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 This paper presents a 3D optical sensor system for measuring errors in the motion of a rotating 
stage or spindle based on optical axis deviation using a precision ball lens.   The radial and axial 
errors can be simultaneously measured during rotation.  The 3D sensor consists of two quadrant 
photodiode detectors (QDs), two laser diodes, and a ball lens mounted on the rotating stage 
or spindle.  Rotational errors cause changes in the optical axis of the ball lens.  The resulting 
deflections of the laser beams are detected by the QDs and their output signals are used to determine 
errors.  The radial and axial rotational errors can be calculated as described by the mathematical 
model.  Experimental results showed that the measuring accuracy was within ±1 µm at a resolution 
of about 20 nm.

1. Introduction

 The accuracy of the rotational axes in precision machining has always been a vital factor.  To 
start with, the accuracy of the spindle itself is important, as are the precision and stability of its 
bearings and their mounting and assembly.  Thermal expansion and many other factors are also 
involved.  These all contribute to machining accuracy, and it is important to be able to measure 
axial, radial, and tilt errors to determine accuracy.  At present, most rotational measurements of 
precision axes are made using non-contact methods.  The standard, American National Standards 
Institute (ANSI)/American Society of Mechanical Engineers (ASME) B89.3.4 ‘‘Axes of rotation, 
methods of specification and testing,’’ was issued in 1985.(1)  In 1993, at least three new standards 
from ASME, British Standards Institution (BSI), and International Organization for Standardization 
(ISO) 230-7 were published, showing a clear increase in the amount of attention being paid to 
spindle error analysis.  Tlustry(2) was first to use capacitance-based non-contact displacement 
transducers positioned at 90° to each other in 1959.  The two-axis pickup system made it possible 
for the first time to show the radial error motion of an axis dynamically on a polar plot.  In 1967, 
Bryan et al.(3) presented a new approach both in terms of definition and method.  They proposed 
a scheme for measuring spindle error motion with a master ball.  Nowadays, the capacitive probe 
is very widely used in spindle precision testing.(4–6)  However, the device has to be set up with a 
standard test bar in the rotation axis before measurements can be done.  Although the capacitance 
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probe is very precise and has a fast response, the results are susceptible to material surface 
imperfections, magnetic interference, and other influences.  Much research has been done to reduce 
measurement errors caused by faulty installation, and many optical methods have been presented 
to separate the different errors in the rotating axes.  Chu et al. used a fiber laser to measure the axial 
and radial rotational error.(7)  Liu et al. developed a measuring system for evaluating the radial and 
tilt errors in a spindle without using a master sphere or cylinder.(8)  This system uses a rotational 
fixture with a built-in laser diode mounted on the spindle.  Two measuring devices with two position-
sensitive detectors (PSD) are fixed on the machine table to measure the position of the laser spot.  Park 
et al.  proposed a measuring arrangement for five-degrees-of-freedom (DOF) rotational errors, but it 
was necessary to measure each error separately.(9)  However, individual measurements separated in 
time can result in the accumulation of errors, such as those from changes in temperature.  Fujimaki 
et al. proposed a radial error measuring device for miniature ultra-high-speed spindles based on 
auto-collimation using a small steel ball(10) but it could only measure radial error.  Castro used laser 
interferometry to measure both radial and axial error.(11)  In his method, a lens was used to focus the 
beam from a Hewlett Packard 5529A laser interferometer onto a high-precision sphere, and both 
the radial error and axial error were measured separately.  Anandana et al. described a method using 
two laser Doppler vibrometer (LDV) systems to measure the radial motion at two axial locations 
on a precision cylinder attached to a spindle.(12)  Lee et al. attached a concave mirror to a spindle 
and measured changes in reflection to determine rotational error.(13)  This reduced the mass on 
the spindle as well as minimizing angular errors during assembly.  However, this setup could not 
measure both radial and axial error at the same time.  Imperfections in mirror curvature could also 
cause displacement errors.  Other methods used birefringence heterodyne interferometry, diffraction 
gratings, and double ball bars to measuring angular errors in rotational stages.(14–17) 
 In this study, a 3D sensor for the simultaneous measurement of radial and axial error was 
developed using a ball lens.  The size of the lens used can be as small as 3 mm in diameter, making 
it useable with very small spindles.  The measurement error caused by imperfect curvature of a ball 
lens was also analyzed in this study.  In the first part, a description of the 3D sensor is presented, 
and in the second, an analysis of the 3D optical path and error models are given.  The final part is a 
discussion of the experimental results.

