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	 The	flavor	of	beer	is	an	important	means	of	evaluating	its	quality.		Beer	flavor	is	the	integrated	
embodiment of beer smell and taste information.  In this work, the automatic evaluation of beer 
aroma,	 taste,	 and	 overall	 flavor	 sensory	 information	 was	 realized	 by	 a	 smell	 and	 taste	 sensor	
coupling array.  First, a cloud model was used to realize the conversion between the descriptive 
language	 and	 the	 corresponding	 quantitative	 numbers	 in	 the	 process	 of	 beer	 sensory	 evaluation.		
Next,	an	electronic	nose	and	an	electronic	tongue	were	used	to	test	the	quality	of	beer	in	terms	of	
smell and taste.  Finally, a fuzzy neural network was trained with the characteristic information 
collected by the sensor coupling array as the input, with a characteristic value generated from the 
conversion of the cloud model of sensory evaluation as the output.  The results from this system are 
excellent,	as	the	error	rate	in	the	overall	fuzzy	information	evaluation	of	flavor	was	between	0.0048	
and	0.0394.

1. Introduction

 Over the past several years, beer has been one of the most popular products among consumers 
for	 its	 good	 taste	 and	 rich	 nutrition.	 	 On	 the	 other	 hand,	 the	 level	 of	 appreciation	 and	 quality	
requirement	 are	 increasing.	 	 Beer	 flavor	 is	 one	 of	 the	 means	 by	 which	 the	 quality	 of	 beer	 is	
commonly tested, and it represents the integrated embodiment of beer taste information (acidic, 
sweet,	 bitter)	 and	 smell	 information	 (scent).	 	More	 than	800	flavor	 components	 are	 contained	 in	
beer,	of	which	more	than	100	are	closely	related	to	beer	flavor.		These	components	affect	the	quality	
of beer in a coordinated and comprehensive way.(1–3)

	 At	present,	testing	and	evaluation	methods	for	beer	quality	include	the	traditional	physical	and	
chemical index detection methods, the sensory evaluation method, electronic nose detection, and 
electronic tongue detection.(4–7)  The traditional physical and chemical index detection methods are 
widely used in production.  For example, MALDI-TOF MS was applied to detect the acid and hop-
shock-induced responses in beer.(8)  In another approach, gas chromatography was used to analyze 
alcoholic beverages.(9)	 	 Ultra	 performance	 liquid	 chromatography	 was	 chosen	 to	 determine	 the	
ochratoxin A concentration in beer.(10)  However, this method cannot achieve real-time detection, as 
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it	takes	a	long	time	to	run.		Moreover,	this	method	cannot	be	used	to	represent	the	overall	quality	
of beer, as its result is only an overview of some ingredients in the beer.  The sensory evaluation 
method	 is	also	widely	used	 in	production.	 	Complex	 instruments	and	equipment	are	not	 required	
by this method, and fuzzy information from human senses provided by descriptive language in the 
sensory evaluation is so crucial that it can provide a reference for research, direct development, 
and the degree of market acceptance of products.(11,12)  However, sensory evaluation is subjective.  
The results vary with factors such as the taster’s physical condition and mood changes, and the 
evaluation	 time	 is	 long	 while	 the	 efficiency	 is	 low.	 	 The	 electronic	 nose	 and	 electronic	 tongue,	
as two new detection methods, can be applied to alcoholic beverage concentrates for category 
detection, and their performance in this application is very good.(13–15)  Ghasemi-Varnamkhasti et 
al. tested nonalcoholic beer and alcoholic beer using an electronic nose composed of six metal 
oxide sensors, and the accuracy of determining the category division was over 90%.(16)  Cetó et al. 
used	an	electronic	tongue	to	detect	a	total	set	of	51	samples	of	different	brands	and	varieties,	and	
the accuracy of determining the category division was over 80%.(17)  There are two characteristics 
of alcoholic drinks: aroma and taste.  Thus, detection using a single electronic nose or electronic 
tongue can only provide a subset of this information for alcoholic beverage samples.(18)  Our 
research	group	classified	eight	different	brands	of	Chinese	liquor	using	the	fusion	technology	of	the	
electronic	nose	and	electronic	 tongue,	and	compared	 the	classification	 results	with	 the	 single	use	
of	either	electronic	nose	or	electronic	tongue.		The	comparison	showed	that	the	fault	classification	
rate of the fusion technology is smaller than that obtained by the single use.(19)  The applications of 
fusion	 improved	 the	 classification	 accuracy.	 	However,	 the	 conclusions	were	 still	 limited	 to	only	
classification	and	could	not	be	applied	to	predict	the	descriptive	information	corresponding	to	the	
sensory evaluation.(20,21)  On the basis of the achievements made by other researchers, a relationship 
was set up between characteristic data collected by the sensor coupling array and the sensory 
evaluation of human preference in this study, so that the continued study and application have 
been further extended.  The prediction of fuzzy information describing beer using beer beverage 
information, which is collected by the sensor coupling array, can be applied not only to achieve 
efficient	 automated	 testing	 but	 also	 to	 prevent	 the	 consumption	 of	 labor	 and	 material	 resources	
required	to	organize	a	sensory	evaluation.
 In this study, we proposed a method that can be used to predict beer aroma, taste, and the overall 
sensory	 information	 on	 flavor	 using	 a	 smell	 and	 taste	 sensor	 array.	 	A	 cloud	model	was	 applied	
to	 realize	 the	 conversion	 between	 the	 descriptive	 language	 and	 the	 corresponding	 quantitative	
numbers in the process of beer sensory evaluation.  A fuzzy neural network was trained with 
the characteristic information collected by the sensor coupling array as the input and with the 
characteristic value generated from the conversion of the cloud model of sensory evaluation serving 
as the output to realize the automatic and humanlike evaluation of beer based on information from 
sensory evaluation.

