 Introduction

	 With the advance of sensor technology and machine learning algorithms, activity recognition 
has become an active research topic in recent years.  Activity recognition can be applied to assisted 
living, human–computer interactions, and healthcare, especially for the elderly.  In the activity 
recognition community, most researchers tend to use machine learning methods to tackle activity 
recognition problems.  To determine the model parameters, collecting sufficient labeled data 
is required in the training process, and significant effort is required when applying the model 
to different environments.  Most past research assumed that the distribution of the sensor data 
from new environments was the same as that used in the model training process.  However, this 
assumption is not always valid and is difficult to satisfy in practical situations.
	 In this study, we proposed a transfer learning framework to overcome these problems.  The 
proposed framework consists of three steps: (1) extract seminal information from the source and 
target environments with principal component analysis (PCA) transformation, (2) measure the 
feature similarity with the Jensen–Shannon divergence (JSD) algorithm, and (3) map features to 
a common space based on the Gale–Shapley algorithm.  The proposed transfer framework can 
be used to increase the recognition performance when the model is applied to a new environment 
where the training sample is insufficient.  In addition, it can also reduce the effort of obtaining 
labeling data.  
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	 The rest of the paper is organized as follows.  In Sect. 2, we provide a brief overview of activity 
recognition and the concept of transfer learning.  The proposed transfer learning framework is 
described in Sect. 3.  In Sect. 4, the results of two experiments using two publicly available datasets 
are discussed.  Finally, conclusions are presented in Sect. 5.  

2.	 Related Work

2.1	 Activity recognition algorithms

	 Many approaches have been proposed in the study of the activity recognition problem.  A 
survey of human activity recognition can be found in Ref. 1.  Among the approaches, hidden 
Markov models (HMMs),(2–4) naive Bayes classifiers (NBCs),(5) decision trees,(6) and support 
vector machines (SVMs),(7,8) are widely used in activity recognition.
	 When an HMM is used in activity recognition, activities are the hidden states and can be 
recognized through a trained model.  Although it has good recognition ability for continuous or 
regular behavior, the HMM approach requires two independent assumptions for tractable inference.  
NBCs are a classical classification method based on Bayesian theory.  They have worked well in 
some areas, but their performance may not be as good as other classification algorithms due to the 
strong independent assumption regarding sensor features in activity recognition.
	 Decision trees are also a commonly used algorithm for classification problems.  A decision 
tree algorithm has a flowchart-like structure, and its inference procedure is easy to understand.  
However, it is difficult for the algorithm to recognize complicated activities.
	 SVM is a supervised learning algorithm.  The main spirit of SVM is to find the best hyperplane 
that can best separate different classes of data in high-dimensional feature space.  With kernel 
function mapping, SVM can provide a robust solution in activity recognition.

2.2	 Transfer learning

	 Most activity recognition approaches mentioned in Sect. 2.1 can perform well under the 
assumption that sensor data from the source and target domains are in the same distribution.  
However, in practice, different environments or sensor types can degrade the recognition 
performance.  The transfer learning approach can overcome this issue by mapping features from 
source and target environments to a common space.  
	 To date, a number of studies have been reported about activity recognition in a smart home 
setting using the concept of transfer learning.  A survey for reviewing activity recognition based 
on transfer learning has been published.(9)  
	 Kasteren et al.(10) proposed three different feature mapping functions called function groups 
to project sensor features to a common space.  After projecting, a semisupervised hidden Markov 
model and improved expectation-maximization (EM) algorithm were adopted for activity 
recognition.  In addition, Kasteren et al. also adopted the mapping of sensor data from different 
environments into an individual feature space called meta-feature space as described in Ref. 11.  
Handling mapping relationships can reduce the dimension of features and the cost of mapping 
computations.  Each individual model is combined according to previously assigned weights.  
In Ref. 12, the authors applied their background knowledge of sensors such as the deployed 
locations, types of sensors, mounted objects, and triggering events to assign a weight for each 
sensor.  According to the designated weight, they proposed an approach that can carry out sensor 
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matching between two different environments to achieve the transfer of knowledge without any 
target domain data.  Instead of using the background knowledge of sensors, Rashidi and Cook(13) 
proposed an iterative parameter updating algorithm with a semi-EM algorithm called home-to-
home transfer learning (HHTL).  By iteratively updating the matrix that describes links between 
sensors and activities, their model can perform activity transfer from a source space to a target 
space.  

3.	 The Proposed Approach

	 A major problem encountered in current activity recognition research is the requirement 
of collecting sufficient labeled data in the target environment to train classification models.  
In practice, system developers may be able to obtain sufficient labeled data from the source 
environment but can rarely acquire sufficient data from the target environment where the system 
will be deployed.  In this situation, training samples are insufficient to train a reliable model that 
can be applied to the target environment.  In this study, we proposed a transfer learning framework 
that can map features in the source space and target space into a common space to overcome this 
problem.
	 The diagram of the proposed framework is shown in Fig. 1.  First, features in the source and 
target environments are transformed to a space with a higher divergence that contains more 
independent information.  Next, we estimate the similarity between each feature as the reference 
for feature mapping.  To insure a one-on-one mapping relationship, the Gale–Shapley algorithm is 
adopted.  Finally, a common feature space is built, and all features are mapped onto the common 
space for training and testing.  The details of each step are described in the following sections.