2. Design of the 3D Sensor

2.1 System construction

 Figure 1 shows the optical design of the 3D sensor.  It consists of two sets of orthogonal laser 
diodes, two quadrant photodiode detectors (QDs), and a ball lens.  The lens diameter is 10 mm; the 
material is BK7, and its sphericity is within 2 µm.  In practical use, the ball lens is fixed on the end 
of a spindle or in the center of a rotary stage.  In Fig. 1, beam L1 from Laser 1 is focused by the ball 
lens to give beam L2, and beam L3 from Laser 2 is focused by the ball lens to give beam L4.  The 
two beams are focused on QD1 and QD2, respectively.  Figure 2 shows the actual experimental 
setup using two laser diodes and two QDs.  The measurement principle of the optical axis deviation 
method is shown in Fig. 3.  When there is a deviation shift δx in the ball lens, it causes an offset of 
light beam L2 resulting in an offset displacement qx1 which can be measured by QD1.  If Laser 1 
and Laser 2 are set up orthogonally, the following approximate equation can be obtained:
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Fig. 1. (Color online) Arrangement of components for the 
measurement device.

Fig. 2. (Color online) Physical setup.

Fig. 3. (Color online) Error measurement: ball lens optical axis deviation.
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where the displacement of the ball lens is [δx δy δz]T, which are the radial and axial errors in the axis 
of rotation.  The displacements of the light spot on the QDs are (qx1, qz1) and (qy2, qz2).  The terms 
kx, ky, and kz are the conversion constants between the QD output voltage and the displacement of 
the ball lens, which can be obtained from a system calibration.  The sensing directions between 
displacements of the ball lens in the x, y, and z directions and the change in position of the laser 
spots on the QDs are all shown in Table 1.
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2.2 Kinematic model analysis

 The kinematic model can be represented as a vector as shown in Fig. 4.  Assume the angle 
between laser beams L1 and L2 is θin2.  The original coordinate system of the ball lens is 
represented by {L}, and {L′} is a new coordinate for the center deviation of the ball lens.  The 
coordinate systems of {Q1} and {Q2} are represented as the coordinate system of QD1 and QD2.  
Vector s   = [δx δy δz]T represents the translation vector between coordinate systems {L} and {L′}.  
The positional vectors of the laser spots on QD1 and QD2 are represented as q  1 = [q1x 0 q1z] and q  2 = [0 
q2y q2z], respectively.  The distance vectors from the center of {L} to {Q1} and {Q2} are d  L1 and d  L2, 
respectively.  The terms u  L1 and u  L2 are units of vectors d  L1 and d  L2.  Figure 5 shows the analysis of 
the laser beam L1 system.  As seen in Fig. 4, for the laser beam L2 system, displacement of the ball 
lens denoted by s  '  = [δx' δy' δz']T can be computed using the following equations: 

 s = R−1
in s , (2)

 Rin =
cos θin2 − sin θin2 0
sin θin2 cos θin2 0

0 0 1
, (3)

making the distance from the ball lens center to QD1 to be v  q1 = [0 dqy1 0]T.  As can be seen in Fig. 
5, it has been established that the distance vector from the center to the incident light on the ball 

lens surface is v R1 = −δx − R2
1 − δ2

x − δ2
z −δz

T
 and the distance vector from the center to 

the penetrating light on the ball lens surface is v R2 = doutx R2
2 − d2

outx − d2
outz doutz

T
, where  

R1 and R2 are the radii of the incident light and the penetrating light on the ball lens surface to its 
center.  The terms v  R1 and v  R2 can be expressed as normal vectors of incident and penetrating light, 
respectively.  According to Snell’s Law:

Table 1
(Color online) Direction of ball lens movement and changes of the light spots on the QDs.
Direction of ball lens movement QD1 QD2

X

Y

Z
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 n1 sin θ1x = n2 sin θ2x,
n1 sin θ1z = n2 sin θ2z,

 (4)

 
...