2. Measurement Systems

 Two subsystems were included in the fusion system: the electronic nose and electronic tongue.  
Figure 1 shows the block diagram of the fusion system.
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2.1 Electronic nose

 The electronic nose has three main parts: the gas supply and transmitting unit, the sensor array 
and	chamber	unit,	and	the	data	acquisition	and	processing	unit.
	 The	 first	 unit	 consists	 of	 an	 air	 purification	 device,	 the	 headspace	 of	 vials,	 and	 pumps	 with	
different	 flow	 rates.	 	This	 unit	 is	 divided	 into	 two	 parts:	 gas	 injection	 and	 cleaning.	 	 In	 the	 gas	
injection part, pump one was opened and pump two was closed.  Pump one was used to draw the 
sample	gas	into	the	chamber,	which	was	then	transported	by	the	filtered	air.	 	In	the	cleaning	part,	
both	pump	one	and	pump	two	were	opened.		Because	the	flow	rate	of	pump	two	was	higher	than	
that	 of	 pump	 one,	 the	 cleaning	 air	 flow	 from	 pump	 two	was	 used	 to	 purge	 the	 system,	 and	 the	
original	gas	flow	direction	at	the	inlet	was	inverted.(22)

 Eight metal oxide semiconductor (MOS) sensors from Figaro Engineering, Inc. were used in 
this electronic nose.  They were TGS-832, TGS-831, TGS-830, TGS-826, TGS-825, TGS-822, 
TGS-821, and TGS-813.  They have a high sensitivity, a high stability, and a long lifetime, an 
even	more	specific	output	signal,	and	a	simple	conditioning	circuit.		The	sensing	element	for	such	
sensors is tin dioxide (SnO2), which has a low conductivity in zero gas.  When the concentration 
of the sensitive gas in the chamber increases, the sensor conductivity increases.  Considering the 
retention of the sample gas in the chamber, the chamber was composed of cardboard covered by 
polytetrafluoroethylene	(PTFE).		PTFE	is	a	thermoplastic	polymer,	its	melting	point	is	327	°C,	its	
density is 2.2 g/cm3	and	its	friction	coefficient	is	0.05–0.10.(23)  The resistance of PTFE to Van der 
Waals forces means that the adsorption of gas to PTFE is low.  Thus, PTFE was chosen to reduce 
gas adsorption in the chamber.  In the electronic nose, the entire gas tubing was also made of PTFE.
 In the third unit, an IUSBDAQ-U120816, developed by HYTEK Automation, was chosen to 
collect the data.  It has eight single-ended, 12-bit analog inputs.  It can convert the 0–5 V analog 
voltage output signals into digital signals and send the digital signals to the computer.

