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	 This paper presents an algorithm for data association for the visual navigation of aerial robots.  
The major objective is to provide the aerial robot with the capabilities of localization and mapping 
in global positioning system (GPS) denied environments.  The visual sensor system could measure 
information for robot state estimation and environmental mapping as the aerial robot navigates in a 
GPS-denied environment.  Only one single camera was used to reduce the load on the aerial robot.  
The captured image was transmitted to a personal computer for image processing using a radio 
frequency transmitter.  In this study, an efficient data association method based on fuzzy rules was 
developed to determine the robust landmarks for robot mapping.  An ultrasonic sensor was designed 
to provide distance measurements and to solve the map scale determination problem of monocular 
vision.  The software program of the robot navigation system was developed on a windows-based 
personal computer.  The navigation system integrated the visual sensor, the algorithm for data 
association, and the state estimator.  The integrated system was used to carry out simultaneous 
localization and mapping for aerial robots.

1.	 Introduction

	 An aerial robot relies on sensing information to know the outside world and estimate the state of 
the robot itself in an unknown environment.  Commonly used sensors include the global positioning 
system (GPS), laser range finder (LRF), and vision sensor.  A GPS signal is not available for a 
robot in an indoor navigation environment.  The LRF can offer high-precision measured data, 
but it is too expensive to be extensively used.  The vision sensor has a reasonable cost and is 
generally used as a robot’s sensing device, especially in a GPS-denied environment.  Considering 
the carrying capacity of an aerial robot, a single camera was used in this study, as shown in Fig. 
1, and the image was transmitted to a PC-based controller for image processing using a radio 
frequency module.  The monocular vision sensor captured two-dimensional images but lacked 
depth information on the objects.  Without depth information, the location of a new landmark could 
not be determined; furthermore, the map scale of the environment could not be initially estimated.  
For monocular vision, many researchers have developed time-delayed and undelayed procedures 
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for landmark initialization.(1,2)  This study used the undelayed method.  The spatial coordinates of 
the image feature were calculated using the method of inverse depth parameterization.(2)  However, 
the problem of determining the map scale remained unsolved.  In this study, an ultrasonic sensing 
system was developed to provide one-dimensional distance measurements and to solve the map 
scale determination problem of monocular vision.
	 The contribution of this paper is the novel procedures for data association.  To build a persistent 
map of an environment, an efficient procedure of data association for visual mapping was 
developed.  The procedures of data association include a search of image features located at the 
predicted location in the image plane, as well as the calculation of the Euclidean distance between 
the descriptors of image features.  Two methods based on fixed-value levels and fuzzy rules were 
designed for data association.
	 We also extended the usability of a persistent map and the data association methods developed 
in the tasks of simultaneous localization and mapping (SLAM).  An extended Kalman filter (EKF) 
was used in SLAM tasks to recursively predict and estimate the robot state and the states of 
environmental landmarks.(3)  The problem of determining the map scale as well as initializing new 
landmarks were also investigated for monocular vision in robot navigation.

2.	 Aerial Robot SLAM

	 Based on the sensor measurements, the states of the robot and landmarks are estimated during 
the SLAM tasks.  In this study, a monocular vision system was used as the only measuring sensor.  
The monocular camera was carried by the aerial robot and modeled as a free-moving system.(1,4)  
The state vector xk at time step k can be expressed as

	 xk = f (xk − 1, uk − 1, wk − 1),	 (1)

where uk and wk are the vectors of the input and the process noise, respectively.  The state vector 
contains the states of the robot and landmarks during the SLAM tasks:

	 x = xT
C MT T

= xT
C mT

1 mT
2 · · · mT

j
T
,	 (2)

where xC = [rT ϕT vT wT]T are the robot’s world coordinates, and mj denotes the jth landmark in the 

Fig. 1.	 (Color online) Quadrotor aerial robot with a monocular vision sensor.
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environment map M.  The SLAM tasks are used to estimate the state xk of the target recursively 
according to the measurement zk at k:

	 zk = g(xk, vk),	 (3)

where vk is the noise vector.  Since the sensor frame was set at the camera center, the coordinates of 
the ith landmark in the world frame were

	 mi = r + hW
i = r + RhC

i ,	 (4)

where r is the sensor’s world coordinates, R is the rotational matrix,(5) and h i
W

  and hi
C
  are the ray 

vectors of the image features in the world and sensor frames, respectively.  Since the monocular 
vision lacks range information, the method of initializing the visual landmarks becomes a non-
trivial procedure.
	 In this study, an undelayed visual landmark initialization procedure based on the inverse depth 
parameterization was developed.(2)  The 3-dimensional (3D) spatial coordinates of the feature were 
described by a 6D position vector

	 m̂i = r̂W
ix r̂W

iy r̂W
iz θ̂W

i ψ̂W
i ρ̂i

T
,	 (5)

