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	 In this paper, a concept for a solar-blind ultraviolet (SB-UV) photodetector for 
detecting and analyzing a hydrogen flame as a high-speed object with massive parallel 
processing is proposed.  A two-dimensional (2D) UV photodetector together with the 
readout and edge detection circuits is fabricated as an optoelectronic integrated circuit 
(OEIC).  The edge detection circuit extracts the edge of the object using the outer 
vertebrate retina network and produces binary images.  The binary images are sent to 
the field-programmable gate array (FPGA).  To reduce the dimensions of the binary 
image from two dimensions into one dimension, the projection histogram circuit is 
implemented in the FPGA.  The edge locations of the projections are processed to 
generate information such as object presence, object speed, object direction and object 
spreading status.  At this current stage, a personal computer (PC) is used to generate the 
binary images of a moving object to simulate the output of the OEIC.  The implemented 
system in the FPGA achieved a real-time performance at 71 frames/s for 250 × 250 
pixels with the PC.

1.	 Introduction

	 A solar-blind ultraviolet (SB-UV) photodetector detects UV radiation in the UV-C 
region (200–280 nm).  The term solar blind means that the UV radiation from the 
sun does not cause a false detection on the SB-UV photodetector when the SB-UV 
photodetector is subjected to the intended UV source located at sea level.  This is possible 
because the sun’s UV radiation between 200 and 300 nm is absorbed by the ozone in the 
atmosphere.(1)  To detect radiation in the UV-C region, the photodetector material must 



1010	 Sensors and Materials, Vol. 27, No. 10 (2015)

have a wide bandgap.  AlxGa1−xN is an example of a promising material from the group 
III nitrides that can be used as a SB-UV photodetector.  The Al composition of AlxGa1−xN 
can be tailored to change the bandgap.  AlN has a bandgap of 6.2 eV at 210 nm, and GaN 
has a bandgap of 3.42 eV at 360 nm.  An Al composition of around 50% in AlxGa1−xN 
provides a cutoff wavelength of around 270 nm.(2)

	 In this study, the SB-UV photodetector is designed to be a smart UV sensor for a 
hydrogen flame monitoring system.  This UV sensor not only detects the presence of 
the hydrogen flame but also analyzes the flame.  It generates information such as flame 
location, flame speed, flame direction and flame spreading status.  To realize these goals, 
a focal plane array of SB-UV photodiodes to produce a two-dimensional UV-image must 
be fabricated along with the readout circuit as an optoelectronic integrated circuit (OEIC).  
The readout circuit also contains the edge detector circuit.  The edge detector circuit 
mimics the outer vertebrate retina as described in ref. 3.  The output of the edge detector 
circuit is a binary image that is transferred to the field-programmable gate array (FPGA) 
device.  Within the FPGA, the projection histogram circuit is implemented to reduce the 
dimensions of the binary image from two dimensions into one dimension.  After the edge 
locations of the projected images are determined, the system calculates the necessary 
information.  Currently, the OEIC is still under development.  A personal computer (PC) 
is used to generate the binary image.  The design concept of the smart UV sensor and 
the performance of the implemented system in the FPGA are described in the following 
sections.

2.	 Design Concept

	 Hydrogen is an essential material that is used in many industries.  However, leakage 
may occur during its manufacture, storage, and distribution.  When hydrogen is released 
and mixed with oxygen in air, it can self-ignite.(4,5)  It is important to have a monitoring 
system to locate a hydrogen flame.  Because the system has to locate the source of the 
flame, a focal plane array (FPA) is needed.  An FPA consists of two-dimensional SB-
UV photodetectors that act as an imaging sensor in which its images are sent out to the 
processing unit.  In a high-speed imaging, the data from the photodetectors to the readout 
circuit then to the processing unit should be transferred as fast as possible.  Commercially 
available complementary metal oxide semiconductor (CMOS) image sensor chips utilize 
a high-speed serial communication system to transfer the images from the readout 
circuit to the processing unit, for example, the PYTHON 1300 series produced by ON 
Semiconductor that uses a low-voltage differential signal (LVDS) for transmission to 
have a frame rate of 860 frames/s with a data rate of 720 Mbps × 4 lanes at a video 
graphics array (VGA) resolution.(6)  However, in this case, parallel data transfer has some 
advantages.  The first is that the circuit becomes simple because each pixel is connected 
to the readout circuit without an additional circuit controller.  The second is that the 
current FPGA devices have abundant registers in which each output of the readout circuit 
could be connected to them.  The third is that it increases the system execution time 
because the images from the readout circuit are delivered to the processing unit at one 
time.  Parallel data transfer is more effective when carried out by a stacking technique 
to minimize the length of the metal connections.  A hybrid image sensor that comprises 
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a planar membrane array of frontside-illuminated AlGaN/GaN photodetectors bonded 
to a CMOS readout circuit using metal via connection has been demonstrated in ref. 
7.  Figure 1 shows the concept in this study.  The photodetectors are stacked onto the 
readout circuits as an OEIC.  Then, the outputs of the OEIC are connected to the FPGA’s 
registers.  An FPGA is also used because of its programmability.  A suitable circuit can 
be implemented in the FPGA without refabricating the unit.