Fig. 1. Block diagram of the fusion system.
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2.2 Electronic tongue

 The electronic tongue is a new analytical instrument, which is also known as the intelligent 
bionic	system	of	taste.		In	this	study,	an	SA-402B	electronic	tongue	(Insent	Inc.,	Japan)	was	used.		
The	 tongue	 contains	 a	 sensor	made	 of	 an	 artificial	 lipid	membrane,	which	 is	 similar	 to	 the	 taste	
cells of a human tongue.  The electronic tongue can be used not only to evaluate the basic gustatory 
sensory indexes objectively but also to analyze the bitter, astringent, and fresh aftertaste.(24)
	 In	this	study,	five	taste	sensors	and	two	reference	electrodes	were	used	in	the	electronic	tongue	
experiment.	 	 The	 five	 taste	 sensors	 were	 the	 saltiness	 sensor	 CT0,	 the	 sourness	 sensor	 CA0,	
the bitterness sensor C00, the astringency sensor AE1, and the umami sensor AAE.  Five basic 
gustatory sensory indexes (bitterness, astringency, sour, salty, and sweet) and two aftertastes (bitter 
and astringency) were selected.

3. Experimental Section

3.1 Experimental materials

 Five commercial beers were chose as samples, which were purchased at a local supermarket.  
Their alcohol content, original wort concentration, raw materials, and location of production were 
copied from the beer bottle labels.  Table 1 lists all of these.

3.2 Measurement

 There were two steps in our experiment: the electronic nose and electronic tongue 
measurements.
 The dynamic headspace sampling method was used in the electronic nose measurement.  The 
laboratory	conditions	were	controlled	at	20	±	2	°C	and	65	±	5%	relative	humidity.		There	were	three	
steps in each experiment.  First, zero gas, which was processed with activated carbon, was vented 
into the chamber for 30 min so that the signal of the response of the sensors to zero gas could 
achieve a minimum stable value.  Second, a 100 ml beer sample was introduced into the airtight 
jar,	and	pump	one	was	opened	for	approximately	4	min	so	that	the	volatile	substances	in	the	beer	
sample could enter the airtight jar and achieve a saturated state.  Third, pump one and pump two 
were opened at the same time for approximately 20 min to purge the airway and air cell with zero 
gas, which was processed with activated carbon.  When the response of the sensor recovered to the 
lowest stable value, a new measurement was started.

Table 1
Characteristics of sampled beers.

Number Alcohol content Original wort 
concentration Raw and auxiliary materials Location

1 ≥	4.3%vol 11% Water, malt, rice, hops Zhaoqing	City,	Guangdong	Prov.
2 ≥	4.3%vol 11% Water, malt, rice Shenyang City, Liaoning Prov.
3 ≥	4.3%vol 11% Water, malt, rice, hops Beijing City
4 ≥	2.5%vol   8% Water, malt, corn, wheat malt, hops Changchun City, Jilin Prov.
5 ≥	3.6%vol      9.7% Water, malt, rice, hops Wuhan City, Hubei Prov.
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	 The	 electronic	 tongue	 adopted	 for	 this	 experiment	was	 SA-402B,	which	 is	mainly	 composed	
of	taste	sensors,	a	signal	acquisition	unit,	and	a	pattern	recognition	part.		The	device	was	equipped	
with	 five	 taste	 sensors	 and	 two	 reference	 electrodes.	 	 Data	were	 collected	 at	 room	 temperature.		
Before data collection, the electronic tongue system ensured the reliability and stability of data 
by going through steps of self-checking, diagnosis, and correction.  At the beginning of each 
experiment, electrodes were cleaned for 90 s in a reference solution, then for an additional 120 s in 
a second reference solution.  When the output reached a balance, a measurement was begun, lasting 
for 30 s.  After the measurement, electrodes were cleaned in another two reference solutions for 3 s, 
then the aftertaste value was measured.
 The experiments have been carried out with 18 samples of each kind of beer, and each sample 
was measured by the electronic nose and electronic tongue in accordance with the above steps.  
Five kinds of beer were measured, so we got 90 groups of data.  When the dataset was used for 
comparison with the cloud model and the training of the fuzzy neural network, it is essential to the 
following analysis.

