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	 It has been reported that an object can be suspended below a vibrating surface in air.  We call 
this phenomenon ultrasonic suspension.  When an object is suspended, a restoring force attracts the 
object horizontally to the center of the vibrating surface.  Previously, characteristics of the forces 
acting vertically and horizontally were experimentally investigated using a servo-type measuring 
mechanism.  While ultrasonic vibration was being excited, actuation forces acting on the object 
were measured.  This characterization implied that negative pressure is generated in the suspension 
gap.  To determine the principles governing these forces, the pressure distribution in the gap was 
investigated.  Two types of pressure sensors were prepared.  Measurements by these sensors did 
not agree with the characterized force, because a small hole at the measuring point in both sensors 
influenced the results.  Therefore, we proposed a novel pressure sensor employing a diaphragm.  
Deflection of the diaphragm in proportion to applied pressure can be expected.  The sensor was 
prototyped by micro-electromechanical system (MEMS) technology and calibrated.  Results show 
that the deflection was proportional to the applied pressure and had no hysteresis.

1.	 Introduction

	 Recently, a non-contact handling technique that uses the ultrasonic levitation phenomenon as 
a means of transporting semiconductor substrates or liquid crystal display (LCD) glass substrates 
has been considered.(1–4)  Specifically, the near-field levitation phenomenon has been observed.  
Near-field levitation is the phenomenon in which a planar object can be levitated upward above 
a vibrating surface with a gap of tens of micrometers in air, as shown in Fig. 1(a).  Theoretical 
analysis considering air viscosity has revealed that a force acting on a circular plate reverses from 
repulsive to attractive with increasing levitation distance in the case of near-field levitation.(5)

	 In contrast to ultrasonic levitation, a phenomenon in which a planar object can be suspended 
under a vibrating surface without contact underwater(6) and in air,(7) as illustrated in Fig. 1(b), 
has been experimentally demonstrated.  In the case of suspension in air, the suspension gap was 
a few tens to 100 μm.  This phenomenon is called ultrasonic suspension and induces both vertical 
and horizontal actuation forces.  The vertical force balances gravity acting on the object.  The 
horizontal force attracts the object to the center of the vibrating surface when there is horizontal 
misalignment.  It acts as a restoring force.  Because of these actuation forces, a suspended object 
can be held passively without active control.
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	 Previously, the actuation forces were characterized with a servo-type force measuring 
mechanism.(9)  The vertical force and the restoring force act on the object as illustrated in Fig. 2.  
The forces were measured as a function of changes in vibration amplitude, suspension gap, object 
thickness, and center distance.  In the case of vertical direction, i.e., the force acting on the object 
perpendicular to the surface facing the ultrasonically vibrating surface through the gap, the force 
was attractive for a wider gap and repulsive for a smaller gap.
	 It was also observed that the attractive force was not induced in the case of a suspended object 
whose diameter was larger than 8 mm.(9)  To apply this phenomenon to a non-contact handling 
technique, tests of suspension for larger targets were carried out.(10)  In the tests, the vibrating 
surface was divided into segments.  An attractive force was observed when the diameter of the 
vibrating surface was as large as 30 mm.
	 According to the results of the characterization of the actuation forces, it seems that negative 
pressure is induced in the suspension gap when the force is attractive. Our interest then focused on 
the principles of the negative pressure.  Negative squeeze(11) is one of the possibilities.  To examine 
the pressure principle, the distribution of pressure in the gap was measured.  Two types of pressure 
sensors for measuring local pressure in the gap were tested.  The results, however, did not agree 
with experimentally characterized forces.  We then proposed and designed a novel pressure sensor 
for the measurement.  The sensor was prototyped with micro-electromechanical system (MEMS) 
technology and calibrated with an experimental apparatus.  Trial measurements of suspension gap 
pressure were carried out.
	 The remaining part of this paper is organized as follows.  Ultrasonic suspension is introduced 
in Sect. 2.  An example of the characterization results is included.  Trial measurements of pressure 
distribution in the gap with two types of sensors are reported in Sect. 3.  A proposal for a novel 
pressure sensor is presented in Sect. 4.  Fabrication, calibration, and trial measurements are also 
reported.  The final section contains our conclusions.

2.	 Ultrasonic Suspension

	 An object can be levitated vertically upward above a vibrating surface of an ultrasonic 
transducer as shown in Fig. 1(a) if the intensity of the vibration is strong enough.  On the other 
hand, it has been reported that an object can be suspended below a vibrating surface in air,(8) as 
illustrated in Fig. 1(b).  We call this phenomenon ultrasonic suspension.  The suspension can be 
applied to the handling of a small object, since the object is pulled to the center of the vibrating 
surface when it is initially misaligned.  This implies that a horizontal actuation force as well as a 
vertical actuation force acts on the object, as illustrated in Fig. 2.

