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	 The drift of a fiber optic gyroscope (FOG) has a significant impact on the precision of an 
inertial navigation system (INS).   In order to predict the FOG drift more efficiently, we have 
developed a method of reducing the drift using a hybrid-forecasting model.  In the proposed 
model, the systematic and random parts of the FOG drift data are decomposed using the 
empirical mode decomposition (EMD) model.  Then the systematic part is predicted by 
employing the adaptive residual grey model [ARGM (1, 1)], and the random part is predicted 
by the improved autoregressive moving-average (IARMA) model.   The final prediction results 
are the superimposition of the respective prediction using the EMD reconstruction model.  The 
experimental results show that the gyroscope drift can be forecast precisely and can provide a basis 
for gyroscope performance analysis and fault prediction.  At the same time, it can be concluded that 
the hybrid modeling has a higher forecasting precision than the single forecasting method.

1.	 Introduction

	 Inertial navigation systems (INSs) are widely used for navigation and positioning systems, and 
possess attractive features complementary to the global positioning system (GPS).  Given inertial 
sensors, no external information other than initial pose estimation is required.(1)  An INS can provide 
a good signal-to-noise ratio, especially in the case of rapid directional change and high rotational 
speed.(2,3)  As the gyroscope is the major component of an INS, the precision of an INS depends 
mainly on the gyroscope’s precision.  Therefore, the gyroscope’s parameters are the main factors 
affecting the location and course angle accuracy in these navigation systems.(4)   The fiber optic 
gyroscope (FOG) is now at a very advanced stage of production and has significant advantages 
such as long life span, short warm-up time, high reliability, and wide dynamic range.(5)  In aviation, 
nautical, and terrestrial navigation applications, the precision of the application system is always 
restricted by the FOG drift.
	 To date, the application prospects for FOGs are very promising, and many methods have been 
developed to eliminate the drift.(6)  The FOG drift can be classified into two types: systematic and 
random.(7)  The major systematic error sources include bias and scale factors.  On the other hand, 
the random errors due to random drift primarily include sensor noise, which consists of two parts: 
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a low-frequency component and a high-frequency component.(8)  A calibration test is generally used 
for the systematic part.  For the random part, researchers have proposed many methods for filtering 
the high-frequency noise prior to processing, such as the use of a low-pass filter, a wavelet analysis, 
and a neural network denoising technique.(9)  Wu et al.(10) and Tian et al.(11) used a Kalman filter 
(KF) to compensate FOG drift.  Li et al.(12) discussed the autoregressive moving-average (ARMA) 
model for reducing stochastic errors.  Cui et al.(13) presented a newly proposed hybrid filter called 
empirical mode decomposition-grey-forward linear prediction (EMD-G-FLP) to eliminate noise 
and extract the slowly varying drift.
	 In this study, we separated the systematic drift and random drift using the empirical mode 
decomposition (EMD) model, and proposed an adaptive residual grey model (ARGM) to decrease 
the systematic error.  At the same time, we used an improved autoregressive moving-average 
(IARMA) model to reduce the random error.  These algorithms shortened the compensation time 
and improved the FOG precision.  The final predictive results were superimposed using the EMD 
reconstruction model.  Experimental results show that the FOG drift was significantly reduced by 
the proposed method.
	 The remainder of this paper is organized as follows: Section 2 introduces the concept of the grey 
model [GM (1, 1)] and ARMA models.  Section 3 describes the framework of the forecasting model 
and discusses the ARGM and IARMA model algorithms to compensate for the FOG drift.  The 
simulation results are presented to confirm the effectiveness of the proposed method in Sect. 4, and 
our conclusions are stated in Sect. 5.

2.	 Theoretical Background 

2.1	 GM (1, 1) overview

	 Grey system theory, as proposed by Deng, is the simplest and most common unknown data 
forecasting model.(10,14)  In recent decades, it has been widely applied in various research fields.
	 For the original series of FOG output x(0)(i), i = 1, 2, ..., n, a new series can be generated by the 
first-order accumulated generating operation (1-AGO) as

	 x(1) = AGO(x(0)(k)) =
k

i=0
x(0)(i)(k) ,	 (1)

where x(1)(1) = x(0)(1), k = 2, 3, ..., n.
	 From x(1)(k), we can form the grey prediction model GM (1, 1) from which the modeling value is 
obtained as

	 x̂(1)(k) = x(0)(1) −
b
a

e−a(k − 1) +
b
a ,	 (2)

where a denotes the grey developmental coefficient and b represents the grey control parameter, k = 2, 
3, ..., n.
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	 The values of parameters a and b can be estimated by the least-squares method (LSD), that is,

	 a b
T

= (BT B)−1BTyn ,	 (3)

where

	 B =

−0.5(x(1)(1) + x(1)(2)) 1
−0.5(x(1)(2) + x(1)(3)) 1

...
...