2.1	 The previous work on the OEIC
	 The OEIC opens the possibility of massive parallel processing.(3,7–11)  A combination 
of photodetectors or light-emitting diodes (LEDs) with CMOS circuits has been 
demonstrated in our laboratory.  A Au/n-GaN Schottky barrier diode (SBD) was used as 
an ultraviolet sensor, and an nMOS Si-charge transfer signal processor was successfully 
fabricated.(8)  A GaN-based UV sensor array integrated into the silicon sensing circuit 
has been implemented, considering that the charge transfer signal processor was difficult 
to build.(9)  A back-side illuminated photodiode that has been fabricated along with an 
optical current amplifier and a pulse width modulation (PWM) generator based on CMOS 
processes has been designed.  It was designed to demonstrate further integration with 
other circuits such as light-emitting devices.(10)  LEDs and metal oxide semiconductor 
field-effect transistor (MOSFET) circuits have been fabricated monolithically using 
the Si/III-V-N alloy/Si structure.  The LEDs were fabricated in the III-V-N alloy layer, 
whereas the MOSFET circuits were built on the silicon capping layer.(11)  References 10 
and 11 show the possibility of the integration of different chips.
	 An edge detection circuit based on the outer vertebrate retina that has been 
demonstrated in ref. 3 is used in this study and combined together with a readout circuit 
to produce binary images.  Figure 2 shows the edge detection architecture based on the 
outer vertebrate retina model.  The model was composed of photodetectors P, horizontal 
cells H, and bipolar cells B.  The photodetectors P convert the UV radiation from a 
hydrogen flame into photocurrent as shown in Fig. 2(b).  The horizontal cells H smooth 

Fig. 1.	 (Color online) Smart UV-sensor design.
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the signal from the photodetectors P.  Then, the bipolar cells B subtract the output signals 
coming from the photodetectors P and horizontal cells H.  The output of the bipolar cells 
B, as shown in Fig. 2(c), is digitized by digitized cells DG to overcome the noise and 
device mismatches.  The digitized cells DG produce ‘0’ at the edge position and ‘1’ at 
other positions, as shown in Fig. 2(d).  Since the outputs of the digitized cells DG are 
considered as binary, they could be connected to the FPGA.

2.2	 Stacking approaches
	 The photodetector of the circuit in Fig. 2 may be fabricated separately from the 
readout circuit, after which they are connected using a bonding or stacking technique.  
The purpose is to make the area of the pixel wider, which increases the sensitivity of 
the photodetector itself.  The back-side-illuminated Schottky photodiode AlGaN based 
on a sapphire substrate became the candidate in this study.  There are four reasons for 
these considerations.  The first is that, by adjusting the Al concentration in the AlGaN, 
the desired bandgap can be achieved.  The second is that a Schottky structure offers 
fast response and little persistent photoconductivity (PPC).  The third is that a sapphire 
substrate in conjunction with an AlN template is the best choice to avoid crack and 
absorption losses compared with a GaN template on a silicon substrate.  The fourth is 
that the back-side-illuminated structure may be stacked with the readout circuit using 
a microbump.  Then, the question of how to stack the OEIC and the FPGA arises.  
Three existing methods can be adopted for this purpose.  The first method is to stack 
both of them chip-to-chip using a multilayer printed circuit board.  There is, however, 
a pin limitation for the available FPGA chips in the market.  The Virtex-T series from 
Xilinx has 1200 I/O pins, which are only enough for 34 × 34 pixels to be connected 
directly.  The second method is 2.5D technology, called stacked silicon interconnect 
(SSI) technology introduced by Xilinx.(12)  The SSI technology enables the integration 
of heterogeneous dies, for example, between logics and RFs or high-speed I/Os.  