3.3 Sensory evaluation experiments

	 Sensory	 evaluations	 adopt	 the	 method	 of	 quantitative	 description.	 	 Forty	 human	 sensory	
evaluation	staff	members	were	selected	 through	the	sensory	evaluation	ability	 test,	 in	which	each	
staff	 member	 was	 considered	 capable	 of	 distinguishing	 the	 tastes	 of	 interest.	 	 An	 appropriate	
training	 of	 the	 sensory	 evaluation	 staff	 resulted	 in	 a	 relatively	 consistent	 understanding	 of	 the	
evaluation standards and the sensory evaluation system.
	 This	experiment	included	five	different	brands	of	beer	according	to	the	two	aspects	of	aroma	and	
taste,	and	the	overall	flavor	of	each	beer	was	evaluated.		Weighting	values	set	for	the	references	and	
expert	opinions	on	aroma	and	taste	were	0.40	and	0.60,	respectively.(25)  Forty sensory evaluation 
staff	members	evaluated	the	three	sensory	properties	of	each	beer	sample	in	turn,	yielding	40	groups	
of	effective	sensory	evaluation	scores.

4. Results and Discussion

4.1 Cloud model processing of sensory evaluation data

	 In	the	process	of	beer	artificial	evaluation,	the	quality	of	beer	was	characterized	with	descriptive	
language.		However,	the	evaluation	language	specification	used	by	the	trained	staff	can	be	grouped.		
The	cloud	model	can	realize	any	conversion	between	descriptive	language	and	specific	numbers.(26–28)  
The	 specific	 numbers	 means	 three	 characteristic	 values	 which	 represent	 the	 sample’s	 overall	
features.  So that the information of beer sensory evaluation could be used to set up a relationship 
with the characteristic data collected by the sensor coupling array.
 Here, we analyze only the two-dimensional cloud model of aroma and taste.  The forty groups 
of information of sensory evaluation, namely, the corresponding cloud droplets x obtained for 
beer aroma and taste, are converted into three characteristic values, expected Ex, entropy En, and 
hyperentropy He, using the two-dimensional reverse cloud model.

 Ex =
N

i =1
xi /N  (1)
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 En = π/ 2 · (1/N) ·
N

i =1
|xi − x̄ | (2)

 He = [1/ (N − 1)] ·
N

i =1
(xi − x̄)2 − E2

n| |  (3)