3.1	 Feature linear coordinate transformation

	 The procedure of feature linear coordinate transformation is the first step for the proposed 
transfer learning framework.  The transformation procedure should follow two rules: (1) each 
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Fig. 1.	 (Color online) Proposed transfer learning framework.
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feature will provide highly divergent information, and (2) the lost information will be minimized.  
A dimensionality reduction based on PCA is used to complete the transformation.
	 PCA can be used to achieve linear dimension reduction.  In this study, we take the activity 
labels as an input feature vector and compute the expected value of covariance matrices as shown 
in Eq. (1).  The top ten percent of the derived eigenvalues are selected, and their corresponding 
eigenvectors are adopted for dimension reduction.  

	 E[Cov(AX ǀZ)]  = E[ACov(X ǀZ)AT]  = AΣxAT	 (1)

3.2	 Feature similarity

	 When measuring feature similarity, the similarity between the source and the target features 
is easy to compute if they are exactly the same.  However, they are usually different in practical 
situations.  
	 There are various methods for similarity measurement, such as mutual information, correlation 
coefficient, and Euclidean distance.  In this study, we use JSD to estimate the similarity between 
two domain features.  JSD is a probability-based algorithm suitable for measuring two probability 
distributions.  It is an improved algorithm based on the Kullback–Leibler divergence (KLD) 
and can be used to solve a non-symmetric and unbounded problem of KLD.  The basic KLD is 
formulated in Eq. (2), where P and Q are two probability functions.  The formulation of JSD is 
shown in Eq. (3), where R = (P + Q)/2.  As can be observed, JSD is symmetric, and the boundary 
can be converged in [0, 1] when the logarithm base is set to 2.

	 KLD (P‖Q) =
∑

x

P (x) log
P(x)
Q(x)

	 (2)

	 JSD (P‖Q) =
1
2

[KLD (P‖R) + KLD (Q‖R)]	 (3)

	 To take the activity labels into account, we separately calculate the JSD with different labels.  
The results are summed to estimate the overall JSD of the features.  If we assume that F and G 
are two feature spaces, we can calculate the expected value of the JSD with Eq. (4), where Pi and 
Qm are the distributions of fi ∈ F and Qm ∈ G, respectively, Z is the activity label, and ft is the 
probability distribution function of the label Z.

	 E
{
JSD
[
Pi ( fi|Z)‖Qm (gm|Z)

]}
=
∑

k

ft (zk) JSD
[
Pi ( fi|Z = zk)‖Qm (gm|Z = zk)

]
	 (4)

3.3	 Feature mapping

	 The procedure of feature mapping aims to pair a one-on-one link between the source and the 
target features by finding the similarity with the highest value.  This problem can be formatted as a 
graph matching problem.  In graph theory, two vertexes can be connected with an edge, but no two 
edges can share one vertex.  We consider the features of two different environments to be vertexes, 
and the edge represents the link between the features.  
	 In the Gale–Shapley algorithm, features can be considered as a marriage relationship.  The 
Gale–Shapley algorithm can find a stable link from the relationship.  We treat the features in the 
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source domain as men and the features in the target domain as women.  There are three cases that 
can occur in the pairing process: (1) features with no pair, (2) features with one-on-one pairs, and (3) 
features with multiple pairs.  The action of the Gale–Shapley algorithm will hold features to wait 
in case 1, confirm the link in case 2, and pick one of the features by measurement values in case 
3.  As shown in Fig. 2, sensors can obtain exactly one-on-one pairs through iterative computation.  
Finally, we can complete feature mapping in the source and target domains and project them to a 
common space.

4.	 Experimental Results

4.1	 Datasets

	 In this study, two widely used, publicly available datasets were adopted in our experiments: 
MAS622J from Massachusetts Institute of Technology (MIT),(14) and the dataset adopted from 
Kasteren et al.(11)  
	 The summary of the first dataset is listed in Table 1.  It contains two different environments 
denoted as MAS-S1 and MAS-S2, and activity records for sixteen days.  We choose five common 
activities defined in MAS-S1 and MAS-S2 to verify our framework.  The five selected activities 
are frequently performed by senior people, including using the toilet, preparing breakfast, 
preparing lunch, preparing dinner, and washing dishes.
	 The second dataset contains three houses denoted as House-A, House-B, and House-C.  Each 
house has a different layout, and the activities performed by the subjects in these three houses are 
different.  The sensors, such as switches, pressure mats, mercury contacts, and passive infrared (PIR) 
that are installed in these houses vary, as listed in Table 2.  We also select eight common activities 
in the second dataset.

Table 1
The MIT Dataset.
Datasets MAS-S1 MAS-S2
Number of sensors 76 70
Number of activities 13   9
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Fig. 2.	 (Color online) Feature mapping via the 
Gale–Shapley algorithm.