(a)

(b)

(c)

(d)

Fig. 2.	 Edge detection architecture.  (a) Model based on the outer vertebrate retina.  (b) Output 
signals of photodetectors P.  (c) Output signals of bipolar cells B.  (d) Output signals of digitized 
cells DG.
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Microbumps and silicon interposers are used to make the connections.  The third method 
is 3D technology.  The OEIC and logics (FPGA) are stacked vertically and connected 
with through-silicon vias (TSVs).  Figure 3 shows a demonstration of a chip-based 3D 
heterogeneous integration system as a prototype of a high-speed and highly parallel image 
processing system.(13)  Cu TSVs and Cu/Sn microbumps are used to vertically connect 
the CMOS image sensor (CIS), correlated double sampling circuit (CDS), and analog-
to-digital converter (ADC) chips.  To induce bonding, each chip is assisted by a support 
wafer using an adhesive layer.  It was confirmed that a frame rate of 4000 frames/s for a 
320 × 240 pixel resolution was achieved using those chips.
	 For this study, the outputs of the OEIC might be connected separately to the FPGA 
using wires.  The technical approach for stacking the OEIC is shown in Fig. 4.  This 
approach is also used in ref. 7, in which the UV sensor array and silicon signal processor 
were integrated via microbumps.

Fig. 3.	 (Color online) Prototype of a 3D-stacked image sensor.  (a) Schematic of chips to be 
integrated.  (b) Cross-sectional view with microlens and glass cap.(13)

Fig. 4.	 (Color online) Technical approach for stacking the OEIC.

(a) (b)
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2.3	 FPGA processing circuit
	 Figure 5 shows the system algorithm with 10 × 10 pixels as an example of the 
illustration for each process.  The implementation utilized 250 × 250 pixels.  Figure 5(a) 
shows the ultraviolet radiation from a hydrogen flame captured by the photodetectors.  
The gray scale indicates the intensity of the photocurrent of each pixel.  The bright pixels 
are called objects that represent the hydrogen flame.  The next step is extracting the edge 
of the object as shown in Fig. 5(b).  The process described in Fig. 2 defines that the black 
pixels indicate the edge of the object, while the white pixels indicate the background.  
This produces a binary image.  The binary image is transferred to the registers of the 
FPGA.  Here, the logic is inverted to reduce the power.  The projection histogram circuit 
projects the object’s edge horizontally and vertically as shown in Fig. 5(c).  Originally, 
a projection was performed by using adders to sum up each row and each column.  An 
image of 250 rows by 250 columns would need 500 adders to do a projection at one 
time.  This would consume many available resources.  Considering that the images 
are binary, OR gates are chosen instead of adders for a projection.  Thus, the circuit 
complexity is reduced.  As a result, the execution time is shorter.  Figure 5(d) shows the 
edge locator circuit that identifies the position of each of the projected images.  After 
that, the weighting circuit associates each edge location with a number that indicates the 
real position from the leftmost side, as shown in Fig. 5(e).  Those four edge locations 

Fig. 5.	 (Color online) System algorithm.
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are rising edge vertical (RV), falling edge vertical (FV), rising edge horizontal (RH), and 
falling edge horizontal (FH).
	 Finally, the calculation circuit generates information about the object location, object 
speed, object direction, and object spreading status.  The object locations (OX and OY) 
are defined as a midpoint of the histogram projected, as shown as

	 OX =
1
2

(RV + FV) ,	 (1)

	 OY =
1
2

(RH + FH) .	 (2)

The object speed (OP) is defined as a resultant of the object velocities (VX and VY), as 
shown in eq. (3).  The object velocity is defined as the change in displacement between 
two consecutive images, as shown in eqs. (4) and (5).  The index n means the current 
image, the index n−1 means the previous image, and T means the time interval between 
two consecutive images.

	 OP = VX
2 + VY

2 	 (3)

	 VX = (OXn − OXn−1 )/T 	 (4)

	 Y = (OYn − OYn−1 )/TV 	 (5)

The object direction (OD) is defined as an inverse tangent of the object velocity, as shown 
as

	 OD = tan−1(VY/VX).	 (6)

The object size (OZ) is defined as a product of the lengths of the histograms projected, as 
shown as

	 OZ = (FV – RV) × (FH – RH).	 (7)

Therefore, the maximum object size is equal to the object square area.  By comparing the 
object sizes between two consecutive images, the spreading status determines whether 
the object becomes bigger, smaller, unchanged, or lost from the image.

