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	 Heart rate estimation during exercise with photoplethysmographic (PPG) sensors is a difficult 
problem because motion artifacts (MAs) contaminate PPG signals.  In this paper, we propose 
a method of accurately estimating heart rate during exercise from a PPG signal by considering 
exercise intensity.  The exercise intensity is estimated from acceleration signals simultaneously 
recorded with the PPG signal.  The proposed method dynamically limits the estimation range of 
heart rate depending on the exercise intensity, resulting in an accurate heart rate estimation during 
exercise.  From the experimental results, we have confirmed that the proposed method can estimate 
heart rate more accurately than conventional methods.  

1.	 Introduction

	 Heart rate monitoring is important for controlling exercise intensity in rehabilitation, healthcare, 
and training.  As a traditional method for heart rate estimation, electrocardiography (ECG) has been 
widely used.   To monitor heart rate during exercise, chest-strap ECG devices have been developed.  
The cost of such devices, however, is high, and they cannot be used without expert knowledge.  
	 Heart rate estimation from photoplethysmographic (PPG) signals has become popular 
recently because PPG sensors are cheaper and can be easily embedded in wearable devices like 
smartwatches.  A PPG signal can be measured using a pulse oximeter which illuminates the skin 
and measures changes in light absorption.(1,2)   It is, however, difficult to accurately estimate heart 
rate during exercise from a PPG signal because the distance from the sensor to the skin changes 
when exercising, resulting in the contamination of a PPG signal by motion artifacts (MAs).(3)

	 There are some studies focusing on the reduction of the influence of MAs.(4–16)  Many of them, 
however, implicitly or explicitly assume that exercise intensity is constant or changes slightly.  It 
is, therefore, difficult to simply apply these techniques to heart rate estimation during exercise 
especially when exercise intensity changes dynamically.  
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	 In this paper, we propose a method for accurately estimating heart rate from a PPG signal during 
exercise by considering the exercise intensity.  To estimate the exercise intensity, the proposed 
method utilizes the 3D acceleration signals simultaneously recorded with a PPG signal.  In this 
paper, we assume that a 3D acceleration sensor and a PPG sensor are integrated into a wrist-type 
device such as a smart watch.  
	 The rest of the paper is organized as follows.  Section 2 describes related work.  Section 3 
describes the proposed method.   Section 4 shows the experiments we conducted for confirming 
the effectiveness of the proposed method.  Finally, in §5 we conclude this paper and show a future 
direction.

2.	 Related Work

	 There are some studies on reducing MAs in PPG signals.(4–12)  In these studies, the signal 
elements of MAs are removed by a statistical signal processing technique such as independent 
component analysis (ICA).  Once MAs can be removed from a PPG signal, the temporal change 
in heart rate can be estimated by peak-frequency tracking.   It is, however, difficult to completely 
distinguish the elements of MAs from PPG signals because statistical independence between the 
signals cannot be assured during exercise.  
	 To deal with the problem of MAs, some studies have focused on the post-processing part, i.e., 
peak-frequency tracking.(13–16)  To avoid inaccurate estimation caused by MAs, these studies limit 
the estimation range of the heart rate.  The methods used, however, cannot deal with rapid heart rate 
changes caused by changes in exercise intensity.  To deal with the problem, our method accurately 
captures the trend of instant changes in heart rate by monitoring the change in exercise intensity 
with acceleration sensors.

3.	 Proposed Method

3.1	 Outline

	 The proposed method estimates heart rate using a wristband-type device equipped with PPG and 
3D acceleration sensors.  The signals from these sensors are simultaneously recorded.  
	 Figure 1 shows the outline of the proposed method.  As the first step, the proposed method 
generates a spectrogram from the PPG signal using a short-time Fourier transform (STFT) [Fig. 
1(a)].  At the same time, the proposed method estimates the change in exercise intensity from the 
3D acceleration sensor signals [Fig. 1(b)].  Next, the proposed method performs peak-frequency 
tracking [Fig. 1 (c)].  In peak-frequency tracking, the spectrogram is reconstructed by emphasizing 
particular frequencies based on the change in exercise intensity.   The details of each step are 
explained in the next subsections.

