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	 In this study, we developed an all-in-one phantom and scintillator radiation sensor (PSRS) with 
plastic scintillating fibers which can measure the real-time position and the dose distribution of Ir-
192 as a radioactive source employed in high-dose-rate (HDR) brachytherapy.  As experimental 
results, we simultaneously obtained information on the shape and position of the Ir-192 as well as 
the dose distribution.  The all-in-one PSRS system has many dosimetric advantages, such as real-
time monitoring, wide dose-response range, high spatial resolution, nearly water-equivalence for 
high-energy photons, and the ability to measure two-dimensional dose distribution.   

1.	 Introduction

	 The main challenge in high-dose-rate (HDR) brachytherapy is to deliver a prescribed radiation 
dose to a tumor while limiting the dose delivered to surrounding normal organs and tissues.  In HDR 
brachytherapy, the iridium-192 (Ir-192) source as a gamma-emitter, with an initial radioactivity of 
approximately 370 GBq (10 Ci) is moved and placed along catheters or applicators inserted within 
the treatment site during a defined period of time.  The positioning and the displacement of an Ir-
192 source are controlled by a remote after-loader.  Here, the source positions and dwell times are 
determined to meet the requirements for the prescribed dose.(1–3)  Therefore, it is very important to 
exactly measure the real-time position and the dose distribution of the Ir-192 source in after-loading 
HDR brachytherapy.  Unfortunately, however, existing conventional methods (e.g., film based HDR 
brachytherapy dosimetry) cannot be used to measure the position of Ir-192 source in real time.  
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	 Dose measurements of the gamma sources employed in brachytherapy are usually performed 
using a radiochromic film.  However, the dose measurements are usually carried out using solid 
water or water-equivalent plastic materials because the radiochromic film may not be immersed 
in water.  Furthermore, the radiation sensitivities of radiochromic films are different from those of 
tissue, and thus correction factors are needed to be applied.
	 To plan personalized treatment for a set of defined points to be treated, X-ray films or computed 
tomography (CT) images are also used in conventional HDR brachytherapy dosimetry.  This 
dosimetry does not take into account the unique size and the shape of a tumor, or the location of 
an organ at risk (OAR).(4–7)  Accordingly, this may lead to tumor under-dosage and OAR over-
dosage, which can increase the probability of cancer recurrence and the incidence of side-effects, 
respectively.  Success or failure of HDR brachytherapy depends on the exact position of the 
radioactive source which is used to deliver radiation to cancer cells.  
	 In this study, we fabricated an all-in-one phantom and scintillator radiation sensor (PSRS) to 
measure the real-time position and the dose distribution of an Ir-192 source.  The proposed PSRS 
offers many dosimetric advantages, such as a fast real-time response capability, wide dose response 
range, acceptable spatial resolution, nearly water-equivalence for high-energy photons, ability to 
measure two dimensional dose distributions, and convenient use for brachytherapy dosimetry.

2.	 Materials and Methods

	 For HDR brachytherapy dosimetry, an all-in-one PSRS was fabricated using organic scintillators 
and polymethylmethacrylate (PMMA) phantoms.  As a sensitive material for the all-in-one PSRS, 
plastic scintillating fiber (BCF-20, Saint-Gobain Ceramic & Plastics) was used to generate the 
scintillation light signal.  BCF-20 has a core/single-clad structure with a diameter of 2 mm.  To 
fabricate an organic scintillator, the core of BCF-20 was synthesized with polystyrene (PS) and 
fluorescent dopants and the cladding material was made of PMMA.  An organic scintillator is also 
made of low-atomic-number materials and has a low density.  Therefore, an organic scintillator has 
nearly water-equivalent characteristics as a sensing element to measure ionizing radiation.(8–11)  The 
refractive indices of the core and the cladding are 1.60 and 1.49, respectively, and the numerical 
aperture (NA) is approximately 0.58.  The decay time and the emission peak of BCF-20 are 2.7 ns 
and 492 nm, respectively.  Table 1 shows the physical properties of BCF-20 used in this study.
	 Figure 1 shows the fabricated all-in-one PSRS which was composed of the plastic optical fibers 
and the PMMA phantoms.  The plastic scintillating fibers (Nos. 1–8) of different lengths were 
arranged circularly in the PMMA phantom to measure the source position, and the others (Nos. 
9–19) with identical lengths of 40 mm were arranged diagonally to measure the dose distribution, as 
shown in Fig. 1.  Here, the length of the plastic scintillating fibers (Nos. 1–8), which are installed in 
a circle, increased from 5 to 40 mm with intervals of 5 mm, and each scintillating fiber was spaced 
4 mm apart. 

