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	 Handling measurement system noise and maneuvering noise is a major challenge in tracking 
systems.  White noise is added to displacement and acceleration signals to simulate measurement 
system noise and maneuvering noise in tracking systems.  In this paper, adaptive parameters are 
applied to α-β-γ and α-β-γ-δ filters for tracking systems.  The simulation model is the jerk motion 
of a target, and the results show that the adaptive parameters of the α-β-γ-δ and α-β-γ filters reduced 
measurement system noise and maneuvering noise.  Together they can maintain the position 
tracking accuracy effectively.

1.	 Introduction

	 Multitudinous applications such as air traffic control, missile interception, and antisubmarine 
warfare require employing discrete-time data to predict the kinematics of a dynamic object.  The 
measures of performance, such as stability, transient response, noise, and maneuvering error, as 
functions of the parameters α and β were proposed by Sklansky(1) and Simpson.(2)  Owing to its 
simplicity and low cost, the α-β tracker has become popular.  Neal and Benedict(3) analyzed the 
α-β-γ filter and obtained an optimization of the relationship among α, β, and γ.  In addition, Kalata(4) 
and Tenne and Singh(5,6) summarized many analytical results of α-β-γ filter behavior from several 
studies.  Tenne and Singh(5,6) reported the optimal design of the third-order α-β-γ filter.  Later, Lee et 
al.(7) developed a real-coded genetic algorithm in the α-β-γ filter to search for the optimal parameter 
values.  The proposed method effectively improved the maneuverability and performance of the 
α-β-γ filter while keeping the noise level within an acceptable range.  Han et al.(8) used a formula 
to derive the correlation characteristic of the innovation sequence outputted by an α-β-γ filter.  A 
correction α-β-γ filtering algorithm was proposed to apply to the simulation of multiple targets.(9)  
The implementation of an α-β-γ filter applied in the measurement of a carrier Doppler was discussed 
by Jia et al.(10)

	 Wu et al.(11–13) have proposed an optimal design of an α-β-γ-δ filter to improve significantly the 
position tracking accuracy compared with the α-β-γ filter.  Recently, Wu et al.(14) have presented a 
search method for adaptive parameters for α-β-γ and α-β-γ-δ filters using the absolute minimum of 
the acceleration error and jerk error for every time step and path tracking using an accelerometer 
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with α-β-γ and α-β-γ-δ filters.(15)  In this paper, the application of adaptive α-β-γ and α-β-γ-δ filters to 
measurement system noise and maneuver noise in a tracking system is presented.

2.	 Mathematical Model

	 Consider a one-dimensional, position-velocity-acceleration-jerk discrete time target motion:
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	 When the motion is not considered by a jerk model, the equation can be simplified as
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	 Measurement: z(k) = x(k) + n(k),	

where x(k) is the position at time k, v(k) = ẋ(k) is the velocity at time k, v(k) = ẍ(k) is the 
acceleration at time k, v(k) = ...x (k) is the jerk state at time k, T is the time step or time increment, 
w(k) is an unknown target maneuver, and n(k) is the measurement noise. The unknown target 
maneuvers w(k) are modeled by a zero-mean, white stationary noise process.  The measurement 
noise n(k) is modeled by a zero-mean, white stationary noise process and is independent of the 
maneuvering noise. 
	 The α-β-γ filter is a third-order tracker capable of predicting the object’s next position and 
velocity by tracking the current and past positions and velocities.  
	 The equations are

	 xp(k + 1) = xs (k) + Tvs(k) +
1
2

T 2as(k) +
1
6

T 3w(k) ,	 (3)

	 vp(k + 1) = vs(k) + Tas(k) +
1
2
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	 ap(k + 1) = as(k) + Tw(k) ,	 (5)

where T is time step or time increment, x is position, v is velocity, and a is acceleration; the 
subscripts p and s denote the predicted and smoothed values, respectively.
	 The parameters are derived on the basis of previous prediction and the weighted innovation from 
the following:

	 xs (k) = xp(k) + α[xo(k) + n(k) − xp(k)],	 (6)

	 vs(k) = vp(k) +
β
T

[xo(k) + n(k) − xp(k)],	 (7)
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	 as(k) = ap(k − 1) +
γ

2T 2 [xo(k) + n(k) − xp(k)] ,	 (8)

where subscript o denotes the exact value.  In mathematics and signal processing, the Z-transform 
converts a discrete time-domain signal, which is a sequence of real or complex numbers, into a 
complex frequency-domain representation.  It is like a discrete equivalent of the Laplace transform.  
Just as analog filters are designed using the Laplace transform, the recursive digital filters are 
developed with a parallel technique called the Z-transform.
	 From Eqs. (3) to (8), the ratio 

xp

xo
 is applied and solved using the Z-transform.  The transfer 

function in the z-domain is given by

	 G(z) =
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4 )z2
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	 Jury’s Stability Test (1987) yields the constraints on α, β, and γ parameters for the α-β-γ filter as 
follows.  This test is also used to find the stability domain for the characteristic polynomial (CP) of 
Eq. (9).
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	 To improve tracking accuracy, the mathematical equations of a fourth-order α-β-γ-δ filter target 
tracker included in predicting acceleration are given by
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	 ap(k + 1) = as + T js(k) + Tw(k)(k) ,	 (15)

where

	 xs(k) = xp + α[xo(k) + n(k) − xp(k)],	 (16)

	 vs = vp(k) +
β
T

[xo + n(k) − xp(k)],	 (17)

	 as(k) = ap(k) +
γ

2T 2 [xo + n(k) − xp(k)],	 (18)
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	 js(k) = js(k − 1) +
δ