3.	 Result and Discussion

	 A PC used to generate the binary images of a moving object to imitate the output of 
the OEIC.  The object in the binary images can be moved manually by using the PC’s 
mouse or moved automatically by a movement algorithm.  Those binary images are sent 
to the FPGA by using a serial communication system.  Each binary image of 250 × 250 
pixels is compressed before it is sent to the FPGA to reduce the transmission time.  Each 
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row is encoded into two bytes of data: the start address and length of the object.  Thus, 
the total data for one binary image that is sent to the FPGA is 502 bytes, after adding two 
additional bytes (a start byte and a stop byte) for synchronization.  The FPGA receives 
those data and decodes back row by row into a complete image.  The programming 
codes in the PC are written using Processing (https://processing.org/).  The PC itself is 
equipped with an Intel® Core™ i3-4130 CPU and 4 GB RAMs.
	 So far, we have not measured the real speed of the moving object because the object 
speed was expressed in units of pixel/s.  The range of detectable speeds can be calculated 
theoretically as shown in Fig. 6.  In Fig. 6, one image (one frame) is ready to be processed 
every Tn second.  The duration between two consecutive images is called time interval (Δt).  
The time interval is inversely related to the frame rate.  The moving object (the bright 
pixel in Fig. 6) moves to the right side one pixel every Δt second.  This gives the speed 
calculation of 1 pixel/Δt.  In this experiment, the measured time interval is 14.08 ms.  
Therefore, the minimum detectable speed is 1 pixel/14.08 ms (~71 pixels/s).  This means 
that, when the object moves below 71 pixels/s, the system might not be able to detect 
the object speed.  With an image size of 250 × 250 pixels, the maximum displacement 
of a pixel is 249 horizontally or vertically.  Thus, the maximum detectable speed is 
249 pixels/14.08 ms (~17685 pixels/s).  This also indicates that when the object moves 
faster than 17,685 pixels/s, the system might not be able to detect the object speed.  The 
relationship between image size and the time interval to obtain the range of detectable 
speeds is calculated as

	 Vmin/max (pixel/s) = Dmin/max (pixel) / Δt (s),	 (8)

where Dmin/max is the minimum or maximum displacement inside the binary image.  To 
convert units into real-world units such m/s, sensor calibration is needed.
	 Figures 7 and 8 show the experimental result of the speed test.  Figure 7 shows 
the result when an object moved from left to right (the origin of the image is top left 
coordinates) at a speed of 71 pixels/s, the direction was 0°, the diameter was 10 pixels, 
and the y-position of the object was 128.  The object was designed to appear in the 
image, to move to the right side, and then to disappear from the image.  The x-position of 
the object (OX) increased linearly from 0 to 249, meaning that the object moved from the 

Fig. 6.	 (Color online) Calculating the speed of a moving object.
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left side to the right side.  The object size (OZ) changed from 0 to 100 pixel2, then became 
constant at 100 pixel2, and finally decreased to 0.  This shows that, first, the object was 
not in the image, then it gradually appeared and moved with a constant size, and finally 
it disappeared from the image.  The object speed (OP) was also detected to be constant at 
71 pixels/s, but a vibration was observed at the beginning and end.  This vibration shows 
that, at the beginning, the object size gradually increased.  Sometimes, the calculated 
x-position of the object was constant.  Thus, the calculated speed was zero.  This also 
happened when the object gradually disappeared from the image.

Fig. 7.	 (Color online) The object moved constantly at 71 pixels/s.

Fig. 8.	 (Color online) The object moved constantly at 3551.14 pixels/s.
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	 Figure 8 shows the result when an object whose diameter was 10 pixels moved from 
left to right at a speed of 3551.14 pixels/s, at a direction of 0°, and with a y-position of 
128.  The x-position of the object (OX) confirmed that the object was moved from the left 
image to the right image.  The object size (OZ) also confirmed that the object was moved 
across the image.  The object speed (OP) was measured at 3551 pixels/s when the object 
was close to the center of the image.
	 Figure 9 shows the experimental results of the direction test.  An object with a 
diameter of 10 pixels moved in a circular loop at an angular speed of 12.4 rad/s.  The 
center position of the object (defined by OX and OY) rotated and appeared as a sinusoidal 
pattern in the graph.  The measured direction (OD) appeared as a sawtooth pattern from 
around 6 to 353°.  This means that the system can measure the direction of the object, but 
the object speed (OP) was not measured correctly because the system used a linear speed 
calculation.
	 These experimental results of the system implemented in the FPGA confirmed that 
the FPGA enabled the analysis of an object in motion for the given binary images.  The 
projection histogram algorithm played an important role because it could find the object 
edges rapidly using simple circuits.  The implemented system in the FPGA consumed 
31% of available slices (1194 of 3758 slices).  The real-time performance using a PC 
is 71 frames/s or 14.08 ms because the software Processing on the PC sets the limit on 
the frame rate, even when a baud rate of 921600 bit/s is used.  The Processing executes 
the code within the void loop() at a certain frame rate depending on the specifications 
of the PC.  The implemented circuit in the XC6SLX25 FPGA (within a XuLA2-LX25 
development board) took about 7.05 ms to process one binary image at a clock rate 
of 100 MHz.  The process for receiving a complete binary image from the PC took 7 
ms, while the remaining processes (histogram projection, edge locator, weighting, and 