Table 1	
Physical properties of commercially available BCF-20.

Organic 
scintillator

Emission 
color

Emission 
peak (nm)

Decay time 
(ns)

1/e length 
(m)

Number of photons 
per Mev

Refractive 
index

Density
(g/cm3)

BCF-20 Green 492 2.7 >3.5 ~8000 1.6 10.5 
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	 Figure 2 illustrates the experimental setup for measuring scintillation light using the all-in-
one PSRS, a complementary metal-oxide semiconductor (CMOS) camera, and an Ir-192 HDR 
brachytherapy source.  Gamma-rays with an energy range from 50 to 800 keV and two peaks at 316 
and 468 keV were emitted from the Ir-192 source with a radioactivity of 10.76 Ci.  The diameter of 
this brachytherapy source was 0.6 mm, and its length was 3.5 mm.  The mean energy and half-life 
of Ir-192 are 370 keV and 74.2 d, respectively.  Scintillation light signals generated from the plastic 
scintillating fibers in the all-in-one PSRS were simultaneously measured by the CMOS camera 

Fig. 1.	 (Color online) Arrangement of the plastic scintillating fibers in the all-in-one PSRS.

Fig. 2.	 (Color online) Experimental setup for measuring scintillation light using the proposed all-in-one PSRS 
system.
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Fig. 3.	 (Color online) Screen captures of the 12 scintillation images of an Ir-192 source at a series of consecutive 
dwell positions.

(acA3800-14uc, BASLER).  The image sensor of the camera consisted of a number of square pixels 
with dimensions of 1.67 × 1.67 μm2; its sensor size was 6.44 × 4.62 mm2.  The maximum resolution 
of the CMOS camera was 3856 × 2764.

3.	 Results and Discussion

	 Real-time images of the Ir-192 source were acquired using the proposed all-in-one PSRS 
system.  Figure 3 shows the screen captures of the 12 scintillation images of an Ir-192 source at 
a series of consecutive dwell positions.  While changing source position in 5 mm steps, we took 
images of the scintillation light signals using the CMOS camera.  The scintillation images of all-
in-one PSRS contain the scintillation light signals emitted from each plastic scintillating fiber (i.e., 
BCF-20) to measure the real-time position of the Ir-192 source.  
	 Figures 4 and 5 show the measurements of scintillation light signals according to the source 
position and the distance between each plastic scintillating fiber and the Ir-192 source.  In this test, 
we simultaneously obtained information on the shape and the position of the Ir-192 source as well 
as the dose distribution.  As can be seen in Figs. 3 and 4, the position of the Ir-192 source pellet 
can be clearly identified by analyzing the brightness (i.e., light intensity) of each scintillation light 
signal emitted from the circularly arranged plastic scintillating fibers (Nos. 1–8) with different 
lengths.  As shown in Fig. 5, the intensities of each scintillation light signal emitted from the 
diagonally arranged plastic scintillating fibers (Nos. 9–19) with identical lengths decreased as the 
distance increased. 
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Fig. 4.	 (Color online) Real-time monitoring of source position using the all-in-one PSRS according to the dwell 
position of an Ir-192 source.

Fig. 5.	 (Color online) Measurements of dose distribution using the PSRS according to the distance between each 
plastic scintillating fiber and the Ir-192 source.
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4.	 Conclusions

	 We fabricated a novel all-in-one PSRS using plastic scintillating fibers and the PMMA 
phantoms.  In this study, the scintillation images were obtained using a CMOS camera according 
to the position of an Ir-192 HDR brachytherapy source.  In conclusion, the proposed monitoring 
system has a sufficient dynamic range and spatial resolution to image a small Ir-192 source under 
most clinical conditions.  Real-time monitoring of source position using the high-resolution all-in-
one PSRS facilitates in vivo source tracking for the verification of the source location and the dwell 
times.  It is expected that an all-in-one PSRS can be used in HDR brachytherapy dosimetry due to 
its many advantages, including high spatial resolution, real-time monitoring, ease of use, and water-
equivalence.  Further studies will be carried out to fabricate a newly designed all-in-one PSRS 
using plastic scintillating fibers with a diameter of less than 0.5 mm to measure real-time dose 
distributions with a high spatial resolution in clinical HDR brachytherapy.  We will also measure the 
absorbed dose using a conventional ion chamber and then compare the dose values and the intensity 
of the scintillation signals measured using the proposed PSRS.
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