−0.5(x(1)(n − 1) + x(1)(n)) 1

,	 (4)

and

	 yn = x(0)(2) x(0)(3) · · · x(0)(n)
T
.	 (5)

	 Applying the first-level inversed AGO (1-IAGO) to x̂(0)(k + 1), the forecast fitting value of the 
raw displacement sequence of the FOG can be expressed as

	
x̂(0)(k + 1) = x̂(1)(k + 1) − x̂(1)(k),
x̂(0)(1) = x̂(1)(1). 	 (6)

	 Usually, GM (1, 1) is used as a short-term prediction scheme because Eq. (3) only requires two 
coefficients to be identified.

2.2	 ARMA model

	 The ARMA model is the most basic sequential method and a practical application of the 
most comprehensive time-series model.(15)  It expands and develops the linear regression model 
foundation.  The ARMA model can promulgate the structure of dynamic data and the rule that will 
forecast its future value.
	 Assume that {xt, t = 0, ±1, ±2, ...} is a stationary time series with a zero mean that forms the 
random part of the FOG drift.  The generalized form of the ARMA model can be described as

	 φ(B)xt = θ(B)ε t ,	 (7)

where φ(B) = 1 − φ1B − φ2B2 − … − φpBp and θ(B) = 1 − θ1B − θ2B2 − … − θqBq, and B denotes the 
backward shift operator, εt is stationary white noise with a zero mean, p and q are the orders of the 
ARMA model, and φi(i = 1, ..., p) and θi(i = 1, ..., q) are the parameters of the ARMA model.  When 
p = 0, the ARMA (p, q) model is the autoregressive [AR (p)] model.  When q = 0, the ARMA (p, q) 
model is the moving-average [MA (q)] model.  The ARMA model can also be described as

	 x(k) = −
p

i=1
φi x(k − i) +

q

j=1
θ j x(k − j) .	 (8)
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3.	 Improving the Error Model

	 Although GM (1, 1) is useful for predictions with less data and easy calculations, it is not 
suitable for more complicated undulant data.  Furthermore, if the data has a small variation 
regularity then serious errors may occur.  Thus, GM (1, 1) must be improved to increase the 
prediction accuracy.  On the other hand, the establishment of the ARMA model requires accurate 
model identification, because false model identification will cause the wrong stage of model 
estimation and increase the cost of re-identification.(16)

	 In order to increase the precision of the FOG, an improved method is proposed, as per the 
algorithm shown in Fig. 1.  The method has the following several steps.
Step 1:	Data preprocessing: In view of the highly dynamic FOG drift phenomenon, EMD is used to 

decompose the drift data of the FOG, and separate the systematic drift and the random drift 
from the original data.  The decomposition criterion is that the low-frequency signal and 
the original signal trends are similar, and the high-frequency signal is similar to a stationary 
signal.

Step 2:	Model building: The ARGM (1, 1) and IARMA models are used to predict the systematic 
and random parts of the FOG drift, respectively, and the prediction results are obtained.

Step 3:	 Prediction evaluation.  The final prediction result is the superimposition of the respective 
prediction made using the EMD reconstruction model.

Fig. 1.	 Schematic of the model algorithm.
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	 The ARGM (1, 1) and IARMA models are the most important steps of the algorithm, and will be 
introduced in the next two sections.

3.1	 Design of the ARGM (1, 1) model

	 Most researchers have improved the model so that the background noise values are improved.(17)  
A few studies have enhanced the predictive accuracy of multiple aspects, such as the background 
and original values.(18)  In this study, we use ARGM (1, 1) based on the RGM,(19) which uses the 
moving-average windows (MAW) method to deal with the raw data points of the FOG x̂(0)(i), (i = 1, 2, 
..., n).  First, it uses an accumulation process to deal with the original data, and then uses the MAW 
method to deal with the entire number sequence.  The equation to deal with the sequence is 

	 x̂(0)(m) =
x̂(0)(m − 1) + 2x̂(0)(m) + 2x̂(0)(m + 1) + x̂(0)(m + 2)

6
,	 (9)

where m = 2, ..., n − 2, and

	 x̂(0)(1) =
3x̂(0)(1) + 2x̂(0)(2) + x̂(0)(3)