θ1x = βR1x = sin−1 δz
R1

,

θ1z = βR1z = − sin−1 δx
R1

,
 (5)

 ...
θdx = βR1x − θ2x = sin−1 δz

|R1| − sin−1 n1
n2

δz
R1

,

θdz = βR1z − θ2z = − sin−1 δx
R1

+ sin−1 n1
n2

δx
R1

,
 (6)

where θ1 is the angle between the incident light and its normal vector, θ2 is the angle between the 
light travel direction in the ball lens and the normal vector of the incident light, βR1x and βR1z are 
the angles between the normal vector of the incident light and x-axis and z-axis, θdx and θdz are the 
angles between the displacement vector s  d for the light traveling in the ball lens and x-axis as well 
as in the z-axis, and s  d can be computed by
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Fig. 4. (Color online) Kinematic model of the optical system.

Fig. 5. (Color online) Kinematic analysis of optical axis deviation. 
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 sd =
1 0 0
0 cos θdx − sin θdx

0 sin θdx cos θdx

cos θdz − sin θdz 0
sin θdz cos θdz 0

0 0 1

0
1

0
l , (7)

where l1 is the distance the beam travels through the lens, which is unknown.  Thus, the distance 
vector from the sphere center to the penetrating light on the ball lens surface can be determined by:

 v R2 = v R1 + s d. (8)

 After developing Eq. (8), the following is obtained:

 
doutx +  l1 sin θdz + δx = 0,

doutz −  l1 cos θdz sin θdx + δz = 0,
R2

1 − δ2
x − δ2

z − R2
2 − d2

outx − d2
outz −  l1 cos θdx cos θdz = 0.

 (9)

In Eq. (9), the unknowns to be determined are l1, doutx, and doutz.  These can be determined from Eq. 
(9) after θdx and θdz have been determined as follows.  When the laser beam is off the ball lens, the 
angle of departure is

 
θoutx = −βR2x + θ4x = sin−1 doutz

R2
+ sin−1 n2

n1
sin θ3x ,

θoutz = −βR2z + θ4z = − sin−1 doutx
R2

+ sin−1 n2
n1

sin θ3z ,
 (10)

 
θ3x = βR2x + θdx = − sin−1 doutz

R2
+ θdx,

θ3z = βR2z + θdz = sin−1 doutx
R2

+ θdz,
 (11)

where θ3 is the angle between the penetrating light beam and its normal vector, θ4 is the angle 
between the transmitted light that has left the ball lens and its normal vector, and βR2x and βR2z are 
the angles between the normal vector of transmitted light and the x-axis and z-axis.  The focusing 
direction of the beam after it has passed through the ball lens can be represented by a unit vector:

 u out =
1 0 0
0 cos θoutx − sin θoutx

0 sin θoutx cos θoutx

cos θoutz − sin θoutz 0
sin θoutz cos θoutz 0

0 0 1

0
1
0

=
− sin θoutz

cos θoutx cos θoutz

sin θoutx cos θoutz

. (12)

From Fig. 5 it can be deduced that the displacement vector of the light spot projected on QD1 is

 q 1= s + v R2 + s out − v q1= s + v R2 + l2 u out − v q1, (13)

where s  out is the displacement vector of the focused light, which can be substituted by l2 u  out, and  l2 
is the vector length of  s  out.  After expanding Eq. (13), it can be seen that:
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q1x − δx − doutx + l 2 sin θoutz = 0,
q1z − δz − doutz − l 2 sin θoutx cos θoutz = 0,

dqy1 − δy − R2
2 − d2

outx − d2
outz − l 2 cos θoutx cos θoutz = 0.