where i = 1, …, n; r̂W = [r̂ i
W

x  r̂ i
W

y  r̂ i
W

z]
T represents the estimated coordinates of the camera when the 

feature was observed, ρ̂i is the image depth of the feature, and θ̂ i
W and ψ̂ i

W are the longitude and 
latitude angles, respectively, of the spherical coordinate system located at the camera center.
	 For determining the map scale in a monocular SLAM problem, we developed a one-dimensional 
distance detector based on ultrasound technology.  The distance detector consisted of an ultrasound 
sensor chip, a radio frequency transmitter, and a microchip.  When the aerial robot took off, the 
ultrasound sensor was designed to measure the distance from the ground.  The SLAM task began to 
work when the height of the quadrotor was 1.5 m above the ground.  Some image features obtained 
from the first image were chosen as landmarks and their states were initialized according to Eq. (4).  
In the equation, the depth information for image features was obtained from the ultrasound sensor.  
With these initial image features, the map scale was also calculated.

3.	 Vision-Based Mapping

	 Robot visual mapping needs a robust method to represent visual landmarks which are detected 
in images.  In this study, we used the method of speeded-up robust features (SURF)(6) to find the 
visual landmarks for robot mapping during SLAM tasks.  After the features were detected, a high-
dimensional vector was computed to represent the description of the features.
	 To match the high-dimensional description vector of a landmark with that of an image feature, 
we developed the procedures of data association based on fixed-value levels and fuzzy rules.  The 
procedures of data association include searching for image features located at a predicted location 
in an image plane, as well as calculating the Euclidean distance between their descriptors using the 
nearest-neighbor search method.(7)  The matching criterion for a landmark with an image feature 
was defined as: the feature must be located at the predicted position, and its Euclidean distance 
must be within the threshold value.
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3.1	 Level-shifted data associtation

	 The data association based on fixed-value levels was designed as listed in Table 1.  The concept 
was to design a window located at the predicted position for searching the image feature and to set a 
threshold value for the Euclidean distance between the descriptors, as shown in Fig. 2.  Four levels 
were designed, as shown in Table 1.  For each level, the size of the search window was increased 
by 10 pixels, while the threshold of the Euclidean distance was decreased by 0.03.  During the data 
association, the first level with the window size 19 × 19 and distance threshold 0.2 was initially 
applied.  For example, as shown in the left panel of Fig. 3, landmarks nos. 0 and 3 were successfully 
matched with the corresponding image features.  The camera speed and acceleration were 0.33 
m/s and 0.57 m/s2, respectively.  However, as shown in the right panel of Fig. 3, landmark no. 3 
could not be matched with the corresponding feature when the camera speed and acceleration were 

Table 1
Fixed-value levels for data association.
Levels 1st 2nd 3rd 4th
Window-size* 19 × 19 29 × 29 39 × 39 9 × 49
Threshold of Euclidean distance 0.2 0.17 0.14 0.11

*Units in pixels.

Fig. 2.	 Search windows for locating image features.

Fig. 3.	 (Color online) (a) Camera speed of 0.33 m/s and acceleration of 0.57 m/s2.  (b) Camera speed of 0.41 m/s 
and acceleration of 2.14 m/s2.  In both cases, the first level was applied.

(a) (b)
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increased to be 0.41 m/s and 2.14 m/s2, respectively.  If the third level with the window size 39 × 
39 and distance threshold 0.14 was applied, both landmarks nos. 0 and 3 were again matched with 
the corresponding features, as shown in the left panel of Fig. 4.  For a higher camera speed of 0.83 
m/s and an acceleration of 4.73 m/s2, the fourth level with the window size 49 × 49 and distance 
threshold 0.11 had to be applied to match the corresponding features, as shown in the right panel of 
Fig. 4.

3.2	 Fuzzy data associtation

	 In the level-shifted data association method, the first level had to be initially applied.  If the 
image features were not matched successfully, then the window-size and distance threshold were 
shifted to the next higher levels.  Therefore, the data association could not respond quickly.  The 
data association method based on fuzzy rules was designed to improve the response speed.  The 
velocity vc and acceleration ac were chosen as the inputs to the fuzzy rules.  The input and output 
membership functions were planned, as shown in Figs. 5 and 6, respectively.  The absolute velocity 
vc varied from 0 to 2 m/s, while the absolute acceleration ac changed from 0 to 4 m/s2.  The output 

Fig. 4.	 (Color online) (a) Camera speed of 0.41 m/s and acceleration of 2.14 m/s2.  The third level was applied.  (b) 
Camera speed of 0.83 m/s and acceleration of 4.73 m/s2.  The fourth level was applied.

(a) (b)
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Fig. 5.	 Membership functions of the velocity and 
acceleration inputs.