6
,	 (10)

	 x̂(0)(n − 1) =
3x̂(0)(n − 2) + 2x̂(0)(n − 1) + x̂(0)(n)

6
, 	 (11)

and

	 x̂(0)(n) =
5x̂(0)(n − 1) + x̂(0)(n)

6
.	 (12)

	 The use of the MAW method weakens the effect of the abnormal data points and improves the 
accuracy of the results.
	 We then substitute {(m, x(1)(m)), m = 1, 2, ..., n} for the initial point (1, x(1)(1)) and the modified 
RGM (1, 1) formula becomes

	 x̂(1)
m (k + 1) = x(1)(m) −

b
a

e−ak +
b
a

.	 (13)

	 The ARGM (1, 1) output value is then

	 x̂(1)
M (k + 1) = c +

n

m=1
λmx̂(1)

m (k + 1),	 (14)

where x̂ M
(1)

 (k + 1) represents the predicted output value from ARGM (1, 1), λm is the weighting factor, 
and c denotes the adaptive factor to the output value, m = 1, 2, ..., n.
	 If quasi-smooth checking 0 ≤ xM

(0) (k + 1)/xM
(1) (k) ≤ 0.5 is satisfied, then c = 0.
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	 If 0 ≤ xM
(0) (k + 1)/xM

(1) (k) ≤ 0.5 is unsatisfied, then c ≥ max
2x(1)

M (k + 1) − k
i=1 x(1)

M (i)
k − 2

.

	 ε(0)(k) is then proposed as a residual sequence:

	 ε (0)(k) = x̂(0)(k) − x(0)(k),	 (15)

where k = 1, 2, ..., n.
	 According to Eq. (15), if we substitute the subsequence numbers ε(0)(k′), where k′ ≤ n, for ε(0)(k) 
and establish GM (1, 1) on ε(0)(k′), then ε̂(0)(k′ + 1) can be obtained as

	 ε̂ (0)(k + 1) = (1 − ea) ε (0)(1 ) −
b
a

e−ak .	 (16)

	 The residual correction GM (1, 1) model for ε̂(0)(k′ + 1) is then expressed by

	 x̂(0)(k + 1) = (1 − ea) x(0)(1) −
b
a

e−ak + δ(k − i)(1 − ea) ε (0)(1 ) −
b
a

e−ak ,	 (17)

where δ(k − i) = 1, k ≥ i,
0, k < i.

	 Finally, the residual corrected value ˆ̂x(0)(k + 1) of the original sequence becomes

	 ˆ̂x(0)(k + 1) = x̂(0)(k + 1) + ε̂ (0)(k + 1).	 (18)

	 Data were collected from the FOG for 13 h in accordance with the RGM (1, 1) and ARGM (1, 1) 
models.  In order to simplify the figure, we take an average of the data over one hour for each of 13 
sample points.  The results are shown in Fig. 2.
	 As shown in Fig. 2, using ordinary RGM (1, 1) and ARGM (1, 1) for long-term forecasting, the 
results can be calculated, as shown in Table 1.
	 From Table 1, we can see that the average of the relative error of the forecasting result from RGM (1, 
1) is 3.77%.  However, the average of the relative error of the forecasting result from ARGM (1, 1) 
is only 2.22%, which is lower than the result of RGM (1, 1).  Thus, ARGM (1, 1) obtains a higher 
accuracy of prediction.

3.2	 Modeling of IARMA

	 We propose an improved model-building method based on the Augmented Dickey–Fuller (ADF) 
test and the Akaike Information Criterion (AIC) test.
	 The ADF test(20) is a popular technique in engineering and was used to test the stationary element 
in the time-series data sets.  In order to illustrate how the ADF test functions, we consider the 
simple ARMA (2, 1) process below referring to Eq. (8).

	 x(k) = −φ1x(k − 1) + θ1x(k − 1) + θ2x(k − 2)	 (19)
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	 Note that this is the same as

	 x(k) = (θ1 − φ1 + θ2)x(k − 1) − θ2(x(k − 1) − x(k − 2)),	 (20)

and subtracting x(k − 1) from both sides gives

	 ∆x(k) = ϑ x(k − 1) + ζ1∆x(k − 1),	 (21)

where the following have been defined:

Fig. 2.	 (Color online) The curves of RGM (1, 1) and ARGM (1, 1).

Table 1
RMSE results for different data types.