In	 these	 equations,	Ex represents a certain concept of beer sensory evaluation; En represents the 
numerical	 range	 ambiguity	 of	 the	 qualitative	 concept	 (i.e.,	 it	 indicates	 the	 cloud	 droplet	 size	
accepted	by	the	qualitative	concept	 in	the	number	field	space,	revealing	the	random	nature	of	 the	
qualitative	concept);	He represents the entropy of the beer entropy En, for measuring randomness 
and fuzziness; and N is the total number of samples.
 Values of Ex, En, and He	obtained	from	sensory	evaluation	data	from	different	beers	are	shown	
in	Table	2.		Among	the	five	beers,	the	Ex values of the aroma and taste in beer 1 were the largest, 
showing that beer 1 had a clearly discernable hops aroma and its taste was pure.  The Ex values of 
the	aroma	and	taste	in	beer	4	were	the	smallest,	indicating	that	the	hops	aroma	of	beer	4	was	not	
readily	discernable	and	that	the	sample	had	a	firm	texture.		The	En	value	of	taste	in	beer	1	was	5.4754,	
which	was	 the	 largest	 among	 the	 five	 beer	 samples,	 showing	 that	 the	 cloud	 droplet	 group	 range	
accepted	by	 the	qualitative	concept	 in	beer	1	was	 the	highest	and	 that	 randomness	and	 fuzziness	
were high.  The En value of taste in beer 2 was the smallest, showing that the cloud droplet group 
range was the lowest and that randomness and fuzziness were low.  The He value of aroma in beer 
4	was	the	smallest,	showing	that	the	description	by	the	sensory	evaluation	staff	for	this	sample	was	
the most consistent and that the results of the sensory evaluation were stable.  The He value of taste 
in beer 2 was the largest, showing that the result of sensory evaluation was unstable and that there 
was	divergence	in	the	descriptions	of	the	sample	by	the	sensory	evaluation	staff.
 The Ex, En, and He values, obtained from the forty groups of sensory evaluation data could be 
used to recover features of the sensory evaluation data related to aroma and taste sensory data 
of	 any	 number	 of	 groups	 of	 five	 samples.	 	A	 selection	 of	 codes	 from	 the	 positive	 cloud	model	
algorithm in Matlab is presented as follows:  

Table 2
Output of the two-dimensional backward cloud model for the beers.
Number Ex En He

1 Aroma
Taste

20.1000
22.6500

2.6790
5.4754

2.1938
2.8471

2 Aroma
Taste

14.4250
16.5500

2.5998
2.2638

4.8150
6.2142

3 Aroma
Taste

17.0250
16.6750

2.9179
2.5497

4.3704
5.7495

4 Aroma
Taste

  5.8250
  9.1500

4.1540
2.5865

0.2857
5.9747

5 Aroma
Taste

16.5500
16.0500

3.8179
2.8560

3.8876
5.6382
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(1) x′	=	normrnd(En, He, 1, N); generated N normal random numbers using En as the expectation 
and  He as the variance.

(2) x(k)	=	normrnd(Ex, x′,	 1);	 generated	one	normal	 random	number	 using	Ex as the expectation 
and x′ as	 the	variance;	 the	number	was	a	specific	quantitative	value	of	qualitative	concept	A,	
namely, one cloud droplet.  The repeated calculation of this step, for k	=	1,	2,...,	N, yielded N 
cloud droplets in total.

(3) y(k)	=	exp[−(x(k)	−	Ex)2 / (2x(k)2)]; calculated the degree of membership of each cloud droplet 
to	qualitative	concept	A.

 The values of Ex, En, and He are obtained from the forty groups of sensory evaluation data and 
could	 recover	 any	 group	 of	 sensory	 evaluation	 results	 for	 the	 aroma	 and	 taste	 scores	 of	 the	five	
beer samples using the two-dimensional positive cloud model generator.  The forty groups of 
restored	sensory	evaluation	data	for	the	aroma	and	taste	of	the	five	beer	samples	are	shown	in	Figs.	
2(a1)–2(a5).		The	scatter	diagrams	of	the	original	effective	aroma	and	taste	evaluation	information	
obtained from the sensory evaluation experiments are shown in Figs. 2(b1)–2(b5).  The recovered 
cloud droplets were consistent with the basic characteristics of the original sensory evaluation 
data in Fig. 2.  The data points of beer 1 are on the top right, as the scores of aroma and taste were 
high.		The	data	points	of	beer	4	are	on	the	bottom	left,	as	the	scores	of	aroma	and	flavor	were	low.		
The remaining points were dispersed in the middle area.  The conversion process between the beer 
qualitative	 concepts	 and	 specific	 numbers	 retained	 the	 characteristics	 of	 the	 samples.	 	Thus,	 the	
cloud model could be used to realize any uncertain transformation between the descriptive language 
and	specific	value	expression	in	the	process	of	beer	sensory	evaluation.