Fig. 6.	 Membership functions of the outputs.
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U was limited from 9 to 29 pixels.  The fuzzy rule base was designed according to the experiments 
and is listed in Table 2.  The center-of-gravity method was used to defuzzify the output:

	 U =
n
i=1 wi(vc, ac)ui
n
i=1 wi(vc, ac)

,	 (6)

where wi is the weight value of the output membership function ui.  The output U is the radius of 
the search window and the resultant window-size is (2U + 1) × (2U + 1) pixels.  The threshold of 
Euclidean distance dmatch was chosen to be

	 dmatch = dmatch_int − (U − Z0)∆dmatch,	 (7)

where dmatch_int = 0.2 was the initial distance; ∆dmatch = 0.006 was the incremental distance, and Z0 = 
9 was the initial value of the output membership function.

4.	 Results

	 To implement the navigating tasks, the monocular vision was integrated with the free-moving 
state model and the measurement model to form a SLAM system.  Once the images were captured 
by the camera, features were detected using SURF.  The system carried out data associations of the 
map landmarks and the image features using the proposed level-shifted and fuzzy rule methods.
	 Two experiments were performed to validate the proposed algorithms.  The first experiment 
depicted the performance comparison of two developed data association methods.  The aerial robot 
SLAM task was implemented in the second experiment to demonstrate the performance of the 
integrated system.

4.1	 Performance of data associtation methods

	 The performances of two data association methods were compared in this experiment.  For a 
scene in a SLAM task similar to that shown in Figs. 7 and 8, two data association methods were 
applied to locate the landmarks in the map.  Using the fuzzy data association method, landmark no. 
301 was identified at the lower-right corner, as shown in Fig. 7.  However, the same landmark could 
not be identified using the level-shifted method in the first two calculations, as shown in Fig. 8.
	 Table 3 shows the number of features extracted using two different data association methods.  To 
obtain sufficient robust landmarks for the environment map during the SLAM task, the level-shifted 

Table 2
Table of fuzzy rule base.

(vc)
(ac)

Z S B
Z Z0 P1 P2
S P1 P2 P3
B P2 P3 P4



Sensors and Materials, Vol. 28, No. 9 (2016)	 1019

method had to extract 5.71 times the number of image features.  On the other hand, the fuzzy 
method only had to extract 4.66 times the number of image features.  Therefore, we concluded that 
the fuzzy method was more efficient than the other method in searching for robust visual landmarks.

4.2	 Aerial robot SLAM

	 The SLAM experiment was implemented on a real quadrotor aerial robot.  The monocular 
vision was carried by the quadrotor to follow a trajectory above a square plane with a 2 m side, as 
shown in Fig. 9.  The camera lens always faced downward as the aerial robot flew along the planar 
trajectory.  The SLAM system started when the quadrotor’s height was 1.5 m, as measured by the 
ultrasound sensor.  Fifteen SURF features obtained from the first image were chosen as landmarks, 
and their state vector was initialized according to Eq. (4), in which the image depth information 
was obtained from the ultrasound sensor.  After that, new landmarks were constantly added to the 
map and their state vectors were initialized using Eq. (5).  As the monocular vision followed the 
planar trajectory, the SLAM system built the environmental map concurrently and estimated the 
robot pose.  Figure 10 presents the 1650th RGB image frame obtained in the experiments.  Eleven 
landmarks were detected in this frame, and the map size was increased to 206.  The top-view (xy-
plane) and side-view (yz-plane) plots of the environmental map are depicted in the middle and right 
panels, respectively.  The map size and sampling frequency versus the image frame is plotted in 
Fig. 11.  The map size was increased so that it contained about 200 landmarks at the end of the first 
loop and 206 landmarks at the end of the experiment.  The average sampling frequency was about 
30 Hz and the lowest frequency was about 15 Hz.

Fig. 7.	 (Color online) Performance of feature 
matching by the fuzzy searching window.

Fig. 8.	 (Color online) Performance of feature 
matching by the level-shifted researching window.

Table 3
Performance comparison of data association methods.

No. of 
landmarks

No. of extracted 
features

No. of features/
No. of landmarks

1. Level-shifted 196 1119 5.71
2. Fuzzy 205 956 4.66
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Fig. 9.	 (Color online) Planar trajectory of the quadrotor SLAM task.

Fig. 10.	 (Color online) (a) Image, (b) top-view map (xy-plane), and (c) side-view map (yz-plane) of 1650th frame.

Fig. 11.	 (Color online) Map size and sampling frequency vs image frame.

(a) (b) (c)
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5.	 Conclusions

	 In this study, an algorithm for data association was developed for simultaneous localization 
and mapping of an aerial robot with a monocular vision sensor.  The algorithm was designed using 
fuzzy rules to construct a persistent environmental map.  The fuzzy rule-based data association 
could efficiently search for robust visual landmarks for robot mapping within a predicted search 
window.  We extended the usability of SURF detectors by using its robust representation of visual 
landmarks.  For each SURF feature, the state was initialized by one 6D vector using an inverse 
depth parameterization method.  We solved the problems of determining the map scale as well 
as initializing new landmarks by utilizing an ultrasound range detector.  Two experiments were 
performed to validate the performance of the vector aerial robot SLAM systems.  The experimental 
results showed that the data association problem could be solved and the EKF-SLAM could 
correctly estimate the robot’s pose.
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