6T 3 [xo(k) + n(k) − xp(k)].	 (19)

	 Jury’s Stability Test yields the constraints on α, β, γ, and δ parameters for the α-β-γ-δ filter as 
follows:
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	 < α < 20 	 (21)
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(4 − 2α)0 	 (22)

	 < γ <
4αβ

2 − α
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	 0 < δ < 24(2 − α)	 (24)

3.	 Optimal Design of the α-β-γ and α-β-γ-δ filters

	 In this study, a method of searching for the adaptive parameter was applied to optimize the 
design of the α-β-γ and α-β-γ-δ filters.  Four evenly spaced elements are created in the interval of 
ranges for each of the α, β, and γ parameters, and six evenly spaced elements are created in the 
interval of the range for the δ parameter because of its large range.  The α-β-γ filter requires 64 runs 
to compute Eqs. (10)–(12).  The optimal design minimizes the absolute value of the acceleration 
error |ẍs(k) − xo(k)|¨  to find the optimal parameter (α*, β*, γ*) for every time step.  The absolute value 
of the acceleration error is a function of α, β, and γ.  First, we supply the same parameters β* and γ*.  
Then we use three-point (α1, α*, α1) curve fitting to find the local optimal parameter α̂; α1 and α2 are 
the neighboring levels of the α* parameter.

	 f(α1, β*, γ*) = λ1 ∙ α1 ∙ α1 + λ2 ∙ α1 + λ3	

	 f(α*, β*, γ*) = λ1 ∙ α* ∙ α* + λ2 ∙ α* + λ3	 (25)
	 f(α2, β*, γ*) = λ1 ∙ α2 ∙ α2 + λ2 ∙ α2 + λ3	

	 When the following two conditions are satisfied, we can determine the local optimal parameter 

α̂ = −0.5 ·
λ 2

λ 1
:

	 f(α*, β*, γ*) ≤ f(α1, β*, γ*) and f(α*, β*, γ*) ≤ f(α2, β*, γ*).	 (26)

	 Finally, we use the same method to find β̂ and γ̂.
	 The α-β-γ-δ filter requires 384 runs to compute Eqs. (21)–(24).  The optimal design minimizes 
the absolute value of the jerk error |xs(k) − ...x o(k)|...  to find the optimal parameters (α*, β*, γ*, δ*) and 
the local optimal parameters α̂, β̂, γ̂, δ̂ for every time step.
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4.	 Simulation Results

	 A simulation was performed for the α-β-γ and α-β-γ-δ filters.  The low and high ends of 
each range are determined by checking the constraints listed in Eqs. (10)–(12) and (21)–(24), 
respectively.  Assuming that the track of the target is jerk motion, the measured position xx, yx is 
applied with a white gauss noise with SNR = 5, the motion time is from 0 to 100 s, and the initial 
conditions are jx(0) = 0 m/s3, jy(0) = 0 m/s3, ax(0) = 0 m/s2, ay(0) = 0 m/s2, vx(0) = 200 m/s, vy(0) = 
200 m/s, xx(0) = 1000 m and yx(0) = −1000 m.  The target tracking motion equations are as follows.
1.	 During 10 ≤ t < 20 s, jx(t) = −2 m/s3, jy(t) = −1 m/s3

2.	 During 20 ≤ t < 30 s, jx(t) = 4 m/s3, jy(t) = 2 m/s3

3.	 During 30 ≤ t < 40 s, jx(t) = −4 m/s3, jy(t) = −2 m/s3

4.	 During 40 ≤ t < 50 s, jx(t) = 2 m/s3, jy(t) = 2 m/s3

5.	 During 50 ≤ t < 60 s, jx(t) = −2 m/s3, jy(t) = −2 m/s3

6.	 During 60 ≤ t < 70 s, jx(t) = 4 m/s3, jy(t) = 2 m/s3

7.	 During 70 ≤ t < 80 s, jx(t) = −2 m/s3, jy(t) = −2 m/s3

8.	 During 80 ≤ t < 90 s, jx(t) =  4 m/s3, jy(t) = 2 m/s3

9.	 During 90 ≤ t, jx(t) = −4 m/s3, jy(t) = −1 m/s3

	 The simulation results of the tracker motion at T = 0.2 with both filters are shown in Figs. 1–9.  
Each error was calculated for five different time steps (i.e., T = 0.2, 0.1, 0.05, 0.025, and 0.0125).  
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Fig. 1.	 (Color online) Position-x tracking plot at T = 0.2 for the α-β-γ and α-β-γ-δ filters.