Planar object

Ultrasonically
vibrating

Repulsive

Attractive

Fig. 1.	 Ultrasonic levi tat ion and ul trasonic 
suspension.  (a) Levitation.  (b) Suspension.
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Fig. 2.	 Horizontal actuation force.
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	 These forces were experimentally characterized with a servo-type force measurement system.(9)  
The actuation forces in the vertical and horizontal directions during ultrasonic suspension were 
measured by the setup schematically illustrated in Fig. 3.  The target object was fixed on a base, 
which was suspended by two piano-wire rods to provide three degrees of freedom to the object.  
Position and orientation of the base were measured by sensors and controlled by three voice coil 
motors.  Applying proportional-integral-differential control, the base can be in an original position 
and orientation while the actuation force acts on the object.  As a result, the actuation force can 
be estimated from coil currents.  An ultrasonic transducer with a horn was placed horizontally 
to cancel gravity acting on the target object.  To adjust the diameter of the vibrating surface, a 
cap was fixed on the top of the horn with a built-in screw.  By replacing the cap, the diameter of 
the vibrating surface can be changed.  During the experiment, the resonance frequency of the 
ultrasonic transducer was tracked by a resonance frequency tracking system(12) to maintain a large 
vibration amplitude in the transducer.  The frequency was 28 kHz.
	 An example of the characterized force under conditions of a vibration amplitude of 2.0 μmp-p, 
an object diameter of 6 mm, and a vibrating surface diameter of 6 mm is shown in Fig. 4.  For 
a smaller gap, the force was repulsive and agreed with the squeeze film effect.  In contrast, the 
direction of the force was reversed for wider gaps and was attractive. Close to the reversing point, 
the force is that of positive stiffness.  This means that the suspended object can be held where the 
force balances gravity acting on the object.  Additionally, air around the suspended object has a 
damping effect.  Consequently, these properties resulted in a passively stable suspension.

3.	 Measurement of Pressure Distribution in the Gap

	 According to properties of an actuation force during ultrasonic suspension, the average pressure 
in the gap is negative; namely, the absolute value of the local pressure at a certain point in the gap 
is lower than that of the atmosphere.  To discuss the principles of the negative pressure in the gap, 
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Fig. 4.	 Characterized actuation force as a function 
of gap size. (Vibration amplitude = 2 μmp-p).



808	 Sensors and Materials, Vol. 29, No. 6 (2017)

we have focused on investigating the pressure distribution in the gap.  We expected the distribution 
of positive pressure in the center to be due to the squeeze film effect and the negative pressure in 
the circumference to be induced by the negative squeeze effect.  Observing the precise distribution 
would support a deep understanding of the principles.  In this research, the term “pressure” means 
time-averaged air pressure, not sound pressure.
	 To investigate the distribution, the experimental setup schematically illustrated in Fig. 5 
was used.  A Langevin-type ultrasonic transducer whose resonant frequency was 28 kHz was 
connected to a horn and fixed vertically.  Then, a pressure sensor was positioned to face the 
vibrating surface on the top of the horn.  The relative position of the sensor was adjusted by a 
stage to which the sensor was attached.  To simulate ultrasonic suspension, the sensor surface was 
configured with a circular plate.  To investigate the pressure distribution, two types of pressure 
sensors were prepared as indicated in the figure.
	 The first type employed a general pressure sensor whose differential pressure range was from 
0 to 200 Pa.  The circular plate had a hole, whose diameter was 0.3 mm, connected to the sensor.  
The connection was realized with a rubber tube.  The second type consisted of a piezo-resistance-
type pressure sensor, whose range of absolute pressure was from 50 to 110 kPa.  The sensor was 
embedded on a printed circuit board for wiring.  The sensor was fixed in the plate as shown in the 
figure.  A small hole 0.15 mm in diameter was located on the top surface of the sensor.
	 The pressure distribution as measured by the first sensor is plotted in Fig. 6 as a function of 
the size of gap G.  The vibration amplitude was fixed at 2 μmp-p during the measurement.  The 
pressure in the gap was positive at every position and gap size. This means the average pressure is 
positive and does not induce an attractive force during ultrasonic suspension, although an attractive 
force acted at the gap of 60 μm in Fig. 4.
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	 The second type of pressure sensor was also applied to measure the distribution for a vibration 
amplitude of 2 μmp-p.  The observed pressure distribution is plotted in Fig. 7.  The tendency was 
opposite to that measured by the first type.  The pressure was negative at every position even with 
a gap size of 20 μm.  In this case, the actuation force estimated from this result does not agree with 
the properties characterized by the force measurement system.  Additionally, the direction of the 
total force as the integral of overall results is opposite to that shown in Fig. 6.
	 The ultrasonic suspension actuating forces estimated from the measured pressure distributions 
did not agree with those characterized previously.  It seems that air flow around the sensor hole 
influenced the measurements.  The negative squeeze effect may influence the negative pressure 
principle as mentioned.  This effect is induced at the edge of a vibrating surface during ultrasonic 
suspension as illustrated on the right-hand side of Fig. 8.  Microscopically, the same situation 
exists around the sensor holes as shown on the left-hand side of the figure and induces the same 
effect around the holes.  Both sensor structures had holes on their surfaces.  On the other hand, the 
volume behind each hole and the diameter of each hole are different.  These situations imply that 
air flow around the hole influenced the average pressure sensing element of each sensor.  Therefore, 
a hole in the structure of a pressure sensor is not suitable for detection of the local pressure in the 
suspension gap.  Consequently, we have proposed a novel structure for a pressure sensor for an 
ultrasonic suspension gap.