4.2 Predictive information on beer sensory evaluation based on a fuzzy neural network

 Fuzzy neural networks are a new type of pattern recognition algorithm.  They combine the 
advantages of fuzzy theory and neural networks, have a strong adaptive capacity, and can be 
combined	with	fuzzification.(29,30)  The fuzzy neural network adopted in this study was composed of 
an	input	layer,	a	fuzzification	layer,	a	fuzzy	rule	layer,	a	fuzzy	decision-making	layer,	and	an	output	
layer.
 The input layer is mainly aimed at reading and normalizing data collected by the sensor array 
according	to	different	smell	and	taste	characteristics.		Each	node	of	this	layer	connects	to	the	input	
vector of each component directly, playing a role in delivering the accurate collected value to the 
next layer of the fuzzy neural network.  The beer sample input layer of this study contains 15 input 
nodes (n	=	15),	 corresponding	 to	 the	8	 sensor	characteristic	 signals	of	 the	electronic	nose	 sensor	
array	and	the	7	sensor	characteristic	signals	of	the	electronic	tongue	sensor	array.		The	fuzzification	
layer	is	designed	for	the	implementation	of	the	fuzzification	of	the	input	layer.		This	study	adopted	
Gaussian membership functions based on the beer sample features.  There were 2n + 1 hidden 
nodes selected (i.e., there were 31 hidden nodes).  Every node of the fuzzy rule layer is a fuzzy rule 
that	matches	former	fuzzy	rules	to	determine	the	fitness	of	each	rule.		The	fuzzy	decision-making	
layer is used for the comprehension of later fuzzy rules.  The output layer is the output of the whole 
fuzzy neural network, corresponding to the predictive values of beer aroma, taste, and sensory 
evaluation	information	of	overall	flavor	characteristics.
 A selection of the core formulas applied in this paper are as follows:
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 u(i, j)	=	exp[−(x(i)	−	c(j, i))2 / b(j, i)],	 (4)

where i	=	1,	2,...,	n; j	=	1,	2,...,	2n + 1; u(i, j) is the membership degree of each input component in 
the	fuzzification	layer	relevant	to	the	fuzzy	set	of	variable	values	of	sensory	evaluation;	c(j, i) is the 
center	value	of	the	fuzzification	layer;	and	b(j, i)	is	the	node	width	of	the	fuzzification	layer.

Fig. 2. Restored and original aroma and taste evaluations of beers 1 through 5: (a1)–(a5) restored aroma and taste 
evaluation of beers 1 through 5, (b1)–(b5) original aroma and taste evaluation of beers 1 through 5.

(a1) (a2) (a3)

(a4) (a5)

(b1)

(b5)

(b2) (b3)

(b4)
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 w( j) =
n

i =1
u(i, j) = exp −

n

i =1
(x(i) − c( j, i))2 / b( j, i)  (5)

 addv	=	sum(w)  (6)

 addyw =	∑fiwT(j) (7)

Here,	∑fi	=	p(0) + p(1)x(1) + ... + p(i)x(i) + ... + p(n)x(n); w(j)	 is	 the	fitness	degree	of	each	 rule	
in the fuzzy rule layer; and wT(j) is the transposed vector of w(j). The vector after the transposed 
vector composed of the elements p(i) contains the regulation parameters of the fuzzy decision-
making layer.

 y	=	addv/addyw, (8)