 (14)

 The solution to the above is

 
q1x = doutx + δx +

δy+ R2
2−d2

outx−d2
outz−dqy1

cos θoutx
tan θoutz,

q1z = doutz + δz − δy + R2
2 − d2

outx − d2
outz − dqy1 tan θoutx.

 (15)

2.3	 Model	simplification

 When the displacement of the ball lens is small, paraxial optics can be used to simplify the 
measurement model.  Simplified Eqs. (6) and (7) are as follows:

 
θdx

n2−n1
n2 R1

δz,

θdz −
n2+n1
n2 R1

δx,
 (16)

 s d

1 0 0
0 1 −θdx

0 θdx 1

1 −θdz 0
θdz 1 0
0 0 1

0
1

0
l . (17)

 Under paraxial conditions, the distance the light beam travels in passing through the ball lens is 
close to the diameter of the ball lens: 

 1 R1 + R2l . (18)

 Substituting Eqs. (16) to (18) into Eq. (9) and linearizing, doutx and doutz can be simply computed 
by:

 
doutx

R1 + R2 n2−n1

n2 R1
− 1 δx,

doutz
R1 + R2 n2−n1

n2 R1
− 1 δz.

 (19)

 Similarly, Eqs. (10) and (12) can be simplified as:

 
θoutx

n2−n1 R1 + R2

n2 R1 R2
δz,

θoutz −
n2−n1 R1 + R2

n2 R1 R2
δx,

 (20)
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 u out −θoutz 1 θoutx
T

. (21)

 After simplification of Eq. (14), we have:

 
q1x − δx − doutx + l 2θoutz = 0,
q1z − δz − doutz − l 2θoutx = 0,

dqy1 − δy − R2
2 − d2

outx − d2
outz − l 2 = 0.

 (22)

 Finally, by substituting Eqs. (19) and (20) into Eq. (22), the measurement equation can be 
determined:

 
q1x

n2−n1 R1 + R2 dqy1+ R2 −δy−µ
n2 R1 R2

δx,

q1z =

=

n2−n1 R1 + R2 dqy1+ R2 −δy−µ
n2 R1 R2

δz ,
 (23)

 µ = R2
2 −

n2 R2 − n1 R1 + n1 R2 δx

n2 R1

2

−
n2 R2 − n1 R1 + n1 R2 δz

n2 R1

2

. (24)

 For QD2, the measurement equation can be rewritten as:

 
q2y

n2−n1 R3 + R4 dqx2+ R4 −δy−µ
n2 R3 R4

δx,

q2z =
n2−n1 R3 + R4 dqx2+ R4 −δy−µ

n2 R3 R4
δz,

=
 (25)

 µ = R2
4 −

n2 R4 − n1 R3 + n1 R4 δx

n2 R3

2

−
n2 R4 − n1 R3 + n1 R4 δz

n2 R3

2

, (26)

where R3 and R4 are the radii of L2 incident light and penetrating light on the surface of the ball lens 
to the sphere center.  Since the mounting angle between QD2 and QD1 used here is 90°, Eq. (2) can 
be simplified to:

 
δx

δy

δz

=
−δy

δx

δz

. (27)

Using Eqs. (23) and (25), the constants of proportionality kx, ky, and kz in Eq. (1) can be obtained.
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2.4  Analysis of the sphericity error of the ball lens

 Because a ball lens in never a perfect sphere, the equations for the actual distance from the 
spherical center where the laser beam hits the surface and where it leaves the sphere should be 
amended as follows:

 
R1 = R1 + σR1

R2 = R2 + σR2

,
,  (28)

where σR1 and σR2 are the radius errors of the ball lens.  Simulation was used here to estimate 
the effect of the radius error on the measured results.  Because L1 and L2 have the same optical 
properties, only one was analyzed.  We assumed both R1 and R2 were 5 mm; the refractive index of 
air is n1 = 1.  The distance from QD1 to the center of the ball lens is 20 mm.  It was also assumed 
that when the ball lens was rotating, the deviation from its rotational axis δz was only 0.1 mm, and 
the ball lens radius error was 0.01 mm.  The simulation results are shown in Fig. 6.  As can be seen, 
the maximum measurement error was 0.1 μm with a maximum ball radius error of 0.01 mm.  
 However, the ball lens displacement δy in the L1 measurement path might cause coupling 
displacement in the other sensing directions.  A simulated result is shown in Fig. 7.  In this 
simulation, δy was given within ±0.1 mm, δz was 0.1 mm, and δx was 0.0 mm.  The simulation 
results showed that, when the ball lens moved 0.1 mm along the light optical axis, the measurement 
error was within ±0.7 µm.