4.	 Novel Pressure Sensor

4.1	 Concept

	 To investigate the pressure distribution under the same condition as an ultrasonic suspension, 
a pressure sensor without a hole is required, because the hole may induce error in the value of 
measured local pressure.  Therefore, we proposed a novel pressure sensor suitable for measuring 
local pressure in a suspension gap.  The proposed sensor was configured without the hole.
	 In our proposal, the pressure sensor has a diaphragm as its micro-structure; the concept is 
depicted in Fig. 9.  Basically, the sensor is a substrate, whose diameter is the same as that of the 
suspended object or larger than the vibrating surface of the ultrasonic transducer; it can simulate 
the suspended object.  The sensor surface faces the top of the ultrasonic transducer and includes 
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the diaphragm.  When an ultrasonic vibration is generated, the diaphragm can be deformed by the 
pressure induced in the gap, as illustrated in the figure.  If the vertical displacement of the center of 
the diaphragm can be monitored as the diaphragm deflection, local pressure behind the diaphragm 
can be estimated from the deflection.
	 Applying MEMS technology, a micro-structure can be simultaneously fabricated.  Therefore, 
the proposed structure can be arrayed as illustrated in Fig. 10.  Because of the array, the pressure 
distribution in the gap can be captured in a one-time measurement.  To realize the measurement, 
independent measurement of the deflection of each diaphragm is required.  Figure 11 depicts 
the possibilities for independent measurement.  (a) An electrode attached on the diaphragm and 
a reference electrode can configure a capacitor.  Diaphragm deflection can be estimated by the 
change in its capacitance.  (b) The piezoresistance equipped on the back of the diaphragm depends 
on the bending deformation of the diaphragm.  By measuring the resistance, the deformation can 
be calculated.  Within these possibilities, the value of capacitance or resistance should be detected.  
Therefore, an analogue signal processing circuit is needed for detection.  The processing circuit can 
be integrated on the same substrate as the sensor, because the sensor structure is embedded on/in a 
silicon wafer as a result of the MEMS technology.

4.2	 Prototype

	 Considering the practical fabrication of a sensor based on this concept, a silicon wafer was 
selected as the substrate.  The surface of the substrate was polished to simulate the suspended 
object even if it is coated.  A polyimide film was considered for the diaphragm, because the film 
can be prepared by spin coating on a wafer.  To realize the micro-scale diaphragm structure, the 
wafer can be etched.  The diaphragm deflection detecting mechanism was not included in this 
prototype, because this research is a feasibility study of the concept.  The deflection could be 
detected in an alternative way such as with a laser displacement sensor.  A prototype with this 
sensor structure was fabricated by the processes shown in Fig. 12.
	 The detailed fabrication process is as follows.  (a) Both sides of the silicon wafer were coated 
with aluminum film by evaporation.  Then, a polyimide film was prepared on the top surfaces by a 
spin coating and baking.  The bottom side of the wafer was covered by a negative photoresist layer.  
(b) The photoresist layer was exposed through a photomask, then developed.  (c) The aluminum 
film outside the remaining photoresist was etched.  (d) The naked part of the silicon wafer was 
etched by reactive ion etching.  Aluminum does not react with reactive ions.  During etching, the 
remaining aluminum film on the bottom surface protected the remaining silicon wafer.  On the 
other hand, the aluminum film on the top surface protected the polyimide layer under the film.  (e) 
The fabrication process was completed with the removal of the photoresist on the bottom surface.  
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Fig. 9.	 Concept of the proposed sensor.
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The aluminum film remaining behind on the top polyimide layer reflected the laser beam from the 
displacement sensor.
	 Two prototypes were fabricated.  One type had a single diaphragm, as shown in Fig. 13(a).  To 
simplify positioning the diaphragm, two markers were located on the line including the diaphragm.  
This type is called Type A.  Another type has an array of diaphragm sensors, as shown in Fig. 
13(b).  This prototype is called Type B.  The diaphragms were square.  The size of the square is 
denoted by L in the figure and varied from 400 to 800 μm in increments of 100 μm.  The interval 
on diaphragms P for Type B was 2L.  Therefore, 5 sensors were prototyped for each type.  The 
atmosphere side of the prototypes and polyimide side, namely, the measurement side, are shown 
in Fig. 14.  For convenience in fabrication, the sensors were fabricated on a 4-inch silicon wafer 
525 μm thick.  The wafer was cut into pieces with sensor structures and markers, as seen in the 
photograph.