3.2	 Generation of spectrogram

	 To grasp the temporal trend of the spectrum of a PPG signal, the proposed method generates a 
spectrogram.  Here, let x(t) be the measured PPG signal and X(n,m) be the spectrogram generated by 
the short-time Fourier transform (STFT) with the time window size T.  Figure 2 shows an example 
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of a spectrogram [T = 16 (s)].  In a spectrogram, the horizontal and vertical axes represent time and 
frequency segments, respectively.  Owing to the characteristics of the STFT, the resolutions of the 
horizontal and vertical axes are limited to T and F [= 1/T (Hz) = 60/T (BPM)], respectively.  The 
density of color in each segment represents the power of the frequency in the segment.  
	 The temporal change in the peak frequency of the PPG signal corresponds to heart rate if MAs 
are very weak.  Since a PPG signal during exercise, however, is more or less contaminated by MAs, 
many unnatural frequency peaks appear in the spectrogram.   If the technique of peak-frequency 
tracking is applied to such a spectrogram without any MA cancellation processing, the estimation 
of heart rate becomes inaccurate like the path shown in Fig. 2.  It is therefore crucial to introduce a 
mechanism of reducing the effect of MAs.  The mechanism of reducing the effect of MAs used in 
the proposed method is explained in § 3.4.  

3.3	 Estimation of exercise intensity

	 Human heart rate can increase considerably within a short period of time when exercise intensity 
increases.  On the other hand, heart rate tends to be stable when keeping exercise at a constant 
intensity.  
	 The proposed method estimates the exercise intensity from the 3D acceleration sensor 
signals.  To estimate the exercise intensity, we focus on the absolute acceleration signal 
a(t) = a2

x(t) + a2
y(t) + a2

z (t), where ax(t), ay(t), and az(t) are the acceleration values on the axes.  
Here, let ∆I(n) be the change in exercise intensity at the time segment n.  ∆I(n) is defined as 

Fig. 1.	 (Color online) Outline of the proposed method.

Fig. 2.	 Spectrogram of a PPG signal during exercise.
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	 ∆I(n) =
µa(n) − µa(n − 1)

δa(n − 1)
.	 (1)

Here, μa(n) and σa(n) are, respectively, the average and SD of the acceleration in the n-th time 
segment defined as

	 µa(n) =
1
T

(n+1)T

nT
a(t)dt	 (2)

and

	 σ a(n) =
1
T

(n+1)T

nT
[a(t) − µa(n)]2dt.	 (3)

3.4	 Tracking of peak frequency

	 To reduce the effect of MAs, the spectrogram is reconstructed by emphasizing particular 
frequencies as 

	 X'(n,m) = w(n,m)X(n,m),	 (4)

where w(n,m) is the weight matrix applied to the original spectrogram X(n,m).  We assume that a 
distribution of relative changes of heart rate can be approximated by a Gaussian distribution.  In 
their assumption, we define the weight matrix w(n,m) as

	 w(n,m) =
1

2πσ 2∆I(n)2
exp

[(m − Mn−1) − µ∆I(n)]2

2σ 2∆I(n)
,	 (5)

where Mn−1 is the heart rate (peak frequency) of the previous time segment.  The weight w(n,m)  
dynamically changes depending on two factors: previous heart rate Mn−1 and the change in exercise 
intensity ∆I(n).  The parameters μ(ΔI) and σ(ΔI), respectively, represent the average and SD of the 
change in heart rate when the change in the exercise intensity is ΔI.  
	 Table 1 shows the values of μ(ΔI) and σ(ΔI) used in the proposed method.  These values were 
statistically measured using the IEEE Signal Processing Cup 2015 dataset.(13)  The dataset contains 
PPG signal data during exercise, acceleration sensor data, and the accurate heart rate data (ground 
truth data) measured by ECG.  Using the heart rate and acceleration sensor data, we examined the 

Table 1
Average and SD of peak frequency changes at different levels of exercise intensity change.

ΔI μ σ
(i) ΔI     1.024 1.449
(ii) ΔI     0.216 0.953
(iii) ΔI   −0.161 0.988
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distributions of heart rate changes along with different levels of exercise intensity change.  Figure 3 
shows the histograms of relative change of heart rate at different levels of ΔI.  By approximating the 
distribution shapes in these histograms as Gaussian distributions, the values in Table 1 are obtained.  
	 To the spectrogram reconstructed by the proposed weighting [Eq. (4)], the method applies the 
technique of peak-frequency tracking.  Figure 4 shows the original and reconstructed spectrograms.  
As shown in the reconstructed spectrogram, unnatural peaks can be removed.  By the dynamic 
weighting mechanism, the estimation of heart rate becomes more accurate.