Times Actual data
(deg/h)

RGM (1, 1) ARGM (1, 1)
Forecast data

(deg/h)
Relative error

(%)
Forecast data

(deg/h)
Relative error

(%)
1 1.3389 × 10−3 1.34854 × 10−3 0.723755 1.33975 × 10−3 0.067222
2 1.4445 × 10−3 1.48360 × 10−3 2.709663 1.48360 × 10−3 2.709663
3 1.5779 × 10−3 1.57354 × 10−3 −0.27379 1.56354 × 10−3 −0.907559
4 1.5779 × 10−3 1.68778 × 10−3 6.966398 1.64778 × 10−3 4.431318
5 1.7567 × 10−3 1.72656 × 10−3 −1.70676 1.73656 × 10−3 −1.137463
6 1.8471 × 10−3 1.89013 × 10−3 2.332368 1.83013 × 10−3 −0.916055
7 1.8474 × 10−3 1.95873 × 10−3 6.028029 1.92873 × 10−3 4.404099
8 2.0473 × 10−3 2.07265 × 10−3 1.2401942 2.06265 × 10−3 0.751737
9 2.1536 × 10−3 2.14217 × 10−3 −0.529816 2.14217 × 10−3 −0.529815

10 2.3548 × 10−3 2.28759 × 10−3 −2.85582 2.25759 × 10−3 −4.129792
11 2.3474 × 10−3 2.39923 × 10−3 2.2101519 2.37923 × 10−3 1.358127
12 2.4619 × 10−3 2.52742 × 10−3 2.6630271 2.50742 × 10−3 1.850633
13 2.5851 × 10−3 2.68252 × 10−3 3.7705267 2.64252 × 10−3 2.223168
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ϑ = θ1 − φ1 + θ2,
ζ1 = −θ2.

	 (22)

	 After performing the ADF test on the IAMAR model prediction, we used ∆x(k) to compensate 
the ARMA model prediction.  Then we used an automatic forecasting subprogram that executes 
data after differentiation to find the most accurate time-series model by finding the minimum AIC 
value.(21)  The AIC test is one of the best techniques of fitting an estimated statistical model(22) and of 
attempting to find a model to best explain the data with minimum free parameters.
	 The proposed AIC test is then used to obtain an estimate of the model order.  The AIC test(23) is 
given by

	 AICp, q = −2(log L) + 2(p + q).	 (23)

	 To determine the log-likelihood, the ARMA (p, q) model parameters must be estimated for each 
model-order pair (p, q).  The EM algorithm(24) is used to obtain an estimate of (p, q) and ensure 
that the ARMA parameters are optimally estimated to prevent bias of the results of the AIC test.  
However, the model-order estimation through AIC is consequently much more computationally 
intensive than it was previously.
	 In short, we can achieve a combination forecasting model, which is composed of the ARGM (1, 1) 
model and the IARMA (n, m) model:

	 x̂(0)
total(k + 1) = x̂(0)

G (k + 1) + x̂(0)
A (k + 1),	 (24)

where x̂ G
(0)

 (k + 1) is the predictive output value calculated from ARGM(1, 1), and x̂ A
(0)

 (k + 1) is the 
value calculated from the IARMA model.

4.	 Simulation and Results

	 The drift data used in this study was provided by the Institute of Opto-electronics, Beihang 
University in Beijing, China.  The FOG was tested repeatedly for 10 h and 360000 data points were 
recorded.

4.1	 Data preprocessing by EMD

	 EMD was applied to decompose the original drift data of the FOG.  The results from the original 
data, the high-frequency data from the random drift, the low-frequency data from the constant drift, 
and the residual data are shown in Fig. 3.
	 In Fig. 3, the residual error is in the sine form because EMD suffers from the end effect and a 
mode mixing problem.  The end effect is a phenomenon that occurs at both ends of the data.  We 
have not discussed these two problems in this paper.  The root mean square error (RMSE) for each 
approximated component was calculated, and the results are presented in Table 2.

4.2	 Reducing drift in the FOG by ARGM (1, 1) and IARMA 

	 After decomposing the original drift, we used ARGM (1, 1) and IARMA to process the 
systematic and random drifts, respectively.
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	 The results of the analysis using ARGM (1, 1) are shown in Fig. 4.  One can see that absolute 
error refers to the difference between the original data and the predicted data from ARGM (1, 1).  
After ARGM (1, 1) processing, the low-frequency part of the original data is significantly improved.
	 Preprocessing of the random drift was performed simultaneously with the calculation of the 
autocorrelation function of the sample sequence, and a partial autocorrelation function was drawn.  
The results of the autocorrelation function of the sample sequences and the partial autocorrelation 
functions are shown in Fig. 5.  Both can be seen to tail-off at low values of drift.

Fig. 3.	 (Color online) Drift data from the FOG.