Table 2
The Kasteren dataset.
Datasets House-A House-B House-C
Number of residents   1   1   1
Number of rooms   2   3   6
Record time (d) 23 14 21
Layout Apartment Apartment House
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4.2	 Experimental setup

	 To test the recognition accuracy, we applied the improved PCA to perform feature 
transformation.  The feature similarity between two different domains can be derived by 
computing the expected value of JSD.  Then, we applied the Gale–Shapley algorithm to find the 
best matching pair to achieve knowledge transfer.  Finally, we built an SVM model with the radial 
basis kernel function to classify activities.
	 Before data processing, raw data must be encoded into a feature vector.  We separate sensor 
data by 30 seconds without interval overlapping.  If a sensor is triggered at an interval, its label 
will be set to 1 or 0.  Furthermore, the trigger time, duration, and sensor location are also recorded.
	 To evaluate the recognition accuracy, we use the F-score or F-measure for performance 
measurement.  The results contain four scores, including true positive (TP), false positive (FP), 
false negative (FN), and true negative (TN) for each class in a confusion matrix.  The precision 
score, recall score, and F-measure are calculated using these four parameters as shown in Eqs. (5)–(7).

	 Precision = 
1
N

N∑
i=1

TPi

TPi + FPi
	 (5)

	 Recall = 
1
N

N∑
i=1

TPi

TPi + FNi
	 (6)

	 F-measure = 
2 × Precision × Recall

Precision + Recall
	 (7)

4.3	 Experimental results for MIT dataset

	 In the first experiment, we tested the performance between the transform learning model and 
the model learned in the source environment.  In the MIT dataset, we used all data from S1 and the 
first ten days of data from S2 for training.  The remaining six days of data from S2 were regarded 
as the target domain for testing.  Figure 3 shows a comparison between the use with and without 

Fig. 3.	 (Color online) A comparison of recognition accuracy with and without transfer learning in the case of 
MIT datasets.
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the proposed transfer learning approach.  The x-axis represents the number of days that data was 
used in dataset S2 during the training process, while the y-axis represents the accuracy in terms of 
the F-measure.  
	 From Fig. 3, we can observe when the training data is insufficient, and when the use of transfer 
learning is more accurate than the model without transfer learning.  With the increase in the 
number of training samples, the recognition accuracy increases significantly from day 7 to day 10 
for both the transfer and nontransfer models.  Compared with the approach proposed in Ref. 12, our 
approach obtains an F-measure of 0.77, more accurate than 0.66 in the mapping from the dataset S1 
to the dataset S2.  

4.4	 Experimental results for Kasteren dataset

	 In the second experiment, we compare our approach with other transfer learning approaches 
proposed by Kasteren et al. in Ref. 11.  Kasteren et al. proposed two transfer learning frameworks: 
the single model and the separate model.  In the single model framework, the authors used only one 
model for all training data.  In the separate model, the authors obtained the model parameters for 
the source and the target environments and combined them with prior weights.  
	 In our experimental setting, the sensor data stream was divided by a time frame of sixty 
seconds as an interval, and eight common activities were used in three house settings.  We selected 
one house as the source environment and the other as the target environment.  The data collected 
in days one to ten from the target domain were sequentially added to the training samples, and the 
rest of the data were set as the testing samples.  The results from each house are shown in Figs. 4(a) 
and 4(b).  
	 In the case of House-A, the separate model proposed by the authors in Ref. 11 works well.  
The separate model can reduce the error caused by the difference in activity patterns and house 
layouts by taking the differences into consideration in each house to adjust the model parameters 
to improve the recognition accuracy.  The performance of our approach also shows good results as 
shown in Fig. 4(a).  

Fig. 4.	 (Color online) A comparison of recognition accuracy in the case of Kasteren datasets: (a) House-A testing 
results and (b) House-B testing results.

(a) (b)
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	 In the case of House-B, our framework obtains the best performance compared with the models 
proposed by Kasteren et al. with training samples collected in days one to five as shown in Fig. 
4(b).  The layout of House-B is a subdivision containing separable information.  Although our 
approach has a better performance with insufficient data than the separate model, the performance 
of the separate model progressively improves with the increase in the number of training samples.  
The recognition accuracy of the single model is the poorest in both cases.

5.	 Conclusions

	 Activity recognition plays an important role in many applications such as smart homes, human–
computer interactions, and elderly care.  In this study, we have demonstrated the application of 
transfer learning to activity recognition in a smart home setting.  With the use of transfer learning, 
we can take the benefits of reducing data labeling and improve recognition performance compared 
with that using only the training data from the source environment.  
	 At first, we used the PCA algorithm to perform data transformation.  Next, we estimated the 
feature similarity between the source and the target domains with the JSD algorithm.  Finally, 
we used the Gale–Shapley algorithm to map sensor features to a common feature space to 
complete the knowledge transformation process.  The preliminary experimental results showed 
that the proposed transfer learning framework can construct a better recognition model in a new 
environment than the traditional supervised learning model.  
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