4.3	 Calibration

	 For feasibility tests, the prototyped sensors were calibrated with the experimental apparatus 
shown in Fig. 15.  The prototyped sensor was sandwiched by a base and a pressuring block.  The 
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polyimide side faced upward.  By providing pressurized/decompressed air at pressure Ps to the 
block, the polyimide side can be pressurized or decompressed.  Deflection measurements were 
carried out while the valve that provided air was closed.  Accurate pressure behind the diaphragm 
was measured by a manometer as illustrated in the figure.  The opposite end of the manometer 
was connected to the atmosphere, whose pressure was Pa.  The pressure can be calculated by the 
following equation.

	 Pa − Ps = ρgh,	 (1)

where h, ρ, and g are the height difference in the manometer, the density of water, and gravity, 
respectively.  Displacement of the diaphragm was measured by a laser displacement sensor 
(KEYENCE SI-F).
	 Type A with L = 800 μm was calibrated with the apparatus.  The pressure was increased then 
decreased during the calibration.  Diaphragm deformation as a function of applied pressure is 
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Fig. 13.	 Shapes of sensor diaphragms. (a) Type A and (b) Type B.
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plotted in Fig. 16.  Regarding the sign of the vertical axis, an upward displacement is positive. The 
deflection of the diaphragm is linear in the range of −5 to 5 kPa.  Its sensitivity as a pressure sensor 
was 2.6 μm/kPa.  Hysteresis was not observed.
	 Five prototypes of Type B were also calibrated with the apparatus.  The center diaphragm of 
each prototype was tested.  Calibration results as a function of diaphragm size are plotted in Fig. 
17.  This type is linear over the same range as Type A.  Focusing on sensitivity, the larger the 
diaphragm size, the higher its sensitivity.

4.4	 Trial measurement

	 Trial measurements of the pressure in the gap were carried out.  The calibrated sensor diaphragm (L 
= 700 μm) faced the vibrating surface with 6.4 μmp-p amplitude.  Sensor outputs as a function 
of the gap size are plotted in Fig. 18.  The output value jumped suddenly at a gap of 120 μm.  As 
the gap was decreased, values often jumped.  Correct measurement was not possible due to these 
jumps.  To investigate the reason for the jump in values, the vibration of the diaphragm was 
measured under conditions of suspension.  As a result, an ultrasonic vibration whose frequency 
was the same as the operating frequency of the ultrasonic transducer was observed for a gap of 
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200 μm and an amplitude of 2 μmp-p.  It seems that the diaphragm vibration induced the jump in 
the output value of the sensor.  To realize correct measurement, the diaphragm vibration excited by 
the ultrasonic vibration should be suppressed.  One possibility of the vibration suppression may be 
adding a weight on the diaphragm.  The added weight can decrease the response of the diaphragm 
against external vibrations.  To realize the diaphragm structure with the weight, the structure 
design and fabrication process of the proposed sensor should be improved.

5.	 Conclusion

	 To investigate pressure distribution in ultrasonic suspension, two types of pressure sensors 
were prepared and the conditions of suspension were simulated.  Local pressures in the gap 
were recorded and compiled to evaluate the pressure distribution.  These results did not agree 
with previously characterized actuation forces during ultrasonic suspension.  The reason for the 
disagreement may be the influence of the holes connecting the measuring point and the sensor.  To 
investigate the distribution, the authors proposed a novel pressure sensor, which has a flat surface 
facing the measuring point.  Two prototypes were fabricated with MEMS technology.  The sensors 
were calibrated with an experimental apparatus.  Their sensitivity as pressure sensors was 2.6 
μm/kPa.  With the developed sensor, trial measurements were carried out.  Correct values could 
not be obtained due to ultrasonic vibration of the diaphragm.  Improvement of the pressure sensor 
to suppress the diaphragm vibration will be investigated next.  Finally, pressure distribution in the 
gap during ultrasonic suspension will be able to be observed by an improved sensor.
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