4.	 Experimental Results

4.1	 Method

	 We conducted an experiment on the evaluation of the effectiveness of the proposed method.  In 
the experiment, we used the IEEE Signal Processing Cup 2015 dataset.(13)  The dataset included 
two-channel PPG signal data and 3D acceleration signal data from 12 subjects.  In addition, as 
ground truth data, the accurate heart rate data measured by ECG were included.  All signals were 
recorded for 300 s at a sampling rate of 125 Hz.  During data recording, the subjects walked or ran 
on a treadmill at the following speeds: 1–2 km/h for 30 s, 6–8 km/h for 60 s, 12–15 km/h for 60 s, 
6–8 km/h for 60 s, 12–15 km/h for 60 s, and 1–2 km/h for 30 s.(13)

Fig. 4.	 (Color online) Spectrogram reconstructed 
by dynamic weighting.

Fig. 3.	 Histograms of relative change of heart rate 
at different levels of ∆I.
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	 In the generation of the spectrogram from a PPG signal, the size of the time window in the SFTF 
was set to 1024 points [T = 8.192 s].
	 In the experiment, we compared the estimated accuracies by the following three methods:
Method 1: simple tracking
	 The peak-frequency tracking was applied to the original spectrogram X(n,m) without any 
weighting processing.
Method 2: conventional tracking
	 The peak-frequency tracking was applied to the weighted spectrogram X'(n,m) where the 
weight matrix w(n,m) was statically defined (i.e., the matrix does not change regardless of exercise 
intensity).  The static weighting approach has been adopted in conventional studies such as Ref. (13).  
In this method, assuming that exercise intensity was constant (i.e., ΔI = 0.), the parameters μ(ΔI) 
and σ(ΔI) in Eq. (5) were set to the constants shown as case (ii) in Table 1. 
Method 3: proposed tracking
	 The peak-frequency tracking was applied to the weighted spectrogram X'(n,m), where the weight 
matrix w(n,m) changed dynamically depending on the level of exercise intensity change, as shown 
in Table 1. 

4.2	 Results

	 Table 2 shows the average absolute error (AAE) of the estimated heart rates in the three 
methods.  As shown in this table, by Method 3 (proposed method), the accuracy of heart rate can 
be greatly improved.  These results indicate the effectiveness of the proposed dynamic weighting 
approach.  
	 Figure 5 shows the spectrogram generated from a PPG signal and the paths of peak-frequency 
tracking by the three methods.   In this figure, the labels VL (very low), L (low), and H (high) 

Fig. 5.	 Peak-tracking results obtained by the three methods.

Table 2
Average absolute errors of estimated heart rates in the three methods.

Method 1 Method 2 Method 3
AAE (BPM) 18.76 33.86 8.98
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attached to each time period represent walking or running speed during the periods.  As shown in 
this figure, the path of Method 3 (proposed method) can accurately capture the correct heart rate in 
most part.  In contrast, the paths of Method 1 and Method 2 are far from the ground truth.  During 
the first 30 s, all the three methods can correctly estimate heart rate.  This is because MAs have a 
negligible effect in this period.  The paths, however, diverge after the running speed changes from 
VL to L [Fig. 5(a)].  By the influence of MA newly added at the timing, the estimated heart rate by 
Method 1 increases markedly [Fig. 5(b)].  To prevent such a drastic change, Method 2 limits the 
estimation range of heart rate by weighting the spectrogram.  As a result, the heart rate estimated by 
Method 2 changes gradually.  However, the speed of tracking in Method 2 is so low that it cannot 
capture the rapid change in heart rate when exercise intensity changes.  Method 3 (the proposed 
method) dynamically changes the estimation range depending on the level of exercise intensity 
change, which is an essential difference from the static weighting adopted in Method 2.  From the 
comparison, we can confirm that, by the dynamic weighting mechanism, the estimation range of 
heart rate is appropriately controlled depending on the current state of exercise intensity, resulting 
in a more accurate estimation of heart rate during exercise.  

5.	 Conclusions

	 In this paper, we have proposed a method of accurately estimating heart rate from a PPG signal 
during exercise considering exercise intensity.  From the experimental results, we have confirmed 
that the proposed method was able to estimate heart rate more accurately than conventional 
methods.
	 In this paper, we have mainly focused on the peak-tracking part of the problem of heart-rate 
estimation from a PPG signal.  However, the improvement of the preprocessing part, such as by 
noise cancellation, is also important for an accurate estimation.  Since many techniques for noise 
cancellation have been studied, we would like to combine these techniques with our method for 
establishing a more practical heart-rate estimation method.  
	 Heart-rate estimation from PPG signals is a challenging procedure.  However, the availability 
of PPG sensors is promising for smart sensing in the healthcare field.  The findings of this study are 
expected to contribute to future development of smart sensing in this field.
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