Fig. 9.	 (Color online) The object rotated constantly at 12.4 rad/s.
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calculation) consumed about 0.05 ms.  This means if parallel data transfer to transfer a 
complete binary image at a single time can be realized, we can achieve an execution time 
of about 0.05 ms.  This gives a processing time of up to 20000 frames/s.  Nevertheless, 
one should consider having an appropriate relationship between the frame rate and the 
object speed.  Higher frame rates would be useless for slow moving objects, and vice 
versa.  Once the OEIC has been fabricated and connected to the FPGA, calibration 
should be conducted to convert real-world units such m/s into pixel/s.  The hydrogen 
flame might have a speed of 18.6 m/s.(14)  After calibration, one could determine the 
proper frame rate.
	 Realizing the parallel data transfer between the OEIC and the FPGA means that 
the time for transferring the images from the OEIC into the FPGA is very short or at 
least it only needs a single clock period.  When the image resolution is increased, the 
histogram projection, edge locator, and weighting circuits would be scaled.  Moreover, 
the calculation circuit is unchanged.  This means that the system execution time would 
not be scaled for transferring the images from the OEIC to the FPGA and also for the 
calculation circuit.
	 The histogram projection circuit utilizes OR gates in series for each row and each 
column.  Each OR gate has two inputs, connected to the current pixel and the output of 
the previous OR gate.  Therefore, the execution time of the histogram projection [tHP(m,n)] 
is equal to the longest propagation delay (tPD) of the OR gates, as defined in

	 tHP(m,n) = (h – 1) × tPD,	 (9)

where h = max(m,n), m is the number of rows, and n is the number of columns.  A minus 
1 is added to eq. (9) because the last OR gate is connected to the last two pixels.  The 
edge locator and weighting circuits were modified for higher-resolution images to reduce 
the circuit complexity.  They were combined as a searching circuit.  The searching circuit 
finds the edges by seeking the logic 1 within the projected registers from the left to the 
right, step by step.  If the logic 1 is found, it seeks again from the right to the left, step 
by step, and the number of steps is equal to the real position of the edge.  Therefore, the 
execution time of the searching circuit [tSC(m,n)] of an image with a resolution of m × n 
pixels is define by

	 tSC(m,n) = [(m + 2 − dV) + (n + 2 − dH)] × tCLK,	 (10)

where dV is the length of the vertical projection, dH is the length of the horizontal 
projection, and tCLK is the clock period of the FPGA.  Hence, the total execution time of 
the circuit [tCIR(m,n)] in the FPGA is defined by

	 tCIR(m,n) = tHP(m,n) + tSC(m,n) + tFIX,	 (11)

where tFIX is the execution time of the calculation circuit and the logics for controlling 
those circuits.  tFIX is not scaled with the higher-resolution images because the circuit 
remains unchanged.
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	 Ideally, only a single object is allowed to appear in the image.  When several objects 
appear simultaneously in the image, the system assumes that those objects are fragments 
of a large object.  This problem is handled by the searching circuit because it finds the 
boundaries of the outer objects.  Moreover, further investigation to involve multiobject 
analysis is necessary.

4.	 Conclusion

	 A potential of OEIC technology for massive parallel processing application has been 
discussed.  At this current stage, a high-speed motion detector using an image processing 
circuit has been implemented in an FPGA.  A PC was used to emulate the OEIC and sent 
the binary images of 250 × 250 pixels to the FPGA at a frame rate of 71 frames/s.  The 
detectable speeds ranged from 71 to 17685 pixels/s.  The execution time of the system 
was 7.05 ms, in which 7 ms was spent for handling the data transfer itself between the 
PC and the FPGA.  This means that if the parallel data transfer between OEIC and FPGA 
is realized in the near future, the time required to handle the data transfer between the 
OEIC and the FPGA could be neglected and the real-time performance may increase up 
to 20000 frames/s.
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