Fig. 2.	 (Color online) Position-y tracking plot at T = 0.2 for the α-β-γ and α-β-γ-δ filters.
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Fig. 3.	 (Color online) Velocity-x tracking plot at T = 0.2 with the α-β-γ and α-β-γ-δ filters.

Fig. 4.	 (Color online) Velocity-y tracking plot at T = 0.2 with the α-β-γ and α-β-γ-δ filters.

Fig. 5.	 (Color online) Acceleration-x tracking plot at T = 0.2 for the α-β-γ and α-β-γ-δ filters.

Fig. 6.	 (Color online) Acceleration-y tracking plot at T = 0.2 for the α-β-γ and α-β-γ-δ filters.
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Fig. 7.	 (Color online) Jerk-x tracking plot at T = 0.2 for the α-β-γ-δ filter.

Fig. 8.	 (Color online) Jerk-y tracking plot at T = 0.2 for the α-β-γ-δ filter.

Fig. 9.	 (Color online) Path tracking plot at T = 0.2 for the α-β-γ and α-β-γ-δ filters.

Tables 1 and 2 summarize the tracking errors on the L2 norm and Lmax norm using the α-β-γ and α-β-
γ-δ filters at each time step, respectively.  The accuracy improvement is shown in each table.  Tables 
3 and 4 compare the tracking position errors on the L2 norm and Lmax norm between different time 
step for the α-β-γ and α-β-γ-δ filters.The smaller the time step, the smaller the error.  Meanwhile, the 
smaller the time step, the more the improvement of L2 and Lmax.  These simulations demonstrated 
that the α-β-γ-δ filter outperforms the α-β-γ filter at every time step.  Clearly, a fourth-order target 
tracker of the α-β-γ-δ filter achieves a significantly better tracking accuracy than that of the α-β-γ 
filter.
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Table 2
Comparisons of tracking position error on Lmax between α-β-γ and α-β-γ-δ filters.
Time step α-β-γ α-β-γ-δ Improvement (%)
T = 0.2 3.8833e−01 1.9120e−01   103.1
T = 0.1 9.9434e−02 7.2576e−02     37.0
T = 0.05 1.9723e−02 8.4185e−03   134.3
T = 0.025 6.2509e−03 1.7183e−03   263.8
T = 0.0125 1.4152e−03 1.1872e−04 1092.0

Table 3
Comparisons of tracking position error on L2 between different time steps for α-β-γ and α-β-γ-δ filters.
Time step α-β-γ Improvement (%) α-β-γ-δ Improvement (%)
T = 0.2 4.2008e−003 — 2.1852e−003 —
T = 0.1 5.2863e−004   7.37 2.9665e−004   2.63
T = 0.05 8.7292e−005 14.58 2.0347e−005   8.62
T = 0.025 1.4708e−005   8.04 2.5308e−006   4.90
T = 0.0125 2.5829e−006 31.37 8.0670e−008 14.47

Table 4
Comparisons of tracking position error on Lmax between different time steps for α-β-γ and α-β-γ-δ filters.
Time step α-β-γ Improvement (%) α-β-γ-δ Improvement (%)
T = 0.2 3.8833e−01 — 1.9120e−01 —
T = 0.1 9.9434e−02 7.95 7.2576e−02 3.91
T = 0.05 1.9723e−02 6.06 8.4185e−03 5.04
T = 0.025 6.2509e−03 5.94 1.7183e−03 3.16
T = 0.0125 1.4152e−03 5.69 1.1872e−04 4.42

5.	 Conclusions 

	 An α-β-γ-δ filter was examined and compared with an α-β-γ filter by experimental tests in a 
path tracking system.  The error and reliability of the path tracking systems were evaluated in three 
different experiments.  All mean square errors and maximum errors were very small; in particular, 
the errors resulting from the α-β-γ-δ filter were much smaller than those from the α-β-γ filter in all 
experiments.  There is much evidence to indicate that the α-β-γ-δ filter is more efficient than the 
α-β-γ filter.  The α-β-γ-δ filter is a robust prediction technique and reduces the estimation error to a 
minimum.  It could be applied indoors and in restricted environments.  It also can be combined with 
path tracking for greater accuracy and more widespread applications.

Table 1
Comparisons of tracking position error on L2 between α-β-γ and α-β-γ-δ filters.
Time step α-β-γ α-β-γ-δ Improvement (%)
T = 0.2 4.2008e−003 2.1852e−003     92.2
T = 0.1 5.2863e−004 2.9665e−004     78.2
T = 0.05 8.7292e−005 2.0347e−005   329.0
T = 0.025 1.4708e−005 2.5308e−006   418.2
T = 0.0125 2.5829e−006 8.0670e−008 3101.8
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