Fig. 6. (Color online) Measurement error caused by imperfections in sphericity of the ball lens: (a) σR1 within 
±0.1 mm and (b) σR2 within ±0.1 mm.

(a) (b)

Fig. 7. (Color online) The measurement error in the z direction caused by δy.



1062 Sensors and Materials, Vol. 28, No. 9 (2016)

3. Experimental Results

3.1 System calibration

 An X-, Y- and Z-axis nanometer stage was used to calibration the system.  The ball lens was 
fixed on the stage and moved in steps of 20 nm to test resolution.  The recorded displacement 
was compared with the output voltage of QD to determine a displacement-to-voltage conversion 
constant.  Figure 8(a) shows the resolution test (after conversion to displacement) of the sensor.  
The resolution was about 20 nm.  The stage was then moved to ±50 μm with stepwise inputs of 5 
μm to carry out an accuracy test.  Figures 8(b) and 8(c) show that the radial and axial accuracies 
were within ±1.0 µm, respectively.

3.2 Static rotational test of a direct drive (DD) motor stage

 The experimental setup is shown in Fig. 9.  The static rotational tests for radial and axial error 
measurements were made with the DD motor operating in the positioning mode.  The ball lens was 
fixed to the stage and rotated by the DD motor in 10° steps.  The X-, Y-, and Z-directional rotational 
errors were measured, as shown in Fig. 10.  The error deviations in the X-, Y-, and Z-directions were 
20, 32, and 3.5 μm without eccentricity compensation.  The standard deviation of the sensor was 
less than 0.015 μm, as shown in Fig. 11, which reveals a sufficiently high sensor precision.
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Fig. 9. (Color online) Experimental setup using the 
3D sensor.
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Fig. 12. (Color online) Radial error measurement at 12 rpm.

Fig. 13. (Color online) Radial error measurement at 72 rpm.
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3.3 Dynamic rotational tests using the DD motor stage

 Dynamic rotational tests were carried out at 12, 72, and 120 rpm.  The experimental results of 
radial error measurements are shown in Figs. 12–14 and the results are summarized in Table 2.  At 
12 rpm, the synchronous and asynchronous errors were 8.82 and 12.13 μm.  When the rotational 
speed was increased to 120 rpm, the synchronous and asynchronous errors were 8.64 and 13.19 µm, 
respectively.  The rotation speeds of 12 and 120 rpm are not very high, and the results showed that 
the dominant errors were those induced by the ball bearings.  The proposed sensor was shown to be 
flexible and versatile and perfectly suitable for measuring rotational errors in both the stage and the 
small spindle.  The diameter of the ball lens used can be selected to suit the purpose in each case.  
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4. Conclusion

 This paper describes the design of a flexible and accurate method for measuring the accuracy 
of rotation on a meso- and micro-scale.  Tests of this 3D optical method for the measurement of 
radial and axial rotational errors using a precision ball lens have been shown to be precise and 
reproducible.  Kinematic analysis was used to characterize a measuring and error analysis model.  
The results showed that the influence of the sphericity of the ball lens was estimated to be small.  
This 3D device is not expensive, has high precision, and is flexible and easy to set up as a rotation 
measuring system.  
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Table 2
Dynamic error measurement results.

Rotational speed (rpm) Synchronous error motion (μm) Asynchronous error motion (μm)
  12 8.82 12.13 
  72 8.31 12.84 
120 8.64 13.19

Fig. 14. (Color online) Radial error measurement at 120 rpm.
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