Table 2
RMSE results for different data types.
Data type Original data HF data LP data
RMSE (deg/s) 2.77 × 10−3 2.318 × 10−3 6.126 × 10−6

Fig. 4.	 (Color online) Original data, the ARGM (1, 1) prediction, and the absolute error.
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	 The calculation produces the values p = 2 and q = 1 by measuring the equivalent IARMA with 
the AIC test.  The final equation for the FOG random drift is thus

	 x̂(0)
A (k + 1) = −0.2831xk − 0.0912xk − 1 + αk + 1 − 0.8769αk ,	 (25)

where αk ~ N(0, 1.26 × 10−5).
	 The original data and predicted data are shown together in Fig. 6 for comparison.  The peak 
position and the average amplitude are all decreased after IARMA processing.
	 Using the root mean square error (RMSE) for the IARMA (2, 1) model and the original data 
yielded the results shown in Table 3.
	 The similarity of the data shown in Fig. 6 demonstrates that this algorithm is suitable and has an 
accurate forecasting effect.  The RMSE results in Table 3 also indicate that the IARMA model has 
high accuracy.

4.3	 Reconstruction of data

	 The results of applying the new algorithm for data reconstruction using EMD are shown in Fig. 7.  
The RMSEs of the predicted data and the original data are shown in Table 4.

4.4	 Analysis and results

	 The ARGM (1, 1) and IARMA models were applied to processing the drift data of FOGs in a 
similar manner to the procedure shown in Figs. 3–7.  The resultant predicted curve of the FOG drift 
output using reconstruction by EMD is shown in Fig. 7.  Clearly, the reconstruction using EMD 
yielded a better performance than the original one.

Fig. 5.	 (Color online) Results of the autocorrelation function and the partial autocorrelation function.
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Table 3
RMSE results for the IARMA (2, 1) data and the original data.
Data type Original data IARMA (2, 1) data
RMSE (deg/s) 2.77 × 10−3 6.006 × 10−4

Fig. 6.	 (Color online) Predicted data and original data.

Fig. 7.	 (Color online) The final data predictions.

Table 4
RMSE results for the EMD-ARGM-IARMA data and the original data.
Data type Original data IARMA data EMD-ARGM-IARMA data
RMSE (deg/s) 2.77 × 10−3 6.006 × 10−4 4.969 × 10−4
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	 The results obtained by Lu et al.(25) and Zhou et al.(26) are listed in Table 5 for comparison.  The 
data in Table 5 show that the method discussed in this paper has a higher precision than the other 
two methods.
	 Furthermore, the Allan variance estimation method(27) was adopted here to analyze the FOG drift 
data.  The five basic noise terms in an FOG are quantization noise, bias instability, angle random 
walk, rate random walk, and rate ramp, with error coefficients represented by QN, BI, ARW, RRW, 
and ARR, respectively.  The error coefficients of the remaining noise in FOG drift data are listed in 
Table 6.
	 The results in Table 6 clearly show that the level of noise in the FOG static output data after 
reconstruction using EMD was lower than that in the case of the original model.

5.	 Conclusions

	 The FOG is gaining increasing popularity because of its excellent performance.  Reducing the 
drift of a FOG is the key to the performance of the entire INS system.  To reduce FOG drift, we 
studied the use of the ARGM (1, 1) and IARMA models to process the systematic and random 
drifts, respectively.  We eventually achieved reconstruction using EMD by combining the strength 
of the two models.  In addition, we used the Allan variance to estimate the drift data for a FOG.  
Although processing the drift of FOGs in this way does not use the latest techniques, we have 
improved the accuracy of the algorithm significantly.  Numerical results demonstrate that ARGM 
(1, 1) could overcome the drawbacks of using RGM (1, 1) and also markedly increase the FOG 
accuracy and adaptability.  Future work will focus on the effect of the proposed model when applied 
in different environments.
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Table 5
RMSEs of three methods.
Data type Original data Proposed method data Prediction precision (%)
Ref. 25 −0.027 1

(1 step)
0.016 9

(4 steps)
1.6

Ref. 26 0.9437 0.9416 0.82
Our method (deg/s) 2.77 × 10−3 4.969 × 10−4 0.05

Table 6
Error coefficients of different drift noise factors.
Error coefficient QN (μrad) BI (°/h) ARW (°/h1/2) RRW (°/h2) ARR (°/h3/2)
Original data 0.5511 0.9356 3.655 × 10−4 4.283 × 10−4 9.947 × 10−4

Processed data 0.0135 0.2626 9.348 × 10−5 5.243 × 10−5 9.047 × 10−5
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