where y is the output of the fuzzy neural network.
 The fuzzy neural network was used to predict the sensory evaluation information of beer aroma, 
taste,	and	overall	flavor	characteristics.	 	In	this	study,	the	experiments	obtained	90	groups	of	data	
each using the electronic nose and electronic tongue; the data were divided into 2 subsets randomly, 
and	each	subset	had	45	sets	of	data.		One	subset	was	considered	as	the	test	set,	and	the	rest	as	the	
training sets.  The prediction curve of taste Ex	values	for	the	five	beer	samples	is	shown	in	Fig.	3,	
the sample numbers 1–9 on the X-axis belong to beer 1, samples 10–18 belong to beer 2, samples 
19–27	 belong	 to	 beer	 3,	 samples	 28–36	 belong	 to	 beer	 4,	 and	 samples	 37–45	 belong	 to	 beer	 5.		
The actual output means the true Ex	value	of	five	kinds	of	beer	samples,	and	the	predicted	output	
means the prediction value that was obtained by the fuzzy neural network model.  The prediction 
of	characteristic	values	could	describe	the	characteristics	of	beer	flavor	and	recover	features	of	the	
sensory	evaluation	data;	thus,	it	realized	the	humanlike	prediction	of	beer	flavor.		Predicted	results	
described by the relative error rate are shown in Table 3.  In terms of aroma, the relative error rate 

Fig. 3. Ex prediction curve for taste.
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of He	values	in	beer	1	had	a	maximum	value	of	0.0884.		In	terms	of	taste,	the	relative	error	rate	of	
En values in beer 5 had a maximum value of 0.0993.  In summary, when predicting a single feature 
of aroma or taste, the relative error rate was between 0.0206 and 0.0993.  The predictive accuracy 
was	 high,	 as	 the	 relative	 error	 rate	 of	 the	 flavor	 information	 as	 a	 whole	 reached	 0.0062.	 	 The	
effect	of	the	whole	set	of	flavor	evaluation	information	was	adequate.		The	relative	error	rate	was	
controlled	between	0.0048	and	0.0394.

5. Conclusions

 In this study, an automatic evaluation system was promoted; this system completed the mapping 
between the characteristic information collected by a sensor coupling array and the descriptive 
language from sensory evaluation through a combination of cloud model and fuzzy neural network.  
It	 realized	 the	 humanlike	 evaluation	 of	 beer	 flavor	 other	 than	 mere	 classification.	 	 First,	 the	
conversion	between	descriptive	language	and	quantitative	data	was	achieved	for	the	beer	evaluation	
using a cloud model.  Then, the relationship between the beer sensory evaluation data and 
characteristic	data	collected	by	the	sensor	coupling	array	was	expressed.		A	test	of	beer	quality	from	
the two aspects of smell and taste using an electronic nose and an electronic tongue was proposed 
and discussed.  Finally, the fuzzy neural network was trained with the characteristic information 
collected by the electronic nose and electronic tongue sensor coupling array as the input and 
information from the cloud model transformation of sensory evaluation information as the output.  
When predicting the beer sensory evaluation information using this fuzzy neural network, the error 
rate	was	between	0.0048	and	0.0993,	and	the	overall	flavor	information	error	rate	was	even	lower	
than	0.0394,	thereby	an	automatic	evaluation	system	of	beer	sensory	information	is	acceptable.
 The electronic tongue and electronic nose were successfully able to describe the category of 
food	including	beer	in	the	last	year;	at	this	point,	we	are	only	dissatisfied	with	classification.		The	
beer sensory evaluation information, which was automatically predicted by the electronic nose 
and electronic tongue sensor coupling array in a fuzzy level, may attract the attention of the beer 
industry.

Table 3
Relative error rate in beer taste prediction.
Number Ex En He

1 Aroma
Taste

Overall	flavor

  0.0265
  0.0256
		0.0048

0.0287
0.0606
0.0266

0.0884
0.0452
0.0304

2 Aroma
Taste

Overall	flavor

  0.0588
0.041
		0.0394

0.0206
0.0580
0.0205

0.0404
0.0274
0.0256

3 Aroma
Taste

Overall	flavor

		0.0421
  0.0628
  0.0112

0.0247
0.0715
0.0221

0.0822
0.0243
0.0144

4 Aroma
Taste

Overall	flavor

  0.0813
  0.0820
  0.0230

0.0234
0.0590
0.0098

0.0559
0.0348
0.0275

5 Aroma
Taste

Overall	flavor

		0.0457
  0.0839
  0.0136

0.0428
0.0993
0.0283

0.0622
0.